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Objective: Previous studies have reported that dietary intake is associated with 
immunoglobulin A nephropathy (IgAN). However, the causal relationship remains 
unknown. Based on publicly available genome-wide association study (GWAS) 
data, we conducted a two-sample Mendelian randomization (MR) analysis to 
assess the causal association between 26 dietary exposures and IgAN.

Methods: Five methods, including inverse variance weighting (IVW), MR–Egger 
regression, weighted median, simple mode, and weighted mode, were applied 
in the MR analysis. To identify the presence of horizontal pleiotropy, we used the 
MR-Egger intercept test and MR pleiotropy residual sum and outlier (MR-PRESSO) 
global test. Cochran’s Q statistics were used to assess instrument heterogeneity. 
We conducted sensitivity analysis using the leave-one-out method.

Results: Finally, the results indicated alcohol intake frequency (odds ratio 
[OR] (95% confidence interval [CI])  =  1.267 (1.100–1.460), p  =  0.0010295) was 
a risk factor of IgAN, while cheese intake (OR (95% CI)  =  0.626 (0.492–0.798), 
p  =  0.0001559), cereal intake (OR (95% CI)  =  0.652 (0.439–0.967), p  =  0.0334126), 
and sushi intake (OR (95% CI)  =  0.145 (0.021–0.997), p  =  0.0497) were protective 
factors of IgAN. No causal relationship was found between IgAN and the rest of 
the dietary exposures.

Conclusion: Our study provided genetic evidence that alcohol intake frequency 
was associated with an increased risk of IgAN, while cheese, cereal, and sushi 
intake were associated with a decreased risk of IgAN. Further investigation is 
required to confirm these results.
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1 Introduction

Immunoglobulin A nephropathy (IgAN), a pathological type of chronic kidney disease, 
is the most common primary glomerular disease worldwide and a leading cause of end-stage 
renal disease (ESRD) (1). It is characterized by pathological features, including IgA deposition 
in the glomerular mesangium, glomerular mesangial cell proliferation, and increased 
mesangial matrices (2). Because IgAN occurs mainly in young and middle-aged people (3), 
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and approximately one-third of IgAN patients irreversibly develop to 
ESRD within 20 ~ 40 years, it brings a huge economic and social 
burden (4). Currently, the pathogenesis of IgAN remains unclear. The 
drug treatment of IgAN relies on renin-angiotensin-aldosterone 
system inhibitors, glucocorticoids and immunosuppressants (5). 
However, some patients experience severe adverse drug reactions and 
poor sensitivity, which makes IgAN treatment challenging. Therefore, 
it is necessary to conduct a comprehensive search for risk factors 
related to IgAN and to provide recommendations for the prevention 
of IgAN.

Previous observational studies have indicated that dietary intake 
may play an important role in IgAN development. An epidemiological 
study in Japan found that people who frequently consumed raw eggs 
and large amounts of carbohydrates had a significantly increased risk 
of IgAN (6). A retrospective study found that the incidence of IgAN 
was related to infant milk feeding (7). Kloster Smerud et al. found that 
food allergies may be related to IgAN (8). It is widely believed that high 
protein intake (such as red meat, egg, and milk) might lead to increased 
intraglomerular pressure and glomerular hyperfiltration, which can 
cause damage to the glomerular structure, leading to or aggravating 
chronic kidney disease (9). In contrast, plant nutrients and plant-based 
diets (such as vegetables and fruits) have beneficial effects in patients 
with chronic kidney disease (10). However, whether the conclusions 
could be inferred for IgAN patients is unknown, and studies in this area 
are lacking. Early studies found that alcohol consumption could lead to 
IgA deposits in the kidneys and increase the incidence risk of IgAN (11, 
12); however, some researchers have demonstrated that alcohol intake 
plays a protective role against chronic kidney disease (13). Two cross-
sectional population-based studies conducted in Australia showed that 
a higher fluid intake appeared to protect the kidney (14). As one of the 
most popular beverages in the world, tea has been shown to have 
kidney protective effects (15). However, studies on the association 
between tea intake and IgAN are lacking. Moreover, owing to inherent 

defects, existing observational studies cannot efficiently exclude the 
possibility of reverse causality and confounding factors, which could 
potentially lead to biased associations and conclusions. Thus, the 
findings of observational studies need to be clarified further.

In recent years, Mendelian randomization (MR) analysis has been 
increasingly used to evaluate causal associations between exposure 
and outcome (16). Unlike conventional observational studies, MR 
analysis utilizes exposure-related single nucleotide polymorphisms 
(SNPs) as instrumental variables (IVs) to establish the relationship 
between risk factors and disease (17). Since genetic variants are 
randomly assigned during meiosis, MR studies are similar to genetic 
randomized controlled trials (18), and potential reverse causality and 
other confounding factors can be efficiently precluded. In the present 
study, we conducted a two-sample MR analysis to study the causal 
relationship between the 26 dietary exposures and IgAN.

2 Materials and methods

2.1 Study design

A two-sample MR analysis was used to evaluate the relationship 
between dietary intake and IgAN. The selected IVs satisfied three 
important assumptions (Figure 1): (1) the IVs were strongly related to 
dietary intake, (2) the IVs were unrelated to any confounding factors, 
and (3) the IVs had no direct correlation with IgAN via factors other 
than dietary intake.

2.2 Data source

In the present study, exposure data were extracted from the 
UK Biobank, which collected genotype data on approximately 

FIGURE 1

The three assumptions of the MR analysis. SNPs, single nucleotide polymorphisms. IgA, immunoglobulin A.
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500,000 individuals. The population included in this study was 
European. The exposures were mainly categorized as follows: 
protein, carbohydrates, plant-based diets, and beverages. Finally, 
the exposures in our study included 26 dietary intakes: cheese 
(N = 451,486), cereal (N = 441,640), sushi (N = 64,949), alcohol 
(N = 462,346), snackpot (N = 64,949), dried fruit (N = 421,764), 
salad/raw vegetable (N = 435,435), cooked vegetable (N = 448,651), 
poultry (N = 461,900), tofu (N = 64,945), Scotch egg (N = 64,949), 
beef (N = 461,053), oil fish (N = 460,443), non-oil fish 
(N = 460,880), pork (N = 460,162), herbal tea (N = 64,949), tea 
(N = 447,485), green tea (N = 64,949), coffee (N = 428,860), mango 
(N = 64,949), pancake (N = 64,949), soya dessert (N = 64,947), 
bread (N = 452,236), lamb/mutton (N = 460,006), processed meat 
(N = 461,981), unsalted peanuts (N = 64,949). Outcome data for 
IgAN (N = 477,784, including Ncase = 15,587 and Ncontrol = 462,197) 
were extracted from the EBI database (19). Detailed information 
is provided in Table 1. As the data were obtained from the IEU 
Open GWAS Project and could be freely downloaded at https://
gwas.mrcieu.ac.uk/, ethical approval and participant consent were 
not required.

2.3 Selection of the genetic instruments

To select IVs that fulfilled the three core MR assumptions, 
we performed a set of quality control techniques. First, SNPs strongly 
associated with exposure (p < 5 × 10−8) were selected as IVs. Parameters 
(r2 < 0.001 and window size = 10,000) were then set to exclude SNPs 
with strong linkage disequilibrium (LD). Palindromic structures were 
excluded. In addition, we calculated F-statistic to quantify the strength 
of the selected IVs (20) and set a threshold value of F > 10 to prevent a 
weak instrument bias (21). Furthermore, we excluded confounding 
SNPs by searching for SNP information in wed https://ldlink.nih.
gov/?tab=ldtrait, GWAS catalog, and PubMed.

2.4 Statistical analysis

The inverse variance weighted (IVW) method was chosen as the 
primary approach to assess the causal relationship between dietary 
intake and IgAN. Additional methods, including MR–Egger 
regression, weighted median, simple mode, and weighted mode were 
used as complements to the IVW. Cochran’s Q statistics were used to 

TABLE 1 Detailed information about the aggregated GWAS results.

GWAS ID Trait Sample size SNPs (n) Consortium Population

ukb-b-1489 Cheese intake 451,486 9,851,867 MRC-IEU European

ukb-b-15926 Cereal intake 441,640 9,851,867 MRC-IEU European

ukb-b-5213 Sushi intake 64,949 9,851,867 MRC-IEU European

ukb-b-5779 Alcohol intake frequency 462,346 9,851,867 MRC-IEU European

ukb-b-12912 Snackpot intake 64,946 9,851,867 MRC-IEU European

ukb-b-16576 Dried fruit intake 421,764 9,851,867 MRC-IEU European

ukb-b-1996 Salad/raw vegetable intake 435,435 9,851,867 MRC-IEU European

ukb-b-8006 Poultry intake 461,900 9,851,867 MRC-IEU European

ukb-b-5522 Tofu intake 64,945 9,851,867 MRC-IEU European

ukb-b-13516 Scotch egg intake 64,949 9,851,867 MRC-IEU European

ukb-b-2862 Beef intake 461,053 9,851,867 MRC-IEU European

ukb-b-8089 Cooked vegetable intake 448,651 9,851,867 MRC-IEU European

ukb-b-2209 Oily fish intake 460,443 9,851,867 MRC-IEU European

ukb-b-5640 Pork intake 460,162 9,851,867 MRC-IEU European

ukb-b-13344 Herbal tea intake 64,949 9,851,867 MRC-IEU European

ukb-b-6218 Mango intake 64,949 9,851,867 MRC-IEU European

ukb-b-17627 Non-oily fish intake 460,880 9,851,867 MRC-IEU European

ukb-b-6066 Tea intake 447,485 9,851,867 MRC-IEU European

ukb-b-5237 Coffee intake 428,860 9,851,867 MRC-IEU European

ukb-b-4078 Green tea intake 64,949 9,851,867 MRC-IEU European

ukb-b-6500 Pancake intake 64,949 9,851,867 MRC-IEU European

ukb-b-998 Soya dessert intake 64,947 9,851,867 MRC-IEU European

ukb-b-11348 Bread intake 452,236 9,851,867 MRC-IEU European

ukb-b-14179 Lamb/mutton intake 460,006 9,851,867 MRC-IEU European

ukb-b-6324 Processed meat intake 461,981 9,851,867 MRC-IEU European

ukb-b-15555 Unsalted peanuts intake 64,949 9,851,867 MRC-IEU European

ebi-a-GCST90018866 IgAN 477,784 24,182,646 / European

GWAS, genome-wide association study; SNPs(n), number of single nucleotide polymorphisms; MRC-IEU, Medical Research Council Integrative Epidemiology Unit; IgAN, immunoglobulin A 
nephropathy.
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reflect the presence of heterogeneity of instruments (p < 0.05 was 
considered heterogeneity) (22), and horizontal pleiotropy was assessed 
using the MR-Egger intercept test and MR-PRESSO global test 
(p < 0.05 was considered pleiotropy) (23, 24). We  also used the 
MR-PRESSO method to identify potential outliers. If an outlier was 
identified, we  excluded it and performed the MR analysis again. 
Finally, we performed a sensitivity analysis of the results using the 
leave-one-out method. All analyses were performed using the 
“TwoSampleMR” and “MR-PRESSO” packages in R version 4.3.0.

3 Results

3.1 Results of SNPs selection and the weak 
IV test

In our study, we performed an MR analysis on 26 different dietary 
exposures with IgAN. In the exposure of cheese intake, several SNPs, 
including rs1024853, rs11649653, rs26579, and rs4776970, were 
removed for being palindromic with intermediate allele frequencies. 
For alcohol intake frequency, SNPs including rs1893659 and 

rs9958320 were removed for incompatible alleles, and rs1104608, 
rs1894544, and rs62097995 were removed because they were 
palindromic with intermediate allele frequencies. For exposure of 
cereal intake, SNPs including rs10837531, rs1104608, rs3859193, 
rs627185, and rs67723420 were removed because they were 
palindromic with intermediate allele frequencies. Detailed 
information of the IVs for cheese intake, alcohol intake frequency, 
cereal intake, and sushi intake can be  found in 
Supplementary Tables S1–S4. The F statistics of all IVs were greater 
than 10, which indicates that the results of the MR analysis were not 
likely to be affected by weak IV bias.

3.2 The results of MR analysis

According to Table 2, the primary results of the IVW analysis 
showed that alcohol intake frequency (OR (95% CI) = 1.267 (1.100–
1.460), p = 0.0010295) was discovered as a risk factor of IgAN. Cheese 
intake (OR (95% CI) = 0.626 (0.492–0.798), p = 0.0001559), cereal 
intake (OR (95% CI) = 0.652 (0.439–0.967), p = 0.0334126), and sushi 
intake (OR (95% CI) = 0.145 (0.021–0.997), p = 0.049685) were 

TABLE 2 The results of IVW about the aggregated GWAS results.

Outcome Exposure Method IVs (n) b se p-value

IgAN Cheese intake IVW 53 −0.4677279 0.1236901 0.0001559

IgAN Alcohol intake frequency1 IVW 78 0.236969 0.0721949 0.0010295

IgAN Cereal intake IVW 27 −0.4279035 0.2011684 0.0334126

IgAN Sushi intake IVW 8 −1.92976 0.983234 0.049685

IgAN Snackpot intake IVW 19 2.289872 1.273467 0.072155

IgAN Dried fruit intake IVW 41 −0.33966 0.198481 0.087024

IgAN Salad / raw vegetable intake IVW 19 1.294252 0.775402 0.09509

IgAN Poultry intake IVW 7 −0.69299 0.428516 0.105837

IgAN Tofu intake IVW 5 1.744693 1.101154 0.113098

IgAN Scotch egg intake IVW 18 1.24625 0.880077 0.156755

IgAN Beef intake IVW 14 0.400556 0.290314 0.167668

IgAN Cooked vegetable intake IVW 17 0.43797 0.319095 0.169896

IgAN Oily fish intake IVW 61 0.209143 0.187539 0.264766

IgAN Pork intake IVW 14 0.399173 0.401788 0.32047

IgAN Herbal tea intake IVW 19 0.003705 0.00388 0.339667

IgAN Mango intake IVW 4 0.276129 0.299107 0.355915

IgAN Non-oily fish intake IVW 11 0.467305 0.581542 0.42165

IgAN Tea intake IVW 39 −0.08526 0.111566 0.444726

IgAN Coffee intake IVW 38 −0.10128 0.169973 0.551258

IgAN Green tea intake IVW 21 −0.00108 0.003783 0.775292

IgAN Pancake intake IVW 4 −0.24421 0.859624 0.776344

IgAN Soya dessert intake IVW 4 0.351673 1.441251 0.807227

IgAN Bread intake IVW 30 0.044883 0.25441 0.859963

IgAN Lamb/mutton intake IVW 31 0.020207 0.276322 0.941704

IgAN Processed meat intake IVW 23 −0.01292 0.21578 0.952263

IgAN Unsalted peanuts intake IVW 5 −0.02076 0.909857 0.981796

IVs(n), number of instrumental variables; IgAN, immunoglobulin A nephropathy; IVW, inverse variance weighted. 1 The estimates were derived from a random-effects model owing to the 
presence of heterogeneity based on Cochran’s Q statistic.
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identified as protective factors of IgAN. The rest of the dietary intakes 
were not related to the occurrence of IgAN (IVW p > 0.05).

The results of the MR–Egger regression, weighted median, simple 
mode, and weighted mode are presented in Table  3. For alcohol 
intake frequency (IVW beta = 0.236969, p = 0.0010295), similar 
results were obtained through the MR–Egger regression 
[beta = 0.0060511, OR (95% CI) = 1.006 (0.729–1.389), p = 0.9707445], 
weighted median [beta = 0.1855399, OR (95% CI) = 1.204 (0.980–
1.478), p = 0.076532], simple mode [beta = 0.4519185, OR (95% 
CI) = 1.571 (0.961–2.570), p = 0.0757164] and weighted mode 

[beta = 0.1314467,OR (95% CI) = 1.140 (0.872–1.492), p = 0.340832]. 
For cheese intake (IVW beta = −0.4677279, p = 0.0001559), the results 
of MR–Egger regression [beta = −1.0076467, OR (95% CI) = 1.006 
(0.729–1.389), p = 0.9707445], weighted median [beta = −0.4766256, 
OR (95% CI) = 1.204 (0.980–1.478), p = 0.076532], simple mode 
[beta = −0.4767936, OR (95% CI) = 1.571 (0.961–2.570), 
p = 0.0757164] and weighted mode [beta = −0.4767936, OR (95% 
CI) = 1.140 (0.872–1.492), p = 0.340832] were also showed the same 
trend. For cereal intake (IVW beta = −0.4279035, p = 0.0334126) and 
sushi intake (IVW beta = −1.92976, p = 0.049685), the MR-Egger, 

TABLE 4 Reliability test of MR analysis results.

Outcome Exposure Method Cochran’s Q test MR-Egger 
intercept test 

p-value

MR-PRESSO 
global test 
p-valueQ Q_df p-value

IgAN

Cheese intake
MR Egger 54.346085 51 0.3482498

IVW 55.491293 52 0.3445602 0.304777 0.435

Alcohol intake 

frequency

MR Egger 97.479231 76 0.0490964

IVW 100.59835 77 0.03684271 0.123048 0.0472

Cereal intake
MR Egger 28.683486 25 0.2773632

IVW 28.703457 26 0.3247386 0.8960913 0.194

Sushi intake
MR Egger 1.749363 6 0.941247

IVW 1.911264 7 0.964588 0.701355362 0.962

IgAN, immunoglobulin A nephropathy; IVW, inverse variance weighted. 1 The Cochran’s Q heterogeneity test p < 0.05, a random effects IVW MR analysis was used. 2 Although the Global test 
p < 0.05, the outlier test detected no significant outliers.

TABLE 3 Results of the two-sample MR analysis.

Outcome Exposure Method IVs (n) Beta se p-value OR (95% CI)

IgAN Cheese intake

MR Egger 53 −1.0076467 0.5352832 0.065485 0.365 (0.128–1.042)

Weighted median 53 −0.4766256 0.1653562 0.0039464 0.621 (0.449–0.859)

IVW 53 −0.4677279 0.1236901 0.0001559 0.626 (0.492–0.798)

Simple mode 53 −0.4767936 0.3681333 0.200984 0.621 (0.302–1.277)

Weighted mode 53 −0.4767936 0.3508887 0.1800697 0.621 (0.312–1.235)

IgAN
Alcohol intake 

frequency

MR Egger 78 0.0060511 0.1644508 0.9707445 1.006 (0.729–1.389)

Weighted median 78 0.1855399 0.1047554 0.076532 1.204 (0.980–1.478)

IVW1 78 0.236969 0.0721949 0.0010295 1.267 (1.100–1.460)

Simple mode 78 0.4519185 0.2510124 0.0757164 1.571 (0.961–2.570)

Weighted mode 78 0.1314467 0.137144 0.340832 1.140 (0.872–1.492)

IgAN Cereal intake

MR Egger 27 −0.5419623 0.8884959 0.5473818 0.582 (0.102–3.318)

Weighted median 27 −0.7154268 0.2847579 0.0119912 0.489 (0.280–0.854)

IVW 27 −0.4279035 0.2011684 0.0334126 0.652 (0.439–0.967)

Simple mode 27 −1.1549015 0.6413432 0.0833537 0.315 (0.090–1.108)

Weighted mode 27 −1.0841373 0.526185 0.049501 0.338 (0.121–0.949)

IgAN Sushi intake

MR Egger 8 −4.04152 5.339624 0.477773 0.018 (0–616.552)

Weighted median 8 −1.71412 1.211463 0.157094 0.18 (0.017–1.935)

IVW 8 −1.92976 0.983234 0.049685 0.145 (0.021–0.997)

Simple mode 8 −1.05946 1.648722 0.540956 0.347 (0.014–8.776)

Weighted mode 8 −1.17646 1.879474 0.551203 0.308 (0.008–12.272)

IVs(n), number of instrumental variables; IgAN, immunoglobulin A nephropathy; IVW, inverse variance weighted. 1 The estimates were derived from a random-effects model owing to the 
presence of heterogeneity based on Cochran’s Q statistic.

https://doi.org/10.3389/fnut.2024.1400907
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2024.1400907

Frontiers in Nutrition 06 frontiersin.org

weighted median, simple mode, and weighted mode analyses also 
showed consistency.

3.3 The results of sensitivity analysis

The results of Cochran’s Q heterogeneity test, MR-Egger 
intercept test, and MR-PRESSO global test are shown in Table 4. 
The p values of Cochran’s Q for cheese, cereal, and sushi intakes 
were all greater than 0.05, indicating that there was no heterogeneity. 
Given p < 0.05 of Cochran’s Q test, a random effects IVW MR 
analysis was used to analysis the relationship between alcohol 
intake frequency and IgAN (25). There was no evidence of 
pleiotropy according to the MR-Egger intercept (p > 0.05). For 

alcohol intake frequency, pleiotropy was detected using the 
MR-PRESSO global test (p = 0.047). However, the outlier test did 
not detect any significant outliers. The leave-one-out method 
indicated that the results were unaffected after removing each 
SNP. Scatter plots depict the estimated impact of IVs on exposure 
and outcome. It is worth mentioning that, rs1229984 is a specific 
genetic marker for alcohol intake, some researchers used rs1229984 
for supplementary sensitivity analysis (26). As reported in the 
literature (26), we also used the Wald method and conducted an 
MR analysis using rs1229984 for alcohol intake frequency, but the 
results were not significant (p-value >0.05). However, the results of 
Mendelian analysis based solely on a single SNP should 
be  considered as a reference, as a polygenic Mendelian 
randomization investigation would typically have greater power 

FIGURE 2

Effects of cheese intake on IgAN. (A) Scatter plot of the causal effect of cheese intake on IgAN. (B) Funnel plot of the causal effect of cheese intake on 
IgAN. (C) Forest plot of the causal effect of cheese intake on IgAN. (D) Forest plot of the leave-one-out analysis.
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than one including variants from only a single gene region (27). The 
results of sensitivity analysis indicated that the MR analysis results 
were reliable (Figures 2–5).

4 Discussion

To the best of our knowledge, this is the first study using the MR 
method to explore the causal association between dietary intake and 
risk of IgAN. The results indicated that alcohol intake frequency was 

associated with a higher risk of IgAN, whereas cheese, cereal, and 
sushi intake were associated with a lower risk of IgAN.

Previous studies have reported that alcohol consumption might 
be related to IgAN risk; however, the conclusions showed inconsistent. 
In 1989, a study found that IgA nephropathy was present in 64% of 
107 chronic alcoholics according to samples obtained at forensic 
autopsy (28). Studies in animal models indicated that alcohol 
consumption could lead to IgA deposition in the kidneys (12, 29). 
Further studies on human alcoholics have also found IgA deposits in 
glomeruli, as well as increased levels of IgA in the circulation (11). 

FIGURE 3

Effects of alcohol intake frequency on IgAN. (A) Scatter plot of the causal effect of alcohol intake frequency on IgAN. (B) Funnel plot of the causal 
effect of alcohol intake frequency on IgAN. (C) Forest plot of the causal effect of alcohol intake frequency on IgAN. (D) Forest plot of the leave-one-
out analysis.

https://doi.org/10.3389/fnut.2024.1400907
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Li et al. 10.3389/fnut.2024.1400907

Frontiers in Nutrition 08 frontiersin.org

However, conclusions drawn from observational studies are not the 
same. A cross-sectional study including 94 IgAN patients in Japan 
indicated that alcohol consumption was suggested to have a protective 
effect against developing IgAN (6). However, this conclusion was not 
confirmed in a later study by the same group of investigators (30). 
Another case–control study within 10 years, including 77 patients in 
China, found that alcohol cessation might have a renal survival benefit 
in patients with IgAN. However, a cross-sectional study in Finland 
including 158 patients with IgAN found that moderate alcohol 
consumption might have a beneficial effect on IgAN (31). The 
inconsistent conclusions might be  due to observational studies’ 
inability to avoid various confounding factors and the sample size was 
limited. Based on a large summary of genetic data, our MR study 
provided genetic evidence that alcohol intake frequency is significantly 

associated with an increased risk of IgAN. But we cannot evaluate 
what is the appropriate amount of alcohol consumption, which 
requires further study.

Few studies have reported the association between cheese intake 
and IgAN. The protective effects of cheese on IgAN may be explained 
as follows. First, cheese is a common probiotic food that contains a 
large amount of live microorganisms. A previous study demonstrated 
that the disturbance of intestinal microflora, which was characterized 
by an increase in pathogenic bacteria and a reduction in beneficial 
bacteria, might play an important role in IgAN (32). The gut-renal 
connection is an area of new treatment approach for patients with 
IgAN (33, 34). Lactobacillus and Bifidobacterium are the main 
members of probiotic bacteria in cheese (35). Studies have found that 
Lactobacillus had a protective effect against kidney injury (36), and 

FIGURE 4

Effects of cereal intake on IgAN. (A) Scatter plot of the causal effect of cereal intake on IgAN. (B) Funnel plot of the causal effect of cereal intake on 
IgAN. (C) Forest plot of the causal effect of cereal intake on IgAN. (D) Forest plot of the leave-one-out analysis.
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supplementation with probiotics such as Lactobacillus and 
Bifidobacterium could markedly improve gut dysbiosis and provide 
significant renal protection in IgAN (37, 38). Second, apart from 
probiotic bacteria, cheese is also regarded as an antioxidant product 
that contains various antioxidants, such as casein, lactoferrin, and 
vitamins C, E, A, and D3 (39). Some studies have demonstrated that 
oxidative stress and inflammation might play a role in the 
development and progression of IgAN (40). Moreover, cheese 
contains various minerals such as calcium, which have an inverse 
relationship with blood pressure (41) and are beneficial for 
IgAN patients.

Evidence on the association between cereal intake, sushi intake, 
and IgAN is also limited. Cereal contains various nutrients, such as 
proteins, dietary fiber, vitamins, and minerals. A previous study 
hypothesized that gluten, a kind of protein in cereal, might be involved 
in the onset of IgAN (42). However, it is worth noting that cereal is 
also rich in dietary fiber. Some studies demonstrated that dietary fiber 

could reduce the inflammatory response and modulate gut 
microbiotas (43, 44). The effects of cereal intake on IgAN should 
be  considered as a function of total nutrient contents, and the 
mechanism requires further study. Sushi, a type of dish featuring 
vinegar-flavored rice, is served with other ingredients such as raw or 
cooked fish strips, vegetables, or seaweed. Although previous studies 
have found that a large amount of rice intake might increase the risk 
of IgAN (6, 22), the conclusions drawn from observational studies 
should be considered carefully. Our study provided genetic evidence 
that there was a suggestive correlation between sushi intake and a 
decreased risk of IgAN, but additional studies are still needed to verify 
our conclusion.

The main advantage of this study is that potential biases, such as 
confounding factors and reverse causation, were reduced by MR 
analysis compared with traditionally designed observational studies. 
Second, our MR analysis was based on the summary data from GWAS 
with large sample sizes, which diminished weak instrument bias 

FIGURE 5

Effects of sushi intake on IgAN. (A) Scatter plot of the causal effect of sushi intake on IgAN. (B) Funnel plot of the causal effect of sushi intake on IgAN. 
(C) Forest plot of the causal effect of sushi intake on IgAN. (D) Forest plot of the leave-one-out analysis.
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(F-statistic >10). Furthermore, the validity of the results was ensured 
using multiple sensitivity analyses.

However, our study has several limitations. First, the population 
included in this study was Europeans. It is unknown whether the 
current conclusions can be confirmed in non-European populations. 
Second, we cannot evaluate the nonlinear association between the 
above exposures and the risk of IgAN. Third, the associations between 
other dietary factors and the risk of IgAN were not investigated in our 
study, which is worth to conduct further research. Fourth, given that 
the IVW p-values of sushi intake are approaching 0.05, further 
validation through additional GWAS data is required in the future.

5 Conclusion

Our study indicated that alcohol intake frequency is associated 
with a significantly increased risk of IgAN. Reducing alcohol intake 
may be regarded as an important prevention strategy for IgAN. Cheese 
intake is associated with a significantly reduced risk of IgAN. Moreover, 
there was a suggestive correlation between cereal intake, sushi intake, 
and the risk of IgAN. No causal relationship was found between the 
remaining dietary exposures and IgAN. However, additional studies 
are required to verify these conclusions.
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