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Background: Although micronutrients (MNs) are important for children’s 
growth and development, their intake has not received enough attention. 
MN deficiency is a significant public health problem, especially in developing 
countries like Ethiopia. However, there is a lack of empirical evidence using 
advanced statistical methods, such as machine learning. Therefore, this study 
aimed to use advanced supervised algorithms to predict the micronutrient 
intake status in Ethiopian children aged 6–23  months.

Methods: A total weighted of 2,499 children aged 6–23  months from the 
Ethiopia Demographic and Health Survey 2016 data set were utilized. The data 
underwent preprocessing, with 80% of the observations used for training and 
20% for testing the model. Twelve machine learning algorithms were employed. 
To select best predictive model, their performance was assessed using different 
evaluation metrics in Python software. The Boruta algorithm was used to select 
the most relevant features. Besides, seven data balancing techniques and three 
hyper parameter tuning methods were employed. To determine the association 
between independent and targeted feature, association rule mining was 
conducted using the a priori algorithm in R software.

Results: According to the 2016 Ethiopia Demographic and Health Survey, out of 
2,499 weighted children aged 12–23  months, 1,728 (69.15%) had MN intake. The 
random forest, catboost, and light gradient boosting algorithm outperformed 
in predicting MN intake status among all selected classifiers. Region, wealth 
index, place of delivery, mothers’ occupation, child age, fathers’ educational 
status, desire for more children, access to media exposure, religion, residence, 
and antenatal care (ANC) follow-up were the top attributes to predict MN 
intake. Association rule mining was identified the top seven best rules that most 
frequently associated with MN intake among children aged 6–23  months in 
Ethiopia.

Conclusion: The random forest, catboost, and light gradient boosting algorithm 
achieved a highest performance and identifying the relevant predictors of MN 
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intake. Therefore, policymakers and healthcare providers can develop targeted 
interventions to enhance the uptake of micronutrient supplementation among 
children. Customizing strategies based on identified association rules has 
the potential to improve child health outcomes and decrease the impact of 
micronutrient deficiencies in Ethiopia.

KEYWORDS

micronutrient supplementation, children, machine learning algorithm, prediction, 
Ethiopia

Introduction

Micronutrient intake is the provision of either a single 
micronutrient (MN), such as iodine, zinc, calcium, manganese, 
chromium, copper, fluoride, iron, folic acid, vitamin A, vitamin 
B-complex, or vitamin D, or a combination of MNs. These essential 
nutrients can be administered in the form of capsules, tablets, drops, or 
syrups (1). MNs are essential and required in small amounts. However, 
when there is a deficiency in their supply, it can have significant negative 
effects on the growth and development of children. These effects 
include stunting, wasting, delayed cognitive development, prolonged 
hospital stays, and weakened immunity, making children more 
susceptible to common childhood infections (2, 3). Despite the crucial 
role that MNs play in promoting healthy growth and development in 
children, there has been limited focus on ensuring an adequate intake 
of these nutrients (4). MN deficiency continues to be a widespread 
public health issue, particularly in developing countries like Ethiopia (5).

Due to the latency nature of clinical symptoms of MN deficiency as 
far as they are not detected via blood levels in an early stages with some 
exceptions, inadequacy of one or more of its supplementation leads to 
health consequence or hidden hunger (6). The deficiency of MNs, 
combined with stunting and wasting, contributes to approximately 45% 
or 3.1 million deaths in children every year (7). As per the 2019 report 
from the United Nations Children’s Fund, approximately 340 million 
children globally, with 54% of them residing in developing countries, 
experienced hidden hunger due to deficiencies in micronutrients (8).

To address MN deficiency and its consequences, different 
countries have implemented MN supplementation or improved intake 
strategies. Scientific evidences have shown that providing high doses 
of MNs like vitamin A, iron, and zinc can lead to a reduction of 
childhood mortality (9). Despite the efforts of programs such as the 
WHO 2016–2025 nutrition strategy, the inadequate intake of MNs 
remains a persistent issue in both developed and developing countries 
(10). For example, in Brazil, only 54.2% of children aged 6–59 months 
consumed a micronutrient supplement (11), and less than 10% of 

children aged 6–59 months in Ethiopia received iron supplements and 
deworming tablets (10, 12).

A systematic review covering Ethiopia, Nigeria, Kenya, and 
South  Africa found varying rates of micronutrient (MN) intake, 
ranging from 51 to 99% for zinc, 13 to 100% for iron, and 1 to 100% 
for vitamin A (13). The consumption of iodized salt varied from 2% 
in Kenya to 96% in Ethiopia (14). In another study involving children 
aged 6–23 months across 20 sub-Saharan countries, it was reported 
that nearly 74% of the children had adequate micronutrient intake, 
with Ethiopian children having the lowest intake at round of to 
59% (15).

The Ethiopian government has made significant efforts to address 
national nutrition issues, including the implementation of the first 
national nutrition program in 2008 (16), which prioritized ending 
malnutrition. It also joined the Scaling up Nutrition movement in 
2012 and the Seqota Declaration in 2015 to combat child 
undernutrition by 2030 (17). However, despite these efforts, the issue 
of malnutrition and the deficiency of MN intake remain significant 
public health concerns in Ethiopia. According to the 2016 Ethiopian 
Demographic and Health Survey (EDHS), only 14% of children aged 
6–23 months consumed minimum dietary diversity (12).

Various factors, including maternal socio-demographics, child 
characteristics, and maternal healthcare services utilization, are 
associated with MN intake (1, 14, 15, 18, 19). Previous studies in 
Ethiopia have used classical statistical methods to analyze MN intake 
status (14, 15), which means that the estimates are based on the 
previous assumptions, which may limit the potential to discover 
hidden information and these strategies are used to analyze features 
selected based on prior knowledge or logical reasoning and it is 
difficult to handle complex data patterns and capturing nonlinear 
relationships, which are often present in dietary intake data. 
Leveraging machine learning (ML) models can offer significant 
advantages and contribute to the existing empirical evidence and 
making the most accurate predictions enabling systems to learn from 
data rather than making prior assumptions (20). ML techniques excel 
in managing complex and nonlinear data, operate without preexisting 
assumptions, and capture intricate relationships among predictors (20, 
21). Besides, the previous study was confined with a limited ML 
algorithm, data balancing techniques, and small sample size. 
Therefore, this study aimed to utilize 12 advanced ML techniques 
including association rule mining to predict MN intake status and 
identify its predictors using the 2016 EDHS data set. The findings will 
inform policymakers in planning evidence-based programs with 
integrated interventions to enhance MN intake. Moreover, these 
findings can provide valuable insights for developing context-specific 

Abbreviations: ADASYN, Adaptively Generating Minority Data; AUC, Area under 

the Receiver Operating Characteristic Curve; EDHS, Ethiopian Demographic and 

Health Survey; SVM, Support Vector Machine; SMOTE, Synthetic Minority Over-

Sampling Technique; SMOTE ENN: Synthetic Minority Over-Sampling Technique 

with Edited Nearest Neighbor; LGB, light gradient boosting; RF, random forest; 

XGB, eXtreme Gradient Boosting; KNN, K Nearest Neighbors; ROC, Receiver 

Operating Characteristic Curve; WHO, World Health Organization; MN, 
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strategies to address these issues, inform targeted interventions, 
policy-making, and resource allocation aimed at improving the 
nutritional status of children in Ethiopia, ultimately contributing to 
enhanced public health outcomes.

Methods

Study settings, data sources, and sampling 
procedures

Data from the 2016 Ethiopian Demographic and Health Surveys 
(EDHS) were obtained through a formal written request to the DHS 
program website (22).1 The DHS Program has conducted standardized 
surveys in over 90 countries, gathering comprehensive and 
representative data on aspects such as population, health, HIV, and 
nutrition. The EDHS data includes information from nine regions 
[Tigray, Afar, Amhara, Oromia, Benishangul-Gumuz, Gambela, South 
Nation Nationalities and Peoples’ Region (SNNPR), Harari, and 
Somali] as well as two administrative cities (Addis Ababa and Dire-
Dawa). The data collection procedure utilized a multi-stage stratified 
cluster sampling approach for each region. Stratification was 
performed based on urban and rural sectors, and enumeration areas 
were selected using probability proportional to size. Within the chosen 
enumeration areas, households were selected using equal probability 
systematic sampling (23). The study focused on children aged 
6–23 months in Ethiopia within the previous 5 years. The analysis 
involved a weighted sample size of 2,499 children aged 6–23 months. 
The dataset employed in the study included 23 distinct features that 
were considered during the analysis.

Study variables and measurements

The study variable of interest is the micronutrient intake status 
(MNs) among children aged 6–23 months. To determine the MN 
intake status, we have considered six options: consumption of food 
rich in vitamin A (VA) or iron within the past 24 h, consumption of 
micronutrient powders (MNP) or iron supplements within the past 
7 days, and receipt of vitamin A supplementation (VAS) or deworming 
treatment within the past 6 months (24–26). To determine the intake 
of the minimum recommended MNs, if the respondent reported that 
the child had consumed at least one of the minimum recommended 
MNs, it was classified as a “Yes” response. Conversely, if the child had 
not received any of the recommended MNs, it was classified as a “No” 
response.

To assess the consumption of foods rich in vitamin A (VA), 
we  analyzed the intake of seven specific food groups within the 
previous 24 h. These food groups included eggs, various meats (such 
as beef, pork, lamb, and chicken), pumpkin, carrots, and squash, 
dark green leafy vegetables, mangoes, papayas, and other fruits rich 
in VA, as well as liver, heart, and other organs, and fish or shellfish. 
Similarly, we  assessed the consumption of iron-rich foods by 
examining the intake of four specific food groups within the previous 

1 http://www.dhsprogram.com

24 h. These food groups consisted of eggs, various meats, liver, heart, 
and other organs, as well as fish or shellfish. To determine the intake 
of MNP, we asked the respondents if their child had received such 
powders in the past 7 days. For assessing iron supplementation, 
we inquired whether the child had been given iron pills, sprinkles 
with iron, or iron syrup within the past 7 days. The researchers 
examined vitamin A supplementation (VAS) and deworming 
treatment by reviewing the integrated child health card, which 
contains information on immunization and growth monitoring 
history. They also obtained verbal responses from the mothers. These 
assessments were specifically conducted for children aged 
6–23 months to determine if they had received VAS and deworming 
treatment in the last 6 months. If the respondent reported that the 
child had consumed at least one of these food groups, it was 
categorized as a “Yes” response, indicating the consumption of 
MN-rich foods.

The study considered several independent variables, including 
place of residence, region, religion, media exposure, sex of household 
head, age of mother, age of child, ANC visit, postnatal care (PNC) 
visit, family size, current marital status, working status of the mother, 
desire for more children, current pregnancy status, number of 
children, place of delivery, mode of delivery, history of diarrhea, 
history of cough, sex of child, working status of the father, educational 
status of the mother, educational status of the father, and wealth index. 
The selection of these independent variables was based on a 
comprehensive review of existing literature in the field.

Data preprocessing

The first step in ML is data pre-processing, which involves 
modifying or encoding the data to make it understandable by 
computers (27). In our ML workflow, we  employed a process of 
continuous improvement for our models. This process included 
selecting and engineering features, choosing models, and tuning 
hyper-parameters. We  refined our models continuously over an 
iterative approach. Figure 1 provides the details of the specific steps in 
our workflow.

Data cleaning

We performed a thorough examination to identify and eliminate 
any duplicated data entries in our dataset. After this review, we verified 
that there were no redundant entries present. To address missing 
values, we  applied the K-nearest neighbors (KNN) imputation 
technique (28). To detect outliers, we utilized different methods such 
as box plots and Grubbs’ test. Furthermore, we  evaluated 
multicollinearity by examining the correlation matrix. We considered 
a correlation value above 0.8 between two variable pairs as an 
indication of high correlation (29, 30).

Feature engineering
Feature engineering involves identifying, obtaining, and adjusting 

the most important features from the available data to develop 
accurate and efficient ML models (31). In our study, we employed 
one-hot encoding to encode nominal categorical variables and label 
encoding for ordinal categorical variables (32).
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Dimensionality reduction
We did feature selection to enhance the model performance and 

reduce the dimensionality of the dataset (33). We utilized a feature 
selection method called Boruta, which assesses the importance of 
features by comparing their performance with randomly generated 
shadow features that mimic noise. Features that consistently 
outperformed the shadow features were considered significant and 
included in our predictive model (34).

Data balancing
Data mining and ML face difficulties due to class imbalance, 

which leads to reduced accuracy and biased estimate when classifying 
minority instances (35). To address this challenge, it is advisable to 
explore different data balancing techniques and select the one that 
performs well, as the effectiveness of these techniques can vary 
depending on the nature of the dataset. To mitigate this issue, 
we  utilized seven data balancing techniques, including under-
sampling, over-sampling, adaptive synthetic sampling (ADASYN), 
(SMOTE), synthetic minority oversampling technique with edited 

nearest neighbors (SMOTE ENN), SMOTE Tomik, and the near miss 
methods. Initially, we trained our ML algorithms using the unbalanced 
data. Then, we investigated the mentioned balancing techniques to 
train the models using balanced data. To assess the performance of 
each model, we compared accuracy, AUC (Area under the Curve), and 
other evaluation metrics. It is recommended to consider both accuracy 
and AUC, along with other pertinent metrics, to thoroughly evaluate 
model performance and make informed comparisons between various 
ML algorithms (36–38). Taking these factors into account, we have 
chosen the balancing technique that exhibited superior performance 
for further tuning and the final prediction of the micronutrient 
supplementation status.

Model selection and development

In our study, the variable of interest, which indicated the status of 
micronutrient intake, necessitated a classification method as it was 
divided into two distinct categories: “yes” and “no.” To make accurate 

FIGURE 1

Study workflow diagram.
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predictions, it was essential to choose suitable classifiers. To achieve 
this, we  utilized the scikit-learn version 1.3.2 libraries in Python, 
implemented through Jupyter Notebook, to apply a range of 
ML algorithms.

To assess the predictive capabilities of ML algorithms in 
predicting the status of micronutrient supplementation, 
we  employed 12 advanced machine learning algorithms. These 
algorithms encompassed support vector machines with kernel 
methods, Gaussian naive Bayes, logistic regression, decision tree 
classifier, random forest classifier, gradient boosting machines, 
extreme gradient boosting, AdaBoost Classifier, k-nearest 
neighbors, CatBoost Classifier, MLP Classifier, and ANN with 
tensor flow.

Model training and evaluation

Creating a dependable predictive model in ML entails essential 
steps in model training and evaluation (39, 40). In our study, 
we adopted a straightforward approach by splitting the data into an 
80% training set and a 20% testing set. To assess the performance of 
each predictive model, we  employed various evaluation metrics, 
including accuracy, precision, recall, F1-score, and AUC. Accuracy 
gaged overall correctness, precision measured accurate positive 
predictions, recall evaluated the identification of all positive instances, 
and the F1-score provided a balanced measure. AUC, calculated from 
the area under the ROC curve, indicated the algorithm’s ability to 
discriminate between classes (41).

To further evaluate the model’s performance, we  employed a 
10-fold cross-validation techniques (28). Additionally, we conducted 
a comprehensive analysis of hyper parameters to refine and enhance 
the model’s performance. It is recommended to experiment with 
various tuning techniques and take the one which perform better from 
the others. Accordingly, we  systematically explored grid search, 
random search, and Bayesian optimization. By comparing the results 
from these techniques, we identified configurations that yielded the 
highest performance. To improve the accuracy and reliability of the 
model, we also performed model calibration. Through fine-tuning the 
model via calibration, we  enhanced its predictive capabilities to 
accurately forecast the desired outcome. Various kernel methods were 
also compared for SVM model.

Model interpretability

Incorporating SHAP (SHapley Additive exPlanations) values and 
association rule mining has been highlighted by scholars for achieving 
diverse objectives (42, 43). Association rule mining is suitable for 
uncovering hidden patterns and relationships within the data, while 
SHAP analysis is more appropriate for understanding the impact of 
different features on the overall model predictions (42, 44).

Therefore, we  have utilized a variety of techniques. Initially, 
we computed the mean SHAP values to evaluate the average impact 
of each feature on the model’s predictions, providing insights into the 
relative significance of different variables. Subsequently, we employed 
a waterfall plot to visually depict the cumulative effects of these 
variables, emphasizing their contributions to the overall prediction. 
Lastly, association rule mining was employed to uncover concealed 

patterns and relationships among the variables, enabling a more 
profound exploration of the dataset.

Results

Descriptive results of the participants 
characteristics

A total weighted sample of 2,499 children aged 6–23 months was 
included in this study. Among these children, 1,728 (69.15%) had a 
micronutrient intake. Approximately two-thirds (63.99%) of the 
participants fell within the age range of 12 to 23 months, and more 
than half (59.38%) of their mothers did not have any formal education. 
In terms of wealth status and religion, 50.5% of the respondents 
belonged to the poor wealth quintile, and roughly 49.74% identified 
as Muslim. A majority (69.07%) of the respondents had a history of 
antenatal care (ANC) visits, while the majority (91.04%) had not 
received any PNC service. Additionally, more than three-quarters 
(79.35%) of the respondents resided in rural areas, and nearly 
two-thirds (64.71%) had no access to media exposure. The detailed 
statistics are presented in Table 1.

Machine learning approaches of 
micronutrient intake status

Feature selection
Upon evaluating different methods for feature selection, we found 

that the Boruta algorithm produced favorable outcomes. The graphical 
representation of the Boruta algorithm effectively illustrated the 
significance of various variables, with significant variables displayed 
in green, insignificant variables in red, and uncertain variables in 
yellow (45). Our analysis of the Boruta algorithm graph (Figure 2) 
revealed that seven variables were considered insignificant or 
unimportant, four variables were uncertain, and the remaining 12 
variables were deemed important for predicting the status of 
micronutrient intake. Consequently, we  employed 16 variables to 
forecast micronutrient intake and explore data patterns using 
association rule mining.

Data balancing

Table 2 provides a comparison of various data balancing techniques, 
including under-sampling, over-sampling, Adaptive Synthetic Sampling 
(ADASYN), synthetic minority over-sampling technique (SMOTE), 
synthetic minority over-sampling technique with edited nearest 
neighbors (SMOTE ENN), SMOTE tomek, and the near-miss algorithm. 
Among these techniques, SMOTE ENN demonstrated the highest 
performance, achieving an AUC above 0.90 for all ML algorithms except 
Gaussian naive Bayes, logistic regression, and the decision tree classifier. 
Notably, Gaussian naive Bayes achieved an AUC of 0.85, logistic 
regression achieved an AUC of 0.89, and the decision tree classifier 
achieved an AUC of 0.84, all of which were considered acceptable. 
Additionally, the SMOTE ENN data balancing technique achieved an 
accuracy value above 85.0% across all 12 ML algorithms. These findings 
indicate that SMOTE ENN outperformed than the other data balancing 
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TABLE 1 Individual characteristics of respondents in Ethiopia, 2016 (N  =  2,499).

Variable Categories Frequency Percent

Mothers age in years 15–24 739 29.57

25–34 1,283 51.34

> = 35 477 19.09

Residence Urban 516 20.65

Rural 1983 79.35

Religion Muslim 1,243 49.74

Orthodox 742 29.69

Protestant 454 18.17

Others* 60 2.4

Mothers educational status No education 1,484 59.38

Primary education 700 28.01

Secondary education 199 7.96

Higher education 116 4.64

Region Tigray 267 10.68

Afar 234 9.36

Amhara 226 9.04

Oromia 360 14.41

Somali 301 12.04

Benishangule gumez 204 8.16

SNNP 326 13.05

Gambella 160 6.4

Harari 153 6.12

Addis Abeba 132 5.28

Diredawa 136 5.44

Wealth index Poor 1,262 50.5

Medium 370 14.81

Rich 867 34.69

Desire for more children Wants 1737 69.51

Undecided 110 4.4

No more wants 652 26.09

Fathers educational status No formal education 1,111 44.46

Primary education 855 34.21

Secondary education 307 12.28

Higher education 226 9.04

Fathers occupational status Not working 247 9.88

Working 2,252 92.12

Mothers occupational status Not working 1,527 61.1

Working 972 38.9

Child age in months 6–11 900 36.01

12–23 1,599 63.99

ANC follow-up Yes 1726 69.07

No 773 30.93

Place of delivery Home 1,433 57.34

Health facility 1,066 42.66

PNC follow-up Yes 224 8.96

No 2,275 91.04

Media exposure Yes 882 35.29

No 1,617 64.71

Others*, catholic, traditional; ANC, antenatal care; PNC, post-natal care.
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FIGURE 2

Feature selection using Boruta algorithm H31-had cough, V213-current pregnancy status, M17-Mode of delivery, B4-sex of child, H11-had diarrhea, 
V151-sex of household head, V012-mothers age, V705-husband occupation, V136-family size, V218-number of living children, M70-PNC visit, V605-
desire more children, V025-residence, V190-wealth index, V130-religion, V717-mother occupation, M15-place of delivery, B19-age of child, V701-
husband education status, V157_8_9-media exposure status, V106-educational status of respondent, M14-ANC visit, and V024-region.

TABLE 2 Comparisons of different imbalanced data handling techniques.

Algorithm Parameters Unbalanced 
data

Under-
sampling

Over-
sampling

ADASYN SMOTE SMOTE 
ENN

SMOTE 
TOMEK

Near 
miss

SVM Accuracy 72 70 73 73 77 91 71 65

AUC 0.67 0.70 0.73 0.73 0.77 0.91 0.78 0.65

GNB Accuracy 62 69 68 70 74 85 65 64

AUC 0.67 0.69 0.68 0.70 0.74 0.85 0.74 0.64

LR Accuracy 70 68 68 71 73 89 68 64

AUC 0.68 0.68 0.68 0.71 0.73 0.89 0.75 0.64

DT Accuracy 62 59 67 65 68 84 70 54

AUC 0.58 0.59 0.67 0.65 0.68 0.84 0.68 0.54

RF Accuracy 71 69 80 76 80 97 75 59

AUC 0.66 0.69 0.80 0.76 0.80 0.97 0.81 0.59

LGB Accuracy 71 71 75 74 78 94 70 62

AUC 0.69 0.71 0.75 0.74 0.78 0.94 0.79 0.62

XGB Accuracy 69 66 76 72 77 94 73 60

AUC 0.66 0.66 0.76 0.72 0.77 0.94 0.78 0.60

KNN Accuracy 71 69 68 71 74 90 69 61

AUC 0.67 0.69 0.68 0.71 0.74 0.90 0.75 0.61

MLP Accuracy 67 64 72 71 74 93 71 57

AUC 0.66 0.64 0.72 0.71 0.74 0.93 0.75 0.57

Adaboost Accuracy 72 73 71 74 76 92 70 65

AUC 0.71 0.73 0.71 0.74 0.76 0.92 0.78 0.65

Catboost Accuracy 72 71 77 75 79 96 73 65

AUC 0.69 0.71 0.77 0.75 0.79 0.96 0.80 0.65

ANN Accuracy 69 68 73 72 75 93 70 59

AUC 0.67 0.68 0.73 0.72 0.75 0.93 0.75 0.59

AUC, area under curve; ANN, artificial neural network; ADASYN, Adaptive Synthetic Sampling; DT, decision tree; MLP, multilayer perceptron; KNN, k nearest neighboring; XGB, extreme 
gradient boosting; LGB, light gradient boosting; RF, random forest; SMOTE, Synthetic Minority Over-sampling Technique; ENN, Edited Nearest Neighbors; GNB, Gaussian naïve Bayes; SVM, 
support vector machine; LR, logistic regression.
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techniques, as shown in Table 2. Consequently, we have selected SMOTE 
ENN as the final and most effective data balancing technique for further 
ML analysis and optimization. For a comprehensive visual representation 
comparing the performance of ML algorithms with each data balancing 
technique, please refer to Supplementary Figure 1.

Development and performance 
comparisons of ML-based models

During the analysis, we  evaluated multiple ML algorithms to 
predict the status of micronutrient intake. To assess the algorithms’ 
performance, we  considered various metrics such as accuracy, 
precision, sensitivity, specificity, recall, F1 score, and AUC. Additionally, 
we employed techniques like grid search, random search, and Bayesian 
optimization for fine-tuning the models to improve prediction accuracy. 
The detail of evaluation metrics is presented in Supplementary Figure 2.

The results demonstrated that all 12 algorithms performed 
exceptionally well, although their specific performance varied 
depending on the tuning technique used. When employing the grid 
search technique, the random forest, catboost, and light gradient 
boosting algorithm achieved the highest performance with an AUC 
of 0.98. Most algorithms achieved an AUC above 0.90, except for 
Gaussian naive Bayes, logistic regression, and decision trees, which 
had AUC values of 0.82, 0.85, and 0.87, respectively.

In the random search hyper parameter tuning, the random forest, 
light gradient boosting, and catboost algorithms demonstrated equally 
impressive performance metrics, achieving an AUC of 0.94. Similar to 
the results obtained from the grid search technique, most algorithms 
achieved an AUC above 0.90, except for Gaussian naive Bayes and 
decision trees, which had AUC values of 0.88. When employing the 
Bayesian optimization technique, the catboost algorithm followed by 
MLP achieved superior AUC values of 0.98 and 0.96, respectively.

In general, the comprehensive evaluation revealed excellent 
performance across all 12 ML algorithms, with consistent and 
comparable results. Different tuning techniques yielded the best 
outcomes for different algorithms, with random search, grid search, 

and Bayesian optimization demonstrating notable performance in 
specific cases. While some variations in performance were observed, 
no single technique consistently outperformed all aspects of the 
ML algorithms.

The random forest, light gradient boosting, and catboost 
algorithms with grid search and random search optimization tuning 
emerged as the top three performers across all metrics. In addition, 
the catboost algorithm followed by MLP exhibited strong performance 
when tuned with Bayesian optimization.

For a comprehensive comparison of the 12 ML algorithms and 
their performance across the three tuning techniques, please refer to 
Table  3. Furthermore, graphical representations illustrating the 
performance of each algorithm under different tuning techniques can 
be found in Figure 3.

Model interpretability

SHAP value interpretation
Based on the information presented in Figure 4, the mean SHAP 

value report provided valuable insights into the relative importance of 
different features in the classification model. Factors such as ANC 
visit, region, and child age emerged as the most influential variables, 
exerting a significant impact on the model’s predictions. This suggests 
that these features play a crucial role in determining the model’s 
predictions, while the remaining six variables have minimal influence.

The findings depicted in Figure 5, as shown by the waterfall plot, 
offer valuable insights into the hierarchy of feature importance for 
predicting the target variable. The plot highlights that ANC visit has 
the highest positive impact on the prediction, followed by mother 
occupation, child age, and mother age. On the other hand, place of 
delivery, wealth index, mother education, and media exposure 
negatively contribute to the model’s prediction. This indicates that 
factors such as home delivery, poor wealth status, lack of formal 
education, and absence of media exposure are associated with lower 
predicted outcomes in the model, while their absence or opposite 
attributes are associated with higher predicted outcomes.

TABLE 3 Accuracy and AUC value of ML algorithms using three hyper parameter tuning techniques.

Algorithm Grid search Random search Bayesian optimization

Accuracy AUC Accuracy AUC Accuracy AUC

SVM 94 0.94 85 0.90 92 0.95

GNB 82 0.82 73 0.82 72 0.82

LR 85 0.85 79 0.87 78 0.85

DT 87 0.87 82 0.86 82 0.87

RF 98 0.98 87 0.94 83 0.97

LGB 98 0.98 87 0.94 68 0.81

XGB 97 0.97 87 0.93 68 0.81

KNN 95 0.95 85 0.93 82 0.91

MLP 93 0.93 87 0.92 90 0.96

Adaboost 92 0.92 78 0.87 80 0.88

Catboost 98 0.98 89 0.94 94 0.98

ANN 93 0.93 86 0.91 81 0.91
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Association rule mining

By utilizing the a priori algorithm, we  were able to identify 
significant association rules with a confidence level exceeding 95%. 
These rules provided valuable insights into the likelihood of 
micronutrient intake status among children aged 6–23 months in 
Ethiopia. Notably, certain variables such as region, wealth index, 

place of delivery, mothers’ occupation, child age, fathers’ educational 
status, desire for more children, access to media exposure, and ANC 
follow-up consistently appeared in these rules, indicating their 
strong association with the probability of micronutrient intake. In 
total, 167 rules were generated, and the following are the top seven 
association rules ranked by their confidence levels and corresponding 
lift values.

FIGURE 3

AUC value of each ML algorithm. (A) Grid search, (B) Random search, (C) Bayesian optimization.
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 1. If children living in Benishangul Gumez region and children 
from medium wealth index household, the probability of 
micronutrient intake status is 98.7% (lift value = 1.45)

 2. If children living in Gambella region, children from rich 
household, and whose mothers gave birth at health facility, the 
probability of micronutrient intake is 97.8% (lift value = 1.43)

 3. If children living in Benishangul Gumuz region, children from 
rich household, and children who had a mother with work or 
occupation, the probability of micronutrient intake is 97.6% 
(lift value = 1.42)

 4. If children living in Addis Ababa, children whose father 
completed higher education, and children aged 12–23 months, 

the probability of micronutrient intake is 96.9% (lift 
value = 1.4)

 5. If children living in Gambella region, family wants no more 
children, and children born from mothers who had ANC 
follow-ups, the probability of micronutrient intake is 96.6% (lift 
value = 1.4)

 6. If children living in Gambella region, children aged 
12–23 months, and had a history of media exposure, the 
probability of being supplemented with micronutrient is 96.6% 
(lift value = 1.4)

 7. If children living in Gambella region, children whose mother 
had work or occupation, and whose mothers gave birth at 

FIGURE 4

A mean SHAP value report.

FIGURE 5

Waterfall plot.
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health facility, the probability of micronutrient intake is 95.4% 
(lift value = 1.37)

Discussion

The aim of the study was to predict the micronutrient intake status 
among children aged 6–23 months in Ethiopia using advanced 
machine learning algorithms. Twelve different algorithms were tested, 
including Random Forest, Decision Tree, Naive Bayes, and others. All 
12 algorithms used in the study performed well, with ROC values 
above the optimal threshold. The random forest classifier, catboost, 
and light gradient boosting classifier were particularly effective in 
identifying micronutrient intake status. Data balancing techniques 
were used to improve the accuracy of the final model. After balancing 
the data, the RF, Catboost, and LGB models performed the best 
overall. These findings are consistent with similar studies conducted 
in Rwanda (20) and Ethiopia (46), although the difference in data set 
sizes across the studies may have contributed to slight variations.

Analyzing the mean SHAP value report and waterfall plot 
provided valuable insights on factors influencing the prediction of 
micronutrient intake status among children aged 6–23 months. 
Factors like ANC, region, child age, and wealth index were found to 
be  significant and influential. However, PNC utilization, father 
education, and desire more children had minimal impact on the 
classification outcome. Understanding these features can guide 
targeted interventions and policy decisions, improving the health and 
nutritional status of children in Ethiopia. These findings validate 
existing knowledge and evaluate the model’s effectiveness for more 
accurate interventions.

The other aim of the study was to identify the key predictors of 
micronutrient intake in children aged 6–23 months using the Boruta 
algorithm. Out of 23 features considered, 12 were found to 
be important for predicting micronutrient intake status. The Boruta 
algorithm revealed that machine learning models can uncover new 
variables and insights that traditional regression models may miss, 
providing valuable information for policy decisions.

The other objective of the study was to use association rule mining 
with the a priori algorithm to identify patterns and associations 
between independent predictors and the outcome variable. The top 
seven rules generated by the best model revealed that there was a 
98.7% probability of micronutrient intake among children living in 
the Benishangul Gumuz region and coming from medium wealth 
index households is a striking observation. This result is supported 
with a study conducted in Ethiopia (47), Nigeria (48) and Bangladesh 
(49). This is the fact that household with better wealth may improve 
the nutritional intake for their children and Benishangul Gumuz 
region has agrarians’ community and they have access to serve 
diversified nutrient for their children. This finding suggests a strong 
association between the geographic region, economic status, and the 
likelihood of adequate micronutrient intake.

The model showed that the probability of having adequate 
micronutrient intake among a child living in the Gambella region, 
being from a rich household, and having a mother who gave birth at a 
health facility is claimed to be 97.8%. This result is supported by a study 
from recent EDHS (2016) (14). The possible justification is that, since 
agriculture is common in Gambella region, caregivers could get wild 
fruit and fish, which are good sources of micronutrients and Children 
from rich households, might have better access to a diverse and 

nutrient-rich diet, nutritional supplements, and healthcare resources. 
This economic advantage can contribute to a higher probability of 
meeting micronutrient requirements (50). Children born to mothers 
who deliver at health facilities may receive better post-natal care, 
including nutritional guidance and support. This could positively 
impact the child’s early development and micronutrient intake.

The reported probability of micronutrient intake is a substantial 
96.9%, accompanied by a lift value of 1.4 for children living in Addis 
Ababa, children whose father completed higher education, and 
children aged 12–23 months. The result is in agreement with the 
studies conducted in east Africa, sub-Saharan Africa, and Nepal (15, 
51, 52). This is due to the fact that higher education levels often 
correlate with increased awareness of nutrition and health, potentially 
impacting feeding practices, dietary choices, and overall child care. 
The higher the probability of obtaining micronutrient intake in 
12–23 months could be explained by the fact that, at this age group, 
they could have better dietary diversity as they can eat family meals 
for themselves, and good complementary feeding practices are more 
common in urban than rural areas (14). Moreover, the late 
introduction of complementary foods and mothers’ and caregivers’ 
perceptions toward feeding diversified foods may contribute to lower 
consumption of micronutrients in lower age groups.

The Advanced ML result suggests that families in the Gambella 
region who express a desire for no more children are associated with 
a 95.4% probability of their children having adequate micronutrient 
intake. Studies support the idea that family size significantly influences 
the micronutrient intake of children (15, 53). This finding underscores 
the importance of family planning in contributing to better child 
nutrition outcomes. This is due to the fact that families with fewer 
children may have more resources available per child, enabling better 
access to nutritious food and healthcare. Alternatively, families with 
no desire for more children might be more focused on the well-being 
of their existing children. The result also indicates a positive 
association between micronutrient intake and mothers who had ANC 
follow-ups during pregnancy. This aligns with existing knowledge that 
adequate antenatal care is crucial for monitoring the health of both the 
mother and the developing child (14, 15). The positive correlation may 
be  attributed to the health education and nutritional guidance 
provided during ANC visits. Mothers who attend ANC may receive 
information on proper nutrition during pregnancy and infancy, 
contributing to better nutritional practices. The result implies that 
implementing integrated healthcare approaches that combine family 
planning services with maternal and child health programs may 
further enhance the positive impact on micronutrient intake.

The advanced machine learning algorithms result shows that there 
is strong correlation between media exposure and micronutrient intake 
of children. The result is supported by studies conducted in Ethiopia 
and India (42, 43). This could be due to media may influence parental 
behavior, impacting their decision-making regarding child nutrition 
and encouraging them to prioritize their children’s nutritional needs.

Strength and limitations of the study

This study had strengths in thoroughly evaluating 12 advanced 
machine learning algorithms and optimizing their performance 
through experimentation with data balancing and hyper parameter 
tuning. It also provided valuable insights into factors influencing 
micronutrient intake for targeted interventions and policies. However, 
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limitations included reliance on existing data with potential limitations 
and biases, the inability to establish causal relationships or account for 
temporal changes, and the need for further validation in real-world 
settings with diverse populations to ensure reliability and generalizability.

Conclusion and implication of the 
study

The study shows that machine learning can accurately predict 
micronutrient intake status among children in Ethiopia. All 12 
algorithms performed well, with the random forest, catboost and LGB 
classifier being the most effective. These findings have important 
implications for targeted interventions and public health strategies. 
These findings carry significant implications for public health 
interventions in Ethiopia, as ML algorithms can be utilized to develop 
targeted strategies that promote the adoption of micronutrient intake.

The study identified several important risk factors for micronutrient 
intake among children aged 6–23 months. Advanced ML techniques, 
such as SHAP value logit coefficients, were used to overcome limitations 
of traditional ML approaches. The developed ML model, particularly 
the random forest, catboost, and LGB algorithm, is valuable for 
informing policies and interventions to prevent and minimize the 
burden of MN deficiency among children aged 6–23 months.

These identified risk factors can guide policymakers and 
healthcare providers in designing targeted interventions for different 
subgroups, improving the health and nutritional status of children and 
mitigating the impact of MN deficiency in resource-limited areas. 
However, further research is necessary to translate these findings into 
practical applications.
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