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Obesity-associated inflammation
countered by a Mediterranean
diet: the role of
gut-derived metabolites

Melanie Florkowski, Esther Abiona, Karen M. Frank and

Allison L. Brichacek*

Department of Laboratory Medicine, National Institutes of Health Clinical Center, Bethesda, MD,

United States

The prevalence of obesity has increased dramatically worldwide and has

become a critical public health priority. Obesity is associated with many

co-morbid conditions, including hypertension, diabetes, and cardiovascular

disease. Although the physiology of obesity is complex, a healthy diet and

su�cient exercise are two elements known to be critical to combating this

condition. Years of research on the Mediterranean diet, which is high in

fresh fruits and vegetables, nuts, fish, and olive oil, have demonstrated a

reduction in numerous non-communicable chronic diseases associated with

this diet. There is strong evidence to support an anti-inflammatory e�ect of

the diet, and inflammation is a key driver of obesity. Changes in diet alter

the gut microbiota which are intricately intertwined with human physiology,

as gut microbiota-derived metabolites play a key role in biological pathways

throughout the body. This review will summarize recent published studies

that examine the potential role of gut metabolites, including short-chain fatty

acids, bile acids, trimethylamine-N-oxide, and lipopolysaccharide, in modulating

inflammation after consumption of a Mediterranean-like diet. These metabolites

modulate pathways of inflammation through the NOD-like receptor family pyrin

domain-containing 3 (NLRP3) inflammasome, toll-like receptor 4 signaling, and

macrophage driven e�ects in adipocytes, among other mechanisms.
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Mediterranean, obesity,microbiome,metabolites, inflammation, short-chain fatty acids,
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1 Introduction

The World Health Organization (WHO) estimates that over 1 billion individuals

worldwide now grapple with overweight/obesity1. Obesity is associated with numerous

comorbid conditions, notably non-communicable diseases including hypertension, type

2 diabetes (T2D), and cardiovascular disease (CVD) which contributed to a staggering five

million deaths globally in 2019 (1–3). These comorbid conditions present a significant

health burden in individuals with overweight/obesity and make combating obesity a

public health priority. Complex factors influence the prevalence of obesity, including

genetics, physical activity levels, dietary pattern, caloric intake, medical conditions

1 World Health Organization. Available online at: https://www.who.int/news-room/fact-sheets/

detail/obesity-and-overweight (accessed on January 11, 2024).
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GRAPHICAL ABSTRACT

and their treatments, socioeconomic status, sleep habits, stress, and

environmental chemicals (4). Inflammation, particularly chronic

low-grade inflammation, has been implicated in numerous non-

communicable diseases including obesity, metabolic syndrome,

T2D, CVDs, and certain cancers (5). Research suggests that

inflammation is a key driver of obesity (6) and that excess

adipose tissue and dysfunctional adipocytes contribute to increased

inflammation (7). Obese individuals have higher circulating

inflammatory markers than lean individuals, and those markers

are lowered following weight loss (8). Increasing inflammation in

rodent models induces weight gain (6), and treatment with the anti-

inflammatory cytokine interleukin (IL)-10 alleviated high-fat diet

(HFD)-induced obesity (9). The aim of this review is to discuss

recent studies that examine the influence of a Mediterranean

diet (MedDiet) on inflammation and obesity. Specifically, we are

interested in the observed effects of MedDiet adherence on gut-

derived metabolites and their role in the physiology of obesity.

There are multiple pieces of evidence required to connect specific

dietary elements to conditions such as obesity and heart disease:

(1) how digested food affects the gut microbiota composition, (2)

which/how specific gut microbes in the host environment affect

which gut metabolites that are present and in what quantities,

(3) which/how gut metabolites influence cellular functions and

biological pathways, and (4) which pathways are part of the

physiology of healthy or diseased states. There have been a number

of excellent reviews on some of the topics within this review, such

as reviews on the MedDiet and inflammation (5) the MedDiet and

the gut microbiome (10), or the role of some of the gut metabolites

in obesity (11–14). We present a review that highlights the most

recent literature and discusses all these topics: theMedDiet, obesity,

inflammation, and gut metabolites, with a focus on the updates

for four of the gut-derived metabolites that have been the focus of

multiple recent investigations. Each individual scientific study may

focus on only one of the four elements. In this review, we introduce

the associations between obesity and inflammation, then we focus

in more detail on the evidence for biological roles of specific

metabolites. We focus on the most recent research results related

to the pathways that include four gut metabolites (short-chain fatty

acids, bile acids, trimethylamine N-oxide, and lipopolysaccharide)

and discuss gaps in our understanding.

2 Method

For this narrative review, most articles included were chosen

from searches in PubMed and Google Scholar. The online

searches were conducted from September 2023–May 2024 using

the keywords: Mediterranean, diet, food, Western, microbiome,

bacteria, microbiota, obesity, obese, short-chain fatty acid (SCFA),

lipopolysaccharide (LPS), bile acid (BA), trimethylamine N-oxide

(TMAO), inflammation, inflammatory, immune, immunity, gut,

metabolites, metabolomics, pathophysiology, pathway, chronic

disease, and combinations thereof. Additional relevant publications

were found in the citations of the articles found in our literature

search. We included original research articles, reviews, meta-

analyses, and clinical trials. Publications were restricted to the

English language, selected on a discretionary basis by a consensus

of the four authors, and we prioritized articles published within the

last 4 years, though other older relevant articles were included. We

focused on a subset of human studies of recently published original

research reports that investigate the association between MedDiet

adherence, inflammation, obesity, and gut metabolites, but also

included studies in animal models that investigated biological

pathways relevant to gut metabolites and inflammation.
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3 Dietary contribution to
inflammation and obesity

The escalating health burden of obesity has prompted research

into its causes and possible preventive measures, particularly in

modifiable lifestyle factors such as diet. In addition to energy

intake, diet may also mediate other determinates of obesity such

as inflammation, and there are multiple studies examining the

role of nutrition in low-grade inflammation. Unraveling causality

and defining pathways that connect nutrition and inflammation

has proven very challenging due to the multifaceted nature of

inflammatory pathways (15, 16). Pathways identified as important

in inflammation, as related to diet and obesity, include the

NLRP3 inflammasome, macrophage-mediated chronic low-grade

inflammation in adipose tissue, and the toll-like receptor 4

(TLR4) signaling pathway that is activated by saturated fatty

acids. C-reactive protein (CRP), adipocyte-derived metabolites,

and inflammatory cytokines [such as tumor necrosis factor alpha

(TNF-α), IL-1β, and IL-6] have been shown to play a role in

inflammation associated with obesity, and in the development

of insulin resistance (7, 15, 17–20). Indices like the Dietary

Inflammatory Index (DII) have been developed to assess the

inflammatory potential of a diet (21). A large study of more than

27,000 individuals over a period of about a decade found an

association of overall obesity and abdominal obesity with a poor

quality, pro-inflammatory diet. The authors used three indices, the

Alternative Healthy Eating Index (AHEI), DII, and MedDiet Score,

and found the AHEI to provide the best assessment of obesogenic

potential of a diet, though the three indices have generally similar

items in their assessment (22).

Several excellent reviews have been published that outline

the connections between obesity, inflammation, and immunity.

The review by May and den Hartigh focused on the impact

of SCFAs on adipose tissue metabolism (23). A comprehensive

review of the association of diet and gastrointestinal immunity

itemized specific physiological effects associated with particular

dietary macromolecules (24). A review of recent advances

in our understanding of intestinal immunometabolism and

microbiology provided a description of physiological differences

between lean and obese states (25). Grosso et al. effectively

summarized the proposed role of specific dietary elements,

including macronutrients and phytochemicals, in the regulation of

inflammation and immunity as relates to obesity (15). A review

of ten meta-analyses summarized the evidence connecting the

MedDiet with reduced dyslipidemia and decreased inflammatory

mediators through modulation of the gut microbiota (10). Given

the extensive data associating obesity and inflammation, combined

with the data associating dietary changes with inflammation,

dietary changes are justifiably proposed as one critical component

of the treatment for obesity.

3.1 MedDiet

The MedDiet, originating from the traditional practices of

people in the Mediterranean basin, has captured researchers’

attention due to its reported health benefits, and is included as a

healthy dietary pattern in the 2020–2025 Dietary Guidelines for

Americans (26–28). The MedDiet promotes daily consumption

of whole grains, nuts, vegetables, and fruit, with olive oil as the

primary fat, moderate intake of fish, poultry, and wine, and rare

intake of red meat and sweets (26, 29, 30). Anti-inflammatory

effects have been attributed to multiple specific elements of the

MedDiet, investigated alone in controlled studies, including olive

oil, nuts, fatty fish, legumes, fruit, vegetables, and a reduction

of red meat and refined foods (5). Although there is a general

consensus regarding the characteristics of the MedDiet, criteria for

calculating a “MedDiet score” vary considerably between studies

(22, 29, 31). Regardless of the details of the MedDiet score, there is

an abundance of data on the benefits of a MedDiet. A systematic

review of 84 studies concluded that there is strong evidence

to support an association of the MedDiet with fewer chronic

diseases, including neurological diseases, CVD, cancer, T2D, liver

disease, and renal disease. The MedDiet was also associated with

reduced obesity-related metabolic features, inflammation, and

lower mortality (31).

The Western diet, in contrast to the MedDiet, is a dietary

pattern prevalent across many industrialized nations. Key

components of the Western diet include high consumption of

refined grains, red meat, and sugar sweetened beverages, which are

associated with weight gain and obesity risk (10, 15, 22, 24, 32, 33).

TheWestern diet can also include 50% or more of the calories from

foods that are classified as ultra-processed, meaning they contain

formulations of ingredients assembled in industrial processes as

opposed to whole foods. Studies have associated ultra-processed

foods (UPF) with low-grade inflammation and multiple chronic

diseases (32, 34). Our review is not primarily focused on UPFs;

however, individuals following a MedDiet, or other similar healthy

dietary patterns, tend to consume fewer UPFs and would be spared

the inflammatory response, and consequence of the inflammation,

that may be associated with them.

3.2 E�ects of a MedDiet vs. a Western diet
on obesity and inflammation

The benefits of the MedDiet have been evaluated in many

observational and intervention studies of obesity and its

comorbidities, suggesting that the MedDiet can ameliorate

obesity across various populations. Although there are numerous

investigations of dietary patterns, or specific dietary components,

and the health consequences, we will focus on a subset of studies:

recently published original research reports that investigate

the association between MedDiet adherence, inflammation,

and obesity.

3.2.1 Observational studies of the e�ect of the
MedDiet on obesity and inflammation

The results of recent observational studies provide supporting

data for the association of the MedDiet with weight loss and

reduced inflammation. Dietary intervention studies have shown

that the MedDiet, with or without caloric restriction, may induce

weight loss in individuals with overweight and obesity (35–37).
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A study of self-selected diets by individuals with obesity found

the MedDiet resulted in an average weight loss of 2.8 kg after 12

months. The weight loss induced by the other diets evaluated, Paleo

and intermittent fasting, showed similar results to the MedDiet in

this study (38).

Beyond examination of weight changes, studies have reported

changes in inflammatory cytokines and a decrease in comorbidities

in association with a MedDiet, even without weight loss. A multi-

year study of over 39,000 individuals who were included in the

Melbourne Collaborative Cohort found an association between the

development of T2D and a higher DII, as well as a lower AHEI,

but they did not find an association with the MedDiet score in

this study (39). A study of 238 individuals who had non-alcoholic

fatty liver disease, now called metabolic dysfunction-associated

steatotic liver disease (MASLD) (40) showed that adherence to

a MedDiet, as assessed by questionnaire, correlated with lower

oxidative stress and inflammation (41). Monitoring of 612 subjects

during a year-long study found an association between adherence

to a MedDiet and lower inflammatory markers, CRP and IL-17.

Additionally, changes in the gut microbiome seen with MedDiet

adherence correlated with lower frailty, improved cognition, and

reduced inflammation (42). In the observational study of 307

male participants as part of the Health Professionals Follow-

up study that involved broad examination of sequence data,

food logs, and blood biomarkers, long-term adherence to the

MedDiet was associated with a change in the gut microbiome and

their associated metabolic pathways, including SCFAs, secondary

BA production, and fiber metabolism. They did not find an

association of the MedDiet with the abundance of Prevotella

copri, but they did find an association between the presence

of P. copri with reduced risk of CVD, allowing for hypotheses

of the pathways of this species that contribute to the observed

phenotype (43).

A study of 1,040 individuals, as a subset of the Hellenic National

Nutrition and Health Survey, found a significant association

between adherence to the MedDiet, lower weight, and reduced

hypertension (44). A cross-sectional study of 65 individuals

examined the association of diet and inflammation using food

diaries, hyperinsulinemic-euglycemic clamps, intravenous glucose

tolerance test, dual-energy X-ray absorptiometry, cytokine levels,

and adipokine levels. Adherence to a MedDiet was associated with

greater insulin sensitivity and decreased inflammatory markers in

adults with overweight/obesity (45). One study showed that women

with obesity with higher adherence to the MedDiet had lower

incidence of MASLD (46). High adherence to the MedDiet was

observed to lower the risk of developing an unhealthy metabolic

phenotype in individuals with and without obesity (47). Women

with obesity and polycystic ovary syndrome who had higher

adherence to the MedDiet also had lower cardiometabolic risk

factors, including reduced levels of CRP, insulin resistance, and

fatty liver index (48). Whole grain consumption, a component

of the MedDiet, is also associated with decreased inflammation,

in contrast to consumption of refined grains, in part due to

its increased amount of dietary fiber (49). The MedDiet also

discourages the consumption of red meat which has been

consistently associated with inflammation, in favor of poultry or

fish, the latter of which are high in omega-3 polyunsaturated fatty

acids (50–52).

One strength of observational studies is that they can be quite

large with thousands of participants, creating the potential for a

statistically very well-powered study. Limitations of observational

studies include the uncontrolled variables of each study that are

outside of the diet being examined, such as physical activity, sleep

habits, stress from injury or other medical conditions, all of which

can affect the inflammatory state of the participants. The level of

detail of the diets is less than can be obtained in a controlled trial for

which food is provided. The range of what is considered a MedDiet

might include those scoring anywhere from 10 to 17, out of 17 total

points that describe a “fully-compliant” MedDiet on a PREDIMED

score for example, so the food consumed by all of the participants

in the “MedDiet” group could be quite variable, affecting the results

of one study as compared to another. An additional limitation of

these studies is that they cannot directly examine specific biological

pathways. Despite the limitations of these studies, the strength of

the collective evidence supports the role of theMedDiet in reducing

obesity-associated inflammation and comorbidities.

3.2.2 Randomized controlled trials of the e�ect
of the MedDiet on obesity and inflammation

Observational studies frequently include large cohorts for

statistical power but randomized controlled trials (RCTs) add a

layer of rigor and control to the results, moving us closer to

determining the cause of the investigated effect. A randomized

dietary intervention study of individuals with obesity and

features of metabolic syndrome compared 128 genes expressed

in abdominal subcutaneous adipose tissue for those on a Nordic

diet, which is a Nordic alternative to the MedDiet, and those on

a control diet. The authors concluded that the Nordic diet was

associated with a decrease in inflammatory gene expression (53). A

randomized controlled trial of 82 subjects with overweight/obesity

comparing the MedDiet to a control diet demonstrated significant

changes in the endocannabinoid system, along with an increase

in Akkermansia muciniphila on the MedDiet. The change

in the oleoylethanolamide/palmitoylethanolamide (OEA/PEA)

endocannabinoid ratio following the MedDiet also diminished

the homeostatic model assessment of insulin resistance index

and decreased serum high-sensitive CRP, a measure of systemic

inflammation. Their results support a role for the MedDiet

in ameliorating insulin sensitivity and inflammation (54). A

randomized controlled trial involving 28 adults with quiescent

ulcerative colitis found that a MedDiet reduced levels of fecal

calprotectin, a measure of intestinal inflammation (55). Higher

adherence to the MedDiet is associated with lower inflammatory

biomarkers, including multiple interleukins, interferon gamma

(IFN-γ), TNF-α, and CRP (5, 55).

An evaluation of over 7,000 subjects in the PREDIMED

(Prevention with Mediterranean Diet) trial, conducted over

a median time of 4.8 years, demonstrated an association

between weight gain and increased consumption of refined

grains, red meat, potatoes, alcohol, processed meat, white bread,

and sweets. Increased waist circumference was associated with

increased consumption of snacks, fast-food and pre-prepared

dishes, processed meat, alcohol, and sweets (56). Individuals

with obesity instructed to follow an energy-restricted MedDiet

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2024.1392666
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Florkowski et al. 10.3389/fnut.2024.1392666

in the PREDIMED-Plus cohort lost more weight on average

than individuals on a standard MedDiet after 1 year (57). A

cross-sectional study of 62 individuals with overweight or obesity

reported an association of better cardiorespiratory fitness and

adherence to a MedDiet with lower blood pressure and lower body

fat composition (58). For individuals with genetic risk factors for

obesity, those with higher adherence to theMedDiet were less likely

to develop obesity in 7–15 years of follow-up (59). A sub-study of

the PREDIMED trial examining changes in inflammatory markers

after 3 years of MedDiet intervention found reduced plasma levels

of several inflammatory cytokines (IL-1β, IL-6, IL-8, TNF-α, IFN-γ,

hs-CRP, MCP-1, MIP-1β, RANTES, and ENA78), but these did not

reflect at the gene level (60).

RCT MedDiet intervention studies consistently show

lower TNF-α, IFN-γ (60–62), and fecal calprotectin (55, 63).

Cannabinoids as drugs, particularly those targeting the

CB2 receptors, have been associated with relief for a

number of inflammatory disorders (64). Bourdeau-Julien

et al. (65) and Forteza et al. (66) both detected increased

endocannabinoids (OEA and EPEA) following MedDiet

intervention in healthy volunteers of normal weight. In contrast,

Tagliamonte et al. found that plasma arachidonoylethanolamide

(AEA) was decreased following MedDiet intervention in

individuals with overweight/obesity, which increased the

oleoylethanolamide/arachidonoylethanolamide (OEA/AEA)

ratio concomitantly with reduced cholesterol (54).

Olive oil, as well as other components of the MedDiet, such

as fresh fruits and vegetables, contain polyphenols that have anti-

inflammatory properties. In a study of multiple types of olive oil,

individuals eating a diet supplemented with olive oil that contained

high amounts of polyphenols had significantly improved plasma

inflammatory biomarkers (decreased IL-8 and TNF-α) (67), and

another study reported a connection between olive oil and reduced

body weight, waist circumference, and hepatic steatosis, in subjects

with metabolic syndrome. The anti-inflammatory cytokine IL-10

increased, while pro-inflammatory cytokines decreased (IL-6, IL-

17, TNF-α, and IL-1β) (68).

Strengths of these randomized controlled trials include

that they can control for variables that are not controlled

in observational studies. For example, the PREDIMED and

PREDIMED-Plus trials each compared two versions of a MedDiet:

MedDiet with olive oil vs. MedDiet with nuts, or energy-restricted

MedDiet vs. non-energy-restricted MedDiet (57, 60). Researchers

are able to collect health information that may not be available

in large observational studies, such as information on alcohol

consumption, physical activity, and medication/supplement use,

which can be used as exclusion criteria or taken to account in

statistical analyses (55, 65, 66). Additionally, when studies provide

the food for the participants, the content is known in detail and

is much better controlled than when participants prepare their

own food. Bourdeau-Julien et al. (65) and Forteza et al. (66)

provided food to their volunteers, so they could exactly track the

nutrient intake and compliance of their volunteers. Limitations

of the RCTs include that most often there are a low number

of participants: the studies described here had fewer than 100

study subjects, with the exception of the PREDIMED trial studies.

Another limitation is that the food consumed is determined from

records that are not seven days per week, so extrapolation is

required to interpret the information as the individual’s whole diet,

and data are dependent on the accuracy and adherence of the study

subjects. Most of the studies described here have a narrowly defined

inclusion criteria, such as those with a specific disorder, so the

results may not translate to healthy individuals or individuals with

other medical conditions. Most of the studies examine the effect of

the intervention over a short period of time, often weeks to several

months, raising the question of whether the intervention had time

to establish an effect, and whether an effect would be sustainable.

However, the PREDIMED trial, which is the exception and covered

a long period of time, ended after 4.8 median years of follow-up,

and showed strong evidence of the benefit of the MedDiet in many

areas, resulting in over 350 publications so far according to their

website (69). Overall, the results of the RCTs are consistent with the

results of the observational studies and the evidence supports the

role of the MedDiet in modulating inflammation and obesity.

3.2.3 Mechanisms of dietary e�ects on
inflammation

Meta-analyses of multiple studies provide support for the

conclusion that the MedDiet reduces the risk of obesity. For

example, a meta-analysis of 15 RCTs of MedDiet interventions that

measured obesity parameters in children and adolescents reported

that the interventions had a significant effect on reducing BMI and

obesity in this population (70). A systematic review of ten RCTs

found that diets such as the MedDiet, and other similar dietary

patterns, were associated with a significant reduction of CRP and an

increase in adiponectin, both indicators of reduced inflammation

(71). A systematic review of 20 RCTs reported the following

changes in biomarkers in association with a MedDiet: decreased

pro-inflammatory cytokines IL-1α, IL-1β, IL-5, IL-6, IL-7, IL-8, IL-

18, IFN-γ, TNF-α, CRP, high-sensitivity CRP and increased anti-

inflammatory cytokines IL-4 and IL-10 (5). A meta-analysis of 32

studies concluded that omega-3 polyunsaturated fatty acid dietary

supplementation had anti-inflammatory effects, as shown by a

decrease in CRP and TNF-α (72). Therefore, the anti-inflammatory

effects of the MedDiet as a whole, as well as of the individual

dietary components, contribute to its status as a healthy diet that

may combat obesity. Data that associate the MedDiet with reduced

inflammation are abundant but obtaining an understanding of

the detailed pathophysiology is a more challenging goal. Some

recent studies delving into the mechanisms of dietary effects on

inflammation are reviewed below.

To define biological pathways affected by components of the

diet, studies using murine models and in vitro cultures can be

quite valuable (23, 73, 74), as specific mechanistic hypotheses can

be generated from such studies. A study of 952 individuals using

genome-wide genotyping, gut metagenomic sequence data, and

fecal SCFA levels, reported that increased butyrate production

was associated with impaired insulin response and that abnormal

production or absorption of propionate was associated with T2D

risk (75). In Section 5.1, we will discuss the evidence that SCFAs

are increased in response to the MedDiet and this excellent study

by Sanna et al., combined with the other literature, allow us to

associate the MedDiet to SCFA changes to an impaired insulin

response and obesity.
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Cross-sectional studies examining adherence to the MedDiet

and CRP concentrations found these to be inversely correlated

(76, 77). This was also observed in a large population-based study

(78). A recent study attempting to better define specific physiologic

connections between obesity and inflammation used a mouse

model with a CRP transgene. The investigators provided evidence

that CRP is not merely a marker of inflammation, but instead has a

causal role in the development of obesity (6).

As part of the CORDIOPREV (CORonary Diet Intervention

with Olive oil and cardiovascular PREVention) prospective RCT,

researchers suggest that the genetic variant of the NLRP3

inflammasome may modulate the benefits of the MedDiet (79).

Murine and human brain cells treated with virgin olive oil reduced

activation of the inflammatory TLR4/NLRP3 axis (80). Deficiency

of NLRP3 attenuated systemic inflammation, especially with a

HFD, caused changes in the plasma metabolome, metabolites in

the liver and myocardium, and gut microbiota compared to wild-

type mice (81). The saturated fats common in the Western diet are

also associated with increases in inflammation by the nuclear factor

kappa B (NF-κB) pathway and NLRP3 inflammasome, possibly

contributing to obesity, as reviewed by Las Heras et al. (24).

Even occasional consumption of Western diet patterns increased

inflammation and insulin resistance in a rodent study (82). The

effects of dietary patterns on health are complex and understanding

their mechanisms will be necessary to use diet for the treatment of

obesity and other health conditions.

4 MedDiet and the gut microbiome

Dietary patterns such as the Western diet and UPF

consumption likely contribute to obesity partially through

their impact on the gut microbiome. The gut microbiome is highly

modifiable by diet and multiple studies have shown alterations to

the microbiome from dietary patterns like the MedDiet (65, 83–

85). Due to the complexity of the microbiome and the variation

in how MedDiet is characterized between studies, it is difficult

to define one consistent microbiome signature associated with

the MedDiet (86). Clear changes in the microbiome have not

been found during all MedDiet interventions, especially when

the starting microbiome of the individual had high diversity, as

the diverse microbiome was somewhat more resistant to changes

(65, 87). When trying to assimilate all of the available literature

on a topic, it is our view that if a meta-analysis reveals striking

differences in results between various studies, this does not negate

the results of each individual well-controlled study, but instead

the meta-analysis demonstrates that generic conclusions about

the MedDiet may not apply to every population and disease state.

The discrepancies highlight our lack of understanding regarding

which of the key variables in each study are most contributory to

the outcome. The MedDiet can also have a considerable impact on

microbial metabolites, even without a significant corresponding

change to microbiome composition. Regardless of our limited

understanding of the complex gut microbial communities, and

their individual or overlapping roles, there are data to support

beneficial changes to the microbiome fromMedDiet intervention.

Several studies have investigated the role of diet in SCFA

metabolism. For example, a MedDiet intervention in women with

obesity was able to reverse features of dysbiosis by increasing

microbiome biodiversity and SCFA-producing taxa (88). MedDiet

adherence in both individuals with obesity and normal weight

was positively correlated with SCFA-producing taxa such as

Bifidobacterium animalis (89). MedDiet intervention has been

reported to increase fecal SCFAs (90), and the abundance of

butyrate-producing microbes (87).

Some studies have focused on changes in BAs. An 8-week

RCT of 82 individuals with overweight and obesity reported

that increased adherence to a MedDiet resulted in a reduction

of plasma cholesterol and fecal BAs. Gut microbiome analysis

revealed an increase in Faecalibacterium prausnitzii and decrease in

Ruminococcus gnavus. Furthermore, there were increased urinary

urolithins, fecal BAs degradation, and insulin sensitivity in subjects

on the MedDiet, which correlated with specific microbial taxa (91).

Fiber is known to be a critical component of the MedDiet.

Dietary fiber originates primarily fromwhole grains and vegetables,

foods that can serve as a prebiotic for bacterial growth, but

different types of fiber may have different effects. Healthy

adults supplemented with resistant potato starch had increased

bifidobacteria and butyrate production in their gut, while

supplementation with fiber from maize and chicory root did not

show a statistically significant difference. Among individuals whose

microbiome changed, the highest butyrate concentrations were

correlated with Ruminococcus bromii orClostridium chartatabidum

increases (92). The effect of fiber supplementation on the

microbiome and SCFA production varies between individuals. The

authors report that some individuals are limited in their capacity

to produce SCFA from fiber supplementation, and this may be

driven by their microbiome (92, 93). Another dietary intervention

showed that fiber from a mixture of fruits and vegetables resulted

in increased bifidobacteria but no increases in SCFAs over a short

2-week period (94).

There have been numerous studies of the MedDiet component

olive oil. Mice supplemented with olive oil had microbial changes

associated with reduced inflammation and the prevention

of colorectal cancer compared to mice fed other fat types.

Interestingly, the olive oil diet in the mice increased the

Firmicutes/Bacteroidetes ratio, which correlated with lower

colorectal cancer risk but higher risk of obesity in this study (95).

Olive oil consumption, particularly oil enriched with phenolic

compounds, was also associated with increased bifidobacteria

in a RCT in individuals with high cholesterol (96). Olive oil is

an important source of flavonoids, and microbial metabolism is

required to make flavonoids biologically available (97).

There are a few common patterns to the changes to the

microbiome that have been reported repeatedly, either in studies

comparing the MedDiet to a Western diet, or in studies comparing

individuals with obesity to lean controls. A study of 92 individuals

found an association of overweight/obesity with specific gut

microbiota patterns when compared to those of normal weight:

Bacteroidetes taxa were decreased and several Firmicutes taxa were

increased (98). The Western diet is associated with decreased

beneficial bacteria such as bifidobacteria and eubacteria in the

human gut (99) and, in rodents, decreased Akkermansia spp.,

species that are associated with a number of human diseases

(100). Lean mice receiving fecal transplants from mice with obesity

gain weight (101, 102) and individuals with obesity receiving
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transplants from lean individuals had improved metabolic disease

symptoms (103). These studies show the combined value of

animal and human studies. The studies make associations between

the microbiome, obesity, and metabolic syndrome. The data

supporting an association of the MedDiet with a reduction in

inflammation and obesity from Section 3 of this review, combined

with studies in Section 4 that investigated the microbiome and

obesity, serve to connect theMedDiet to inflammation, obesity, and

the gut microbiome. Every study does not prove direct causation,

but the results allow the development of a larger hypothesis

for definitive testing. Human fecal microbiome transplants have

successfully altered the microbiomes of individuals with obesity

to resemble lean donors, however no change in BMI occurred

over the 12-week study. The time required to significantly change

the BMI may be longer than the time to alter the microbial

community (104). Individuals with obesity have distinct microbial

communities, often characterized by having an increased ratio

of Firmicutes to Bacteroides compared to lean individuals and

decreased microbial diversity (98, 102) although these results are

not consistent across all studies (105).

Gut permeability and energy efficiency are two other elements

that have been examined closely. The microbiomes of individuals

with obesity may result in increased energy absorption from

food. Increases in Firmicutes relative to Bacteroides elevate

levels of alpha amylases and amylomaltases for more efficient

energy extraction from foods, which increases the number of

calories absorbed (102). An imbalanced microbiome can also

contribute to obesity through its role in inflammation. The

dysbiosis of obesity can lead to increased gut permeability and

allow proinflammatory molecules to enter systemic circulation.

The microbiome of humans and mice with obesity reduced

the expression of the zonula occludens-1 tight junction protein,

weakening the gut barrier (106). Individuals with obesity also have

increased Gram-negative bacterial taxa of the Enterobacteriaceae

family in their microbiome, resulting in elevated levels of LPS

which can leak from the gut (98). LPS is proinflammatory

and promotes low grade inflammation which promotes the

storage of excess lipids (107). Further discussion of LPS as

it relates to the MedDiet is included in Section 5.4 of

this review.

By combining all of the findings from the many investigations

discussed above, a positive role of the MedDiet on obesity and

inflammation seems quite clear. We have yet to obtain a detailed

understanding of the pathophysiology of obesity, but recent work

has started to dissect the role of specific gut microbial metabolites

in these pathways.

5 Interplay of obesity, the MedDiet,
and gut-derived metabolites

Obesity is associated with changes in the composition of the gut

microbiota, and in the amounts and types of microbial metabolites

that are formed. Two groups of metabolites of demonstrated

importance in obesity physiology are SCFAs and BAs. An

increase in a third gut-derived metabolite, TMAO, has been

associated with obesity and inflammation; however, its effects are

proposed to be context-dependent (108, 109). A fourth metabolite

associated with inflammation and obesity is LPS. Obesity has been

associated with increased intestinal permeability, which allows

the movement of bacteria and bacterial products, like LPS, into

the bloodstream with an associated increase in inflammation

(110). The interactions between the obese gut microbiota, gut-

derived metabolites, and the effects on its host are quite complex

and multifactorial.

Previous reviews indicate that adults with obesity have been

shown to have increased total concentrations of fecal SCFAs

(11, 12) and BAs (13, 14), likely due to dysregulated metabolism

and absorption. However, analysis of the gut microbiota of

over 1,900 individuals in the METS-microbiome study showed

an association of obesity with a reduction of fecal SCFA

concentrations, gut microbial diversity, and of the bacteria that

synthesize SCFAs, while the country of origin for the study subjects

was the most important variable. Using predictive modeling,

SCFA concentrations could not predict obesity status, suggesting

the relationship between SCFAs and obesity is still unclear

(111). Many of the studies examining SCFAs in populations

with overweight/obesity have been cross-sectional analysis, with

or without disease comorbidities and/or medications, and using

different biospecimen types (fecal vs. blood), making it difficult

to draw definitive conclusions (112–114). Meanwhile, the clinical

controlled trials measuring SCFAs in populations with obesity also

apply various pre/probiotic, dietary, or weight-loss interventions

which make comparing studies difficult (115–117). Several

variables such as diet and physical activity can affect SCFA

production, and the direction of change for individual SCFAs (i.e.,

acetate vs. butyrate vs. propionate, etc.) likely differ, as is observed

in Table 2, and should be considered when comparing data

between studies.

Few studies have examined SCFA levels in children with

obesity, however, within the last 5 years, two studies showed

increased fecal SCFA concentrations (118, 119), while one

study showed fecal SCFAs were reduced (120) in children

with obesity. The differences in study results may be due

to study design and inclusion criteria, as Wei et al. and

Gyarmati et al. excluded volunteers who had received antibiotic,

prebiotic, or probiotic treatments within the last 3 months

before the studies, while the study by Slizewska et al. did

not (118–120).

In Tables 1–3 we have summarized some of the recent human

studies that have investigated changes in gut metabolites in

association with a MedDiet compared to other diets. Below, we

discuss the effects of MedDiet on SCFAs, BAs, TMAO, and LPS,

and the mechanisms by which the MedDiet could potentially alter

the gut microbiota to combat obesity.

5.1 Short-chain fatty acids

SCFAs are derived from the fermentation of non-digestible

dietary fiber by gut bacteria, and they play a critical role in intestinal

physiology. Acetate, propionate, and butyrate account for 95% of

the SCFAs in the intestinal tract. In a healthy individual, <5%

of SCFAs are excreted in feces, as most are absorbed through

the gut mucosa and utilized in the gut, while some enters the
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TABLE 1 Characteristics of recent clinical studies investigating the e�ects of the MedDiet on gut-derived metabolites.

References Country Study
design
(cohort)

Study
population

MedDiet
intervention

Control Sample
size
(n)

Sex (n) Age (y: mean
± SD, or CI,
and/or range)

BMI (kg/m2:
mean ± SD,
or CI, and/or

range)

Duration MedDiet score

André et al.

(121)

France Cross-

sectional

(Alienor

Study,

subsample of

3C Study)

French older

community-

dwelling

adults

N/A Traditional

dietary

pattern

698 266M;

432 F

73.1± 4.4 26.3 N/A 8-Item Study specific

score from FFQ

Baratta et al. (41) Italy Observational

cohort study

(PLINIO

Study)

Patients with

NAFLD (now

MASLD)

N/A N/A 238 135M;

103 F

53.1± 12.4 31.2± 5.4

sNox2-dp tertile I;

30.3± 4.1 II; 29.4±

4.2 III

N/A 9-item

Mediterranean-diet

questionnaire (122)

Barber et al. (87) Spain Randomized

cross-over

(N/A)

Healthy men Fiber-enriched

MedDiet

Western-

type

diet

20 20M; 0 F 18–38 19.2–25.5 2 Mo (2W

each diet)

Food was provided

Barrea et al.,

(123)

Italy Cross-

sectional

(N/A)

Healthy adults N/A N/A 144 67M; 77 F 31.55± 6.19 22.84± 1.51 N/A 14-point Mediterranean

Diet Adherence Screener

(MEDAS) from

PREDIMED Study (124)

Barrea et al.

(125)

Italy Cross-

sectional

(OPERA

Project)

Healthy

Caucasian

adults

N/A N/A 247 100M;

147 F

36.6± 11.0 28.8± 9.1; 19–59 N/A 14-point Mediterranean

Diet Adherence Screener

(MEDAS) from

PREDIMED Study (126)

Barrea et al.

(127)

Italy Case-control,

cross-sectional

(OPERA

Project)

Patients with

Hidradenitis

Suppurativa

(HS) and

healthy

controls

N/A N/A 70 22M; 48 F 25.37± 8.36 HS;

26.14± 7.28

healthy

29.26± 5.33 HS;

29.22± 5.62

healthy

N/A 14-point Mediterranean

Diet Adherence Screener

(MEDAS) from

PREDIMED Study (126)

Bourdeau-Julien

et al. (65)

Canada Fixed-

sequence

(N/A)

Healthy adults MedDiet CanDiet 21 10M; 11 F 20–29M; 20–34 F 20.4–25M;

20.1–24.1 F

19 D (3 D

MedDiet,

then 13 D

CanDiet,

then 3 D

MedDiet)

Food was provided

De Filippis et al.

(128)

Italy Cross-

sectional

(N/A)

Healthy adults N/A Omnivore

=

Western

diet

153 64M; 89 F 39± 9 vegetarian;

37± 10 vegan; 37±

9 omnivore

21.9± 2.5

vegetarian; 21.3±

2.2 vegan; 22.1±

2.0 omnivore

N/A 11-unit dietary score

based on tertiles (129)

(Continued)
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TABLE 1 (Continued)

References Country Study
design
(cohort)

Study
population

MedDiet
intervention

Control Sample
size
(n)

Sex (n) Age (y: mean
± SD, or CI,
and/or range)

BMI (kg/m2:
mean ± SD,
or CI, and/or

range)

Duration MedDiet score

Forteza et al.

(66)

Canada Randomized

Cross-over

(N/A)

Healthy,

physically-

active

women

MedDiet CanDiet

(Western-

type)

7 0M; 7 F 25± 5; 19–32 22.52± 1.57;

19.50–24.49

35 D (7 D

per diet)

Food was provided

Galie et al. (130) Spain Randomized

cross-over

(METADIET)

Adults with

overweight/

obesity and

metabolic

syndrome

MedDiet plus

mixed nuts (50

g/day)

Habitual

diet

supple-

mented

with nuts

(50

g/day)

44 NR 25–60 25–35 5 Mo (2 Mo

each diet+ 1

Mo

washout)

17-point MedDiet score

used in PREDIMED-Plus

(131)

Garcia-

Mantrana et al.

(132)

Spain Cross-

sectional

(N/A)

Healthy adults N/A N/A 27 11M; 16 F 39.5± 7.3 25.29± 2.76M;

21.95± 2.72 F

N/A 14-point Mediterranean

Diet Adherence Screener

(MEDAS) from

PREDIMED Study (124)

Ghosh et al. (42) UK, France,

Netherlands,

Italy &

Poland

Randomized

parallel

(NU-AGE

Study)

Elderly

non-frail

adults

MedDiet tailored

for elderly

(Nu-AGE diet)

Habitual

diet

612 286M;

326 F

65–79 18.5–46 12 Mo Adherence scores to the

MedDiet calculated based

on the NU-AGE Food

Based Dietary Guidelines

(FBDG) (133)

Griffin et al.

(134)

USA Randomized

parallel

(Healthy

Eating Study

for Colon

Cancer

Prevention)

Healthy adults

at increased

risk for colon

cancer

MedDiet Healthy

Eating

diet

115 32M; 83 F 52± 12 27.0± 3.7 6 Mo 7-item Self-Efficacy score

(not specific to MedDiet)

(135)

Guasch-Ferre

et al. (136)

Spain Randomized

parallel

(PREDIMED

Study)

Community-

dwelling adults

at high risk for

CVD

MedDiet+

EVOO or

MedDiet+mixed

nuts

Control

diet

(reduce

intake of

all types

of fat)

980 442M;

538 F

67.5± 10.9 29.6± 3.6 12 Mo Not provided

Gutierrez-Diaz

et al. (137)

Spain Cross-

sectional

(N/A)

Healthy adults N/A N/A 31 8M; 23 F 42.1± 10.9 26.3± 4.7 MDS ≥4;

26.2± 5.0 MDS < 4

N/A 8 point Mediterranean

diet score (138, 139)

Haskey et al. (55) Canada Randomized

parallel (N/A)

Adults with

ulcerative

colitis (UC)

MedDiet Habitual

CanDiet

28 10M; 18 F 18–65 MedDiet;

25–64 CanDiet

17–30 MedDiet;

19–29 CanDiet

3 Mo 24 Point Mediterranean

Diet Serving Score (140)

Krishnan et al.

(141)

USA Randomized

cross-over

(N/A)

Adults with

overweight/

obesity

MedDiet+ 200 g

red meat/week

MedDiet

+ 500 g

red

meat/week

39 12M; 77 F 30–69 30.5± 0.3; 25–37 14W (5W

per diet)

Food was provided
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TABLE 1 (Continued)

References Country Study
design
(cohort)

Study
population

MedDiet
intervention

Control Sample
size
(n)

Sex (n) Age (y: mean
± SD, or CI,
and/or range)

BMI (kg/m2:
mean ± SD,
or CI, and/or

range)

Duration MedDiet score

Maldonado-

Contreras et al.

(142)

USA Cross-

sectional

(N/A)

Caribbean

Latino older

adults

N/A N/A 20 6M; 14 F 62.7± 8.1 28.9± 4.9 N/A 9-point MedDiet score

(MDS) modified from

(143)

Meslier et al.

(91)

Italy Randomized

parallel (N/A)

Healthy adults

with

overweight/

obesity and

sedentary

lifestyle

MedDiet tailored

to individual

energy intake

Volunteers

who

maintained

their

regular

diets

82 39M; 34 F 43± 12 31.1± 4.5 2 Mo 11-item Italian

Mediterranean Index

(129)

Mitsou et al.

(144)

Greece Cross-

sectional

(N/A)

Healthy adults N/A Low

MedDiet

score

(assumed

Western

diet)

120 61M; 55 F 41.27± 13.33 27.29± 4.48 N/A 11-item MedDiet score

(145)

Nagpal et al.

(146)

USA Randomized

cross-over

(N/A)

Older adults

with mild

cognitive

impairment

and

cognitively

normal

controls

Modified

Mediterranean-

Ketogenic diet

(MMKD)

American

Heart

Association

Diet

(AHAD)

17 5M; 12 F 64.6± 6.4 NR 18W (6W

each diet+

6W

washout)

Extra virgin olive oil was

supplied to volunteers

and ketones were

measured weekly

Pagliai et al. (90) Italy Randomized

cross-over

(CARDIVEG

Study)

Healthy adult

Caucasian

omnivores

with

overweight/

obesity and

low-to-

moderate

cardiovascular

risk

Hypocaloric

MedDiet

Hypocaloric

vegetarian

diet

23 7M; 16 F 58.6± 9.8 31.06± 0.67

MedDiet; 30.10±

0.61 vegetarian

6 Mo (3 Mo

per diet)

9-item MedDiet

Adherence Score in

CARDIVEG Study (147)

Park et al. (148) USA Post-hoc

analysis of

randomized

cross-over

(N/A)

Healthy adults Moderate fat

MedDiet (South

Beach)

High fat

(Atkins),

low fat

(Ornish)

14 NR 30.6± 9.6 22.6± 3 20W (4W

per diet)

N/A

Pastori et al.

(149)

Italy Prospective

(N/A)

Adults with

atrial

fibrillation

N/A N/A 912 521M;

391 F

73.5± 8.3 27.5± 4.7 Median

follow-up

40.0

(20.5-68.0)

Mo

A 9-item MedDiet

validated survey (122)

Pastori et al.

(150)

Italy Post-hoc

analysis of a

prospective

study (N/A)

Adults with

atrial

fibrillation

N/A N/A 907 516M;

391 F

73.5± 8.2 NR Median

follow-up

40.5 Mo

A 9-item MedDiet

validated survey (122)
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TABLE 1 (Continued)

References Country Study
design
(cohort)

Study
population

MedDiet
intervention

Control Sample
size
(n)

Sex (n) Age (y: mean
± SD, or CI,
and/or range)

BMI (kg/m2:
mean ± SD,
or CI, and/or

range)

Duration MedDiet score

Pignanelli et al.

(151)

Canada Cross-

sectional

(N/A)

Adults with

atherosclerosis

Educated about

MedDiet

N/A 276 164M;

112 F

66.87± 10.45 28.49± 6.08 N/A 8-point Mediterranean

(aMED) diet scores from

the FFQ (143, 152)

Quercia et al.

(153)

Italy Post-hoc of

randomized

Parallel (N/A)

Adults with

reactive

hypoglycemia

(RH) and

healthy adults

MedDiet and

Ma-Pi 2 diet

designed for

hypoglycemia

Free

MedDiet

consumed

by

healthy

controls

19 NR 27–65 RH; 25–36

healthy

21.7–37.4 RH;

20–23.4 healthy

3 D Food was provided

Ruiz-Saavedra

et al. (154)

Spain Cross-

sectional

(N/A)

Healthy older

adults

N/A N/A 73 20M; 53 F 56–95 19.9–37.5 N/A Mediterranean

adapted Diet Quality

Index-International

(DQI-I) (155)

Modified Mediterranean

Diet Score (MMDS) (156)

Relative Mediterranean

Diet Score (rMED) (157)

All calculated from FFQ

Seethaler et al.

(158)

Germany Randomized

parallel

(LIBRE Study)

Women with

BRCA1 and/or

BRCA2 gene

mutations and

intestinal

barrier

impairment

MedDiet Standard

diet

260 0M; 260 F 43.9 (CI: 42, 46)

MedDiet; 44.8 (CI:

43, 46) control

25.0 (CI: 24, 26)

MedDiet; 25.0 (CI:

24, 26) control

3 Mo 14-point Mediterranean

Diet Adherence Screener

(MEDAS) from

PREDIMED Study (159)

translated into German

and re-validated (160)

FFQMedDiet score

provided using the

adapted Mediterranean

Diet Score (MedD-Score)

according to

Trichopoulou et al. (143)

Seethaler et al.

(161)

Germany Randomized

parallel

(LIBRE Study)

Women with

BRCA1 and/or

BRCA2 gene

mutations

MedDiet Standard

diet

68 0M; 68 F 42 (CI: 35, 49)

MedDiet; 41 (CI:

35, 50) control

23 (20, 27)

MedDiet; 24 (CI:

21, 28) control

12 Mo 14-point Mediterranean

Diet Adherence Screener

(MEDAS) from

PREDIMED Study (159)

translated into German

and re-validated (160)

FFQMedDiet score

provided using the

adapted Mediterranean

Diet Score (MedD-Score)

according to

Trichopoulou et al. (143)
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TABLE 1 (Continued)

References Country Study
design
(cohort)

Study
population

MedDiet
intervention

Control Sample
size
(n)

Sex (n) Age (y: mean
± SD, or CI,
and/or range)

BMI (kg/m2:
mean ± SD,
or CI, and/or

range)

Duration MedDiet score

Shankar et al.

(162)

USA &

Egypt

Cross-

sectional

(N/A)

Healthy

preadolescent

and adolescent

males

N/A U.S.

teenagers

consuming

Western

diet

42 42M; 0 F 13.9± 0.6 Egyptian;

12.9± 2.8

American

18.9± 2.5 Egyptian;

21.2± 3.4

American

N/A N/A

Shoer et al. (163) Israel Randomized

parallel (N/A)

Pre-diabetic

individuals

Personalized

postprandial

glucose-targeting

(PPT) diet

MedDiet 200 87M; 113 F 50.92± 8.03

MedDiet; 50.37±

7.86 PPT

30.86± 6.01

MedDiet; 30.68±

5.23 PPT

6 Mo

intervention

+ 6 Mo

follow-up

N/A

Strauss et al. (63) Canada Post-hoc

analysis of

randomized

controlled

clinical trial

(N/A)

Patients with

ulcerative

colitis (UC)

MedDiet Habitual

diet

40 21M; 19 F 21–80 19–32 2 Mo Modified 14-question

Mediterranean Diet

Adherence Screener

(MEDAS) for the

PREDIMED study (164)

Tanaka et al.

(165)

USA Cross-

sectional

(BLSA cohort)

Community-

dwelling older

adults, who

reside

primarily in

the

Washington

DC–Baltimore

area

N/A N/A 806 391M;

415 F

73.3± 7.1 NR N/A 9-item MedDiet score

(143)

Mediterranean–DASH

Diet Intervention for

Neurodegenerative Delay

(MIND) score (166)

Vitale et al. (167) Italy Randomized

parallel (N/A)

Healthy adults

with

overweight/

obesity

Isoenergetic

MedDiet

Western-

type diet

(habitual

control

diet)

29 14M; 15 F 41.6± 12.3

MedDiet; 45.9±

13.0 control

28.9± 2.3 MedDiet;

29.3± 3.5 control

2 Mo Main foods provided

Zhu et al. (168) USA Randomized

cross-over

(N/A)

Healthy young

adults

MedDiet Fast-food

diet

10 NR 22.1± 2.33 24.39± 3.71 12 D (4 D

each diet)

Food was provided

MedDiet, Mediterranean diet;WD,Western diet; CanDiet, Canadian diet; BMI, bodymass index; FFQ, food frequency questionnaire; NAFLD, nonalcoholic fatty liver disease; MASLD,Metabolic Dysfunction-Associated Steatotic Liver Disease; MEDAS,Mediterranean

Diet Adherence Screener; MMDS, Modified Mediterranean Diet Score; CVD, cardiovascular disease; UC, ulcerative colitis; MDS, Mediterranean Diet Score; rMED, relative Mediterranean Diet Score; PPT, Personalized Postprandial Glucose-Targeting; FBDG,

Food Based Dietary Guidelines; DQI-I, Diet Quality Index-International; PPGR, Postprandial Glycemic Response; MACE, Major Adverse Cardiovascular Event; DASH, Dietary Approaches to Stop Hypertension; MIND, Mediterranean-DASH Intervention for

Neurodegenerative Delay; HS, Hidradenitis Suppurativa; EVOO, extra virgin olive oil; RH, reactive hypoglycemia; HS, Hidradenitis Suppurativa; D, days; W, weeks; Mo, months; M, male; F, female; CI, 95% confidence interval; MMKD, Mediterranean-Ketogenic diet.
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TABLE 2 Results summary of metabolite changes in recent clinical studies investigating associations between gut-derived metabolites and the MedDiet.

References Specimen
type

Direction of change in metabolites relative to Med-like diet adherence

SCFA/BCFA BA TMAO LPS Other metabolites

André et al. (121) Blood (plasma) — — — ↓MedDiet (p= 0.03); ↓ Prudent

diet (p= 0.01); ↑ Traditional diet

(p= 0.04);↔ Complex

Carbohydrate diet (p= 0.41)

—

Baratta et al. (41) Blood (serum) — — — ↑ with ↓MedDiet by association; ↑

LPS= ↑ sNox2-dp (tertile III, p=

0.002)

↑ sNox2-dp (tertile III)= ↓ wine (p= 0.046) and ↓

fish (p= 0.030) according to MedDiet score

Barber et al. (87) Urine — — ↑ (1.5-fold) after

MedDiet

— ↑ deoxycholate glucuronide (2.1-fold),

5-hydroxyindole (2-fold),

L-aspartyl-L-phenylalanine (2.4-fold) after

MedDiet

Barrea et al., (123) Blood (serum) — — ↓ (p < 0.001M; p=

0.002 F) with MedDiet

adherence

— —

Barrea et al. (125) Blood (plasma) — — ↓ (p < 0.001) with

MedDiet adherence

— —

Barrea et al. (127) Blood (serum) — — ↓ by association with

MedDiet adherence

— —

Bourdeau-Julien

et al. (65)

Blood (serum) ↑ valerate after CanDiet vs. first

MedDiet (p < 0.01); ↓ valerate

after second MedDiet vs. CanDiet

(p < 0.05); ↑ BCFAs isobutyrate &

isovalerate after CanDiet vs. first

MedDiet (p < 0.05); ↓ BCFAs

isobutyrate & isovalerate after

second MedDiet vs. CanDiet (both

p < 0.05)

— — — ↑ ECs after first MedDiet vs. baseline (DHEA, p <

0.01; EPEA, p < 0.05; 2-DHG, p < 0.01; 2-EPG, p <

0.01); ↓ ECs after CanDiet vs. first MedDiet

(DHEA, p < 0.001; EPEA, p < 0.01; OEA, p < 0.05;

2-DHG, p < 0.001; 2-EPG, p < 0.001; 2-OG, p <

0.01); ↑ ECs after second MedDiet vs. CanDiet

(DHEA, p < 0.001; EPEA, p < 0.05; OEA, p < 0.01;

2-DHG, p < 0.001; 2-EPG, p < 0.01; 2-OG, p <

0.05)

De Filippis et al.

(128)

Feces (SCFA), urine

(TMAO)

↑ butyrate, propionate, acetate (p

< 0.01), and ↓ valerate (p < 0.05),

with high MedDiet adherence vs.

low MedDiet adherence

— ↓ TMAO in vegetarian

and vegan diets

compared to omnivores

— Several significant metabolites in Table S3 of

original article

Forteza et al. (66) Blood (plasma) ↑ acetic acid and ↓ isovaleric acid

after MedDiet before aerobic

exercise (p < 0.05)

— — — ↑ EC OEA after MedDiet before and during

exercise; ↑ ECs AEA (p < 0.05) and EPEA (p <

0.001) after MedDiet immediately after exercise

Galie et al. (130) Blood (plasma) — TLCA and GUDCA

positively associated with

MedDiet; TCA

negatively associated

with MedDiet

TMA positively

associated with MedDiet

— See Table 2 in original article for all 65 metabolite

results

(Continued)
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TABLE 2 (Continued)

References Specimen
type

Direction of change in metabolites relative to Med-like diet adherence

SCFA/BCFA BA TMAO LPS Other metabolites

Garcia-Mantrana

et al. (132)

Feces ↑ acetate+ propionate+ butyrate

(p= 0.023) with MedDiet; ↑

acetate (p= 0.006; p= 0.001),

propionate (p= 0.016; p= 0.004),

and total SCFA (p= 0.020; p=

0.003) with vegetal proteins and

polysaccharides, respectively

— — — —

Ghosh et al. (42) Blood (plasma) ↑ SCFAs & BCFAs inferred with

positive microbiome changes

↑ CA (p < 0.006),

GCDCA (p < 0.006) and

↓ CDCA (p < 0.03) with

MedDiet OTUs

— — —

Griffin et al. (134) Blood (serum) — — ↔ TMAO, choline,

carnitine, betaine,

γ-butyrobetaine after

MedDiet and healthy

eating

LPB positively associated with

TMAO

—

Guasch-Ferre et al.

(136)

Blood (plasma) — — ↑ after MedDiet+

EVOO;↔ after MedDiet

+ Nuts

— —

Gutierrez-Diaz

et al. (137)

Feces ↑ butyrate (p= 0.018) &

propionate (p= 0.034), in MDS ≥

4 vs. MDS < 4

— — — —

Haskey et al. (55) Feces ↑ total SCFAs (p= 0.01), acetic

acid (p= 0.03), butryric acid (p=

0.03), and valeric acid (p= 0.008)

after MedDiet vs. CanDiet

— — — ↓ FCP after MedDiet vs. CanDiet (p= 0.01); ↑ fecal

sIgA after MedDiet vs. baseline (p= 0.004)

Krishnan et al.

(141)

Blood (serum) — — ↑ after MedDiet+ 500 g

red meat vs. MedDiet+

200 g red meat (p <

0.001), but↔ choline,

betatine, and carnitine

— —

Maldonado-

Contreras et al.

(142)

Feces ↓ acetate (p= 0.08) and butyrate (p

= 0.08) with ↑MedDiet score

— — — —

Meslier et al. (91) Feces (SCFA, BAs),

blood/plasma

(TMAO, carnitine,

choline, creatinine,

betaine), urine

(TMAO, carnitine,

choline, creatinine,

betaine)

↔ acetate, butyrate, and

propionate after MedDiet; ↓

BCFAs at 4 weeks (valerate, p=

0.04; 2-methylbutyrate, p= 0.003)

or 8 weeks (isovalerate, p= 0.004;

isobutyrate, p= 0.007) after

MedDiet

↓ total BAs (p= 0.0001),

total 1st BAs (p= 0.04),

total 2nd BAs (p=

0.0009) DCA, and LCA

after 8 weeks of MedDiet

↓ carnitine after

MedDiet (p < 0.001)

— ↑ Total urolithins (p= 0.033) and

urolithin-A-glucuronide (p= 0.025) after MedDiet

(Continued)
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TABLE 2 (Continued)

References Specimen
type

Direction of change in metabolites relative to Med-like diet adherence

SCFA/BCFA BA TMAO LPS Other metabolites

Mitsou et al. (144) Feces ↑ acetate (p= 0.009) and ↓

valerate (p= 0.014) with high

MedDiet adherence

— — — —

Nagpal et al. (146) Feces ↑ butyrate (p < 0.05) after MMKD — — — —

Pagliai et al. (90) Feces ↑ propionic acid (p= 0.034) in

MedDiet vs. vegetarian diet

— — — Propionate negatively correlated with IP-10, IL-12

(p < 0.05), and VEGF (p < 0.01); acetic acid

negatively correlated with IP-10, IL-10, IL-17 (p <

0.05), VEGF, and IL-12 (p < 0.01); butyric acid

negatively correlated with VEGF, MCP-1 (p <

0.05), IL-12 and IL-17 (p < 0.01); isovalerate with

IL-1RA (p < 0.05); isobutyric acid with IL-1RA and

MCP-1 (p < 0.05) after MedDiet

Park et al. (148) Plasma — — ↔ after Med-like vs.

baseline or high fat diet

— ↓ AA valine (p≤0.05) in Med-like diet compared to

high fat diet; ↑ valine (p= 0.004) and leucine (p=

0.01) with high fat diet vs. baseline

Pastori et al. (149) Blood (serum) — — — MedDiet score predictor for

log-LPS (p < 0.001); ↓ LPS with ↑

fruit (p= 0.009), ↑ legumes (p=

0.005) and ↓ trend meat (0.085)

↑ TxB2 with ↑MACE (p < 0.001); log-LPS (p <

0.001) and MedDiet score (p < 0.001) associated

with TxB2

Pastori et al. (150) Blood (plasma) — — — ↑ with ↓MedDiet adherence by

association

↑ PCSK9 with ↓MedDiet adherence (p= 0.001),

especially ↓ EVOO (p= 0.001) and ↓moderate

wine consumption (p= 0.007)

Pignanelli et al.

(151)

Plasma — — — — p-cresyl sulfate, hippuric acid, indoxyl sulfate,

p-cresyl glucuronidate, phenyl acetyl glutamine,

and phenyl sulfate did not correlate with MedDiet

Quercia et al. (153) Feces ↔ butyrate (p= 0.2), propionate

(p= 0.5), or acetate (p= 0.5) with

MedDiet vs. baseline; ↑ butyrate,

propionate, and acetate with vegan

diet vs. baseline (all p < 0.01)

— — — —

Ruiz-Saavedra et al.

(154)

Feces butyric acid (p < 0.012), propionic

acid (p= 0.001), and acetic acid (p

< 0.001) positively associated with

MMDS

— — — ↑ IL-8 with ↑ scores on MedDiet indices (rMed, p

= 0.018; MMDS, p= 0.017)

(Continued)
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TABLE 2 (Continued)

References Specimen
type

Direction of change in metabolites relative to Med-like diet adherence

SCFA/BCFA BA TMAO LPS Other metabolites

Seethaler et al. (158) Feces (SCFAs),

blood/plasma (LBP)

↑ propionate (q < 0.001,+19%), ↑

butyrate (q < 0.001,+44%) after

MedDiet vs. baseline; ↑ propionate

(p= 0.09) after MedDiet vs.

control

— — ↓ LBP (q < 0.001,−6%) after

MedDiet vs. baseline

↓ zonulin (q < 0.001,−30%) after MedDiet vs.

baseline

Seethaler et al. (161) Feces (SCFAs),

blood/plasma (LBP)

NR — — ↓ LBP (p < 0.001) after MedDiet

vs. baseline; ↓ LBP (p= 0.017)

after MedDiet vs. control

↓ zonulin (p < 0.01) after MedDiet vs. baseline

Shankar et al. (162) Feces ↑ propionate (p < 0.05) in

Egyptian vs. American

↓ BAs (p < 0.05) in

Egyptian vs. American

↓ choline (p < 0.01) in

Egyptian vs. American

— ↑ nucleotides [hypoxanthine (p < 0.01) and uracil

(p < 0.05)] in Egyptian; ↓ amino acids [aspartate,

isoleucine, leucine, lysine, tyrosine, valine (all p <

0.01)] in Egyptian

Shoer et al. (163) Blood (serum) ↑ butyrate-related compounds

after PPT diet

— — — ↑ 10 uncharacterized biochemicals, 7 lipids, 6 AA, 1

xenobiotic (3-bromo-5-chloro-2,6-

dihydroxybenzoic acid), 1 peptide (HWESASXX), 1

nucleotide (dihydroorotate) and bilirubin after

MedDiet

Strauss et al. (63) Feces ↑ valerate (p= 0.05),↔ acetate,

propionate, and butyrate after

MedDiet vs. habitual diet

↑ GCDCA (p= 0.02),↔

CA, CDCA, and DCA

after MedDiet vs.

habitual diet

— — ↓ FCP associated with ↑MedDiet score (p= 0.004)

Tanaka et al. (165) Blood (plasma) — DCA (MDS, p= 0.04;

MIND, p= 0.004);

GUDCA (MDS, p=

0.04; MIND, p= 0.001);

GCDCA (MIND, p=

0.05); GDCA (MIND, p

= 0.04) with MedDiet

indices Other NS bile

acids reported in

Table S4 within the

original article.

Not correlated with MDS — ↑ or ↓ TG with ↑MedDiet adherence

Vitale et al. (167) Blood (serum) ↑ butyric acid IAUC in MedDiet

group (p= 0.019)

— — — ↓ LDL-cholesterol in MedDiet group (p= 0.04)

Zhu et al. (168) Blood (plasma) — No significant changes No significant changes — kynurenine to tryptophan ratio ↓ after FF diet and

↑ after MedDiet (p= 0.005); ↑ indole-3-lactic acid

(p= 0.003) and indole-3-propionic acid after

MedDiet

↑, increase; ↓, decrease; ↔, no change; SCFA, Short Chain Fatty Acid; BA, Bile Acid; BCFA, Branch Chain Fatty Acid; TMAO, Trimethylamine N-oxide; LPS, lipopolysaccharide; FA, Fatty Acid; MedDiet, Mediterranean Diet; CanDiet, Canadian Diet;

EC, Endocannabinoid; DHEA, N-docosahexaenoyl-ethanolamine; EPEA, N-eicosapentaenoyl-ethanolamine; EPG, 1/2-eicosapenaenoylglycerol; OEA, N-oleoyl-ethanolamine; DHG, 1/2-docosahexaenoyl-glycerol; OG, 1/2-oleoyl-glycerol; AEA, anandamide;

CA, cholic acid; GCDCA, glycochenodeoxycholic acid; CDCA, chenodeoxycholic acid; LPB, Lipopolysaccharide Binding Protein; EVOO, Extra Virgin Olive Oil; LDL, Low-Density Lipoprotein; PPT, Personalized Postprandial Glucose-Targeting; MCP-1,

Monocyte Chemoattractant Protein-1; PCSK9, Proprotein Convertase Subtilisin/Kexin type 9; FCP, Fecal Calprotectin; DCA, Deoxycholic Acid; MDS, Mediterranean Diet Score; MIND, Mediterranean-DASH Intervention for Neurodegenerative Delay; GUDCA,

Glycoursodeoxycholic Acid; GDCA, Glycodeoxycholic Acid; TLCA, Taurolithocholic acid; TCA, Taurocholic acid; TG, Triglyceride; IAUC, Incremental Area Under the Curve; FF, Fast Food; MMDS, Modified Mediterranean Diet Score; rMED, relative Mediterranean

Diet Score; MACE, major adverse cardiovascular event; TxB2, urinary 11-dehydro-thromboxane B2; AA, amino acids; MMKD, Mediterranean Ketogenic diet; OTU, operational taxonomic unit.
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TABLE 3 Results summary of microbiome and other changes in recent clinical studies investigating associations between gut-derived metabolites and the MedDiet.

Reference Microbiome composition Other health-related changes Main results

André et al. (121) — — Greater adherence to Mediterranean and prudent diets associated with

lower circulating 3-OH FAs.

Baratta et al. (41) — ↑ sNox2-dp in NAFLD (MASLD); ↑ sNox2-dp= ↑ GGT,

AST, ALT (all p < 0.001);

In NAFLD (MASLD) patients, highest sNox2-dp tertile associated with

highest LPS tertile and low adherence to MedDiet (esp. wine and fish).

Barber et al. (87) ↑ Agathobaculum spp., Anaerostipes spp., Anaerostipes hadrus,

Agathobaculum butyriciproducens with MedDiet

↑ flatulence (p= 0.048), borborigmi (p= 0.016), stool

consistency (p= 0.014), stool weight (p < 0.001), colonic

content (p < 0.001) after MedDiet

MedDiet, associated with higher gas and larger colonic content,

changed microbial metabolism, but less dramatically in volunteers with

higher beta-diversity.

Barrea et al. (123) — TMAO positively correlated to BMI, WC, total cholesterol,

LDL cholesterol, TG (each p < 0.001)

Women, who consumed more plant protein and ω-3 PUFA, had

higher adherence to MedDiet and lower TMAO levels than men.

Barrea et al. (125) — ↑ TMAO with ↑ BMI and ↓ physical activity (each p <

0.001); ↑ TMAO with evening chronotype (p < 0.001)

Morning chronotype had significantly lower BMI, WC, TMAO levels,

and highest adherence to MedDiet.

Barrea et al. (127) — ↑ TMAO in HS (p < 0.001) and ↓MedDiet score in HS (p=

0.002)

HS patients, esp. with highest disease severity, had increased

inflammation, TMAO levels, and lower adherence to MedDiet

compared to healthy controls.

Bourdeau-Julien et al. (65) ↑ Bacteroides spp., Butyricoccus spp., Coprococcus.1 spp.,

Lachnoclostridium spp., Lachnospiraceae UCG 001 spp.,

Parasutterella spp., and Lachnospira spp. with MedDiet

— Lead-in MedDiet and CanDiet both showed immediate and reversable

metabolite (SCFA, BCFA, EC) changes, which correlated with changes

in gut microbiota composition. BCFAs more strongly reduced after

second MedDiet. Higher initial gut microbiota diversity resulted in

more stable microbiota response.

De Filippis et al. (128) ↑ Prevotellaceae with plant-based diets; ↑ Bacteroidetes in vegans

and vegetarians compared with omnivores (p < 0.05); ↑ F/B ratio

in omnivores

— Consumption of plant-based diets, associated with high MedDiet

adherence, increased levels of SCFA and altered gut microbiota

composition.

Forteza et al. (66) ↑ Oscillospiraceae (p= 0.039) and Prevotellaceae (p= 0.047) after

MedDiet vs. CanDiet

— Consumption of short-term MedDiet vs. CanDiet leads to differential

response in EC and SCFA metabolites before or immediately following

acute maximal aerobic exercise.

Galie et al. (130) Cluster of Lachnospiraceae spp., Ruminococcaceae UCG002 spp.,

Lachnoclostridium spp., and Prevotellaceae positively associated

with changes in metabolites C16-OH, C12:0, C12-OH, PC35:1,

PC40:6, TGs 56:6, 46:7, 56:5, and ChoE 20:5, while negatively

associated with changes in phosphoethanolamine and taurine

↓ glucose (p= 0.02), insulin (p= 0.01), and HOMA-IR (p=

0.01) after MedDiet

MedDiet, rather than consumption of nuts in context with a

non-MedDiet, was associated with a plasma metabolic profile related

to metabolic disease improvements.

Garcia-Mantrana et al. (132) ↑ Catenibacterium spp. with high MedDiet adherence; ↑

Butyricimonas spp., Desulfovibrio spp., and Oscillospira spp. with

BMI < 25; ↓ trend F/B ratio (p= 0.057) with higher MedDiet

score

— Dietary habits, adherence to MedDiet pattern, and BMI affect gut

microbiome and metabolite changes in healthy adults. MedDiet

adherence associated with increased SCFA, Catenibacterium spp., and

higher intake of vegetable proteins and polysaccharides.

Ghosh et al. (42) ↑ Faecalibacterium prausnitzii, Roseburia spp. (R. hominis and

some unclassified), Eubacterium spp. (E. rectale, E. eligens, E.

xylanophilum), Bacteroides thetaiotaomicron, Prevotella copri and

Anaerostipes hadrus with high MedDiet adherence

↓ Frailty with MedDiet (p < 0.06); ↓ frailty with ↑

DietPositive taxa (p < 0.05); ↓ hsCRP and IL-17 with

DietPositive taxa

Adherence to MedDiet resulted in a changed gut microbiota and

metabolites, reduced frailty, improved cognitive function, and

negatively correlated with markers of inflammation.

(Continued)

F
ro
n
tie

rs
in

N
u
tritio

n
1
7

fro
n
tie

rsin
.o
rg

https://doi.org/10.3389/fnut.2024.1392666
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


F
lo
rk
o
w
sk
i
e
t
a
l.

1
0
.3
3
8
9
/fn

u
t.2

0
2
4
.1
3
9
2
6
6
6

TABLE 3 (Continued)

Reference Microbiome composition Other health-related changes Main results

Griffin et al. (134) ↑ Akkermansia mucinophilia in colon biopsies with ↓ TMAO,

choline, and betaine

— No significant changes in TMAO or TMAO precursor ratios in

MedDiet or Healthy Eating diet groups. Relative abundance of

Akkermansia mucinophilia in colon biopsies negatively correlated with

TMAO and some precursors (betaine, choline, carnitine).

Guasch-Ferre et al. (136) — ↑ choline (p < 0.001) in cases vs. controls; baseline B/C ratio

inversely associated with CVD; baseline choline metabolite

score associated with a 2.21-fold higher risk of CVD across

extreme quartiles (p < 0.001 for trend) and a 2.27-fold

higher risk of stroke (p < 0.001 for trend)

Baseline B/C ratio negatively associated with CVD while baseline

choline associated with increased risk of CVD and stroke. MedDiet

associated with lower risk of CVD compared to control diet. No

significant correlations between metabolites and CVD found after

1-year MedDiet intervention.

Gutierrez-Diaz et al. (137) ↑ Bacteroidetes (p= 0.001), Prevotellaceae (p= 0.002), and

Prevotella spp. (p= 0.003); ↓ Firmicutes (p= 0.003) and

Lachnospiracea (p= 0.045) with MDS ≥ 4 vs. MDS < 4

— HighMedDiet score associated with higher abundance of Bacteroidetes

and Prevotellacea, and increased fecal SCFAs, propionate and butyrate.

Haskey et al. (55) ↑ Alistipes finegoldii, Flavonifractor plautii, Ruminococcus bromii

after MedDiet

— MedDiet lowered FCP and increased SCFAs compared to CanDiet.

MedDiet associated with gut microbiota species known to be

protective against colitis (Alistipes finegoldii and Flavonifractor plautii)

and promote the production of SCFAs (Ruminococcus bromii).

Krishnan et al. (141) — TMAO positively associated with HOMA-IR, a surrogate for

insulin resistance (p= 0.036)

TMAO levels reduced when lower amounts of red meat (200 vs. 500 g)

consumed with MedDiet.

Maldonado-Contreras et al.

(142)

↑ trend Prevotella copri in individuals with higher 18:3 alpha

linolenic fatty acid intake (p= 0.09); ↑ Enterobacteriales in T2D

(p= 0.01)

butyrate (p= 0.03), propionate (p= 0.02), acetate (p= 0.04)

correlated with % calories from fat

Caribbean Latino adults showed poor adherence to MDS or HEI-2015.

Microbiome samples clustered into two groups depending on

Prevotella copri abundance, which was related to higher alpha linolenic

fatty acid intake. Individuals with T2D had higher Enterobacteriales

and trend lower SCFAs.

Meslier et al. (91) ↑ Faecalibacterium prausnitzii, Roseburia spp., and

Lachnospiraceae after MedDiet

↓ total cholesterol 4 weeks after MedDiet (p < 0.05) MedDiet increased fiber and reduced animal protein intake, reduced

levels of carnitine, cholesterol, and BAs. Shotgut metagenomics

showed MedDiet increased abundance of fiber-degrading

Faecalibacterium prausnitzii and genes linked to butyrate metabolism.

Mitsou et al. (144) ↓ Escherichia coli (p= 0.022), ↑ bifidobacteria:E. coli ratio (p=

0.025), and ↑ Candida albicans (p= 0.039) with high MedDiet

adherence

↑ total number of evacuations (p= 0.028), GI pain (p=

0.029), and bloating (p= 0.028) with high MedDiet

adherence

High MedDiet adherence associated with lower Escherichia coli counts,

an increased bifidobacteria: E. coli ratio, increased levels of Candida

albicans, higher molar ratio of acetate, and more pronounced GI

symptoms.

Nagpal et al. (146) ↓ Bifidobacteriaceae and Bifidobacterium spp. after MMKD; ↑

Akkermansia spp., Verrucomicrobia, and Verrumicrobiaceae after

MMKD

In adults with mild cognitive impairment eating the MMKD,

↑ Tenericutes and Enterobacteriaceae= ↓ CSF Aβ42, ↑

Lachnospiraceae, Rikenellaeae, and Parabacteroides= ↑ CSF

Aβ42, and ↑ Sutterella andMollicutes= ↑ and ↓ tau-p181,

respectively

MMKD can modulate the gut microbiome and serum metabolites in

those at risk for Alzheimer’s disease. These changes are associated with

improved Alzheimer’s disease biomarkers in cerebrospinal fluid.

Pagliai et al. (90) ↑ Enterorhabdus spp. (p= 0.002), Lachnoclostridium spp. (p=

0.039), and ↓ Parabacteroides spp. (p= 0.037) pre- vs.

post-MedDiet; ↑ Clostridium sensu stricto (p= 0.005),

Enterorhabdus spp. (p= 0.003), Veillonella spp. (p= 0.029), and

↓ Anaerostipes spp. (p= 0.048) after MedDiet vs. vegetarian diet

Anaerostipes positively correlated with LDL cholesterol and

total cholesterol; HDL-cholesterol and IFN-γ∗ negatively

correlated with Enterorhabdus spp.; Parabacteroidetes spp.

positively correlated with MCP-1; Lachnoclostridium spp.

related to negative variations of IL-6, AST∗ , ALT and

vitamin B12 (p < 0.05 or ∗p < 0.01)

MedDiet and vegetarian diet changed some gut microbiota

composition and SCFA propionate differentially. After MedDiet,

variations of SCFAs negatively associated with some inflammatory

cytokines (VEGF, MCP-1, IL-17, IP-10, and IL-12).

(Continued)
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TABLE 3 (Continued)

Reference Microbiome composition Other health-related changes Main results

Park et al. (148) N/A ↑ TMAO with high fat diet vs. low fat diet (p= 0.01) Baseline diet and 4 -week low-fat diet reduced TMAO and BCAA levels

compared to high-fat. Few changes in moderate fat Med-like diet.

Pastori et al. (149) — ↑ LPS with ↑MACE (p= 0.021), ↓ survival free of MACE (p

= 0.001, 3rd vs. 1st LPS tertile); Log-LPS is a predictor of

MACE (p= 0.009)

Log-LPS, age, and previous CV or cardiac events were predictors of

MACE. MedDiet score (esp. higher intake of fruits and legumes)

significantly affects circulating log-LPS.

Pastori et al. (150) — ↑ of LPS (p < 0.001) and ↑ sNox2-dp (p < 0.001) with

PCSK9 above the median, and these were directly correlated

LPS and PCSK9 levels significantly correlated. LPS, sNox2-dp, and

high adherence to MedDiet associated with PCSK9 above the median

range. Olive oil and wine intake negatively correlated with PCSK9.

Patients with high levels of LPS and PCSK9 had increased incidence of

CV events.

Pignanelli et al. (151) — ↑ TMAO associated with ↓ eGFR (p= 0.02) or ↑ renal

impairment

Impaired renal function associated with higher plasma metabolites and

higher carotid plaque burden. No correlations detected between

plasma metabolites and MedDiet score.

Quercia et al. (153) Not significant — Gut microbiome profiles did not differ between 3-day vegan (Ma-Pi 2)

and MedDiet group. SCFA levels increased only with vegan diet.

Ruiz-Saavedra et al. (154) ↑ Faecalibacterium prausnitzii levels positively associated with

DII (p= 0.030), HEI (p= 0.035), DQI-I (p= 0.047), and MMDS

(p= 0.044), while Lactobacillus spp. levels negatively correlated

with AHEI (p= 0.027) and MMDS (p= 0.012)

— DII, HEI, DQI-I, and MMDS were positive predictors of

Faecalibacterium prausnitzii. AHEI and MMDS were negatively

associated with Lactobacillus spp. HEI, AHEI, and MMDS positively

associated with SCFA. Lower IL-8 detected with higher MedDiet

scores.

Seethaler et al. (158) — ↓WC (p= 0.005), ↓WHR (p= 0.07) after MedDiet vs.

control

High MedDiet adherence led to decreased LPB and zonulin levels and

increased SCFAs. Propionate and butyrate identified as mechanistic

links between diet and intestinal barrier integrity.

Seethaler et al. (161) — ↑ n-3 PUFA, n-3 DHA (p < 0.001) with MedDiet adherence MedDiet adherence associated with increased n-3 DHA levels and

decreased LBP and zonulin levels, however the effect of n-3 DHA on

intestinal barrier integrity was mild compared to SCFAs reported

previously.

Shankar et al. (162) ↑ Prevotella spp. (p < 0.01), Gammaproteobacteria,

Methanobacteria, Megasphaera spp. (p < 0.05), Eubacterium spp.

(p < 0.01),Mitsuokella spp. (p < 0.01), Catenibacterium spp. (p <

0.01), and Succinivibrio spp. (p= 0.028) in Egyptian; Egyptian=

Prevotella spp. enterotype; American= Bacteroides spp.

enterotype

— The Egyptian (MedDiet pattern) gut had higher levels of SCFAs,

increased prevalence/proportions of microbial polysaccharide

degradation-encoding genes/genera and belonged to Prevotella spp.

enterotype compared to American gut.

Shoer et al. (163) ↑microbiome diversity after MedDiet (p < 0.05) and PPT diet (p

< 0.01); ↑ Ruminococcaceae, Clostridiaceae, Clostridium spp.

CAG 122 (SGB_4659, p= 0.01), Clostridium spp. (SGB_4714, p=

0.01), Faecalibacterium prausnitzii (SGB_15332, p= 0.03;

SGB_15333, p= 0.008), and ↓ Eubacterium ventriosum after

MedDiet

↑ cytokines [Axin 1 (AXIN1) and Sirtuin 2 (SIRT2)] after

MedDiet

PPT diet had larger impact on microbiome and metabolites (several

linked to butyrate metabolism) compared to MedDiet. Oral

microbiome found to be genetically more dynamic than the gut.

Strauss et al. (63) ↑ Roseburia spp., Lachnospiraceae spp. and Bifidobacterium spp.

with ↓ FCP; ↑ Bacteroides fragilis, Ruminococcus spp., and

Eikenella corrodens with ↑ FCP levels; ↑ Faecalibacterium

prausnitzii (p= 0.02), Dorea longicatena (NS), and Roseburia

inulinivorans (p= 0.002) mediators between ↑MedDiet and ↓

FCP

↑ benzyl alcohol, 3-hydroxyphenylacetate,

3-4-hydroxyphenylacetate and phenylacetate as mediators

between ↑MedDiet and ↓ FCP

MedDiet intervention significantly increased some SCFA and BA

compared to habitual diet. Identified three taxa and four metabolites as

strong mediators between MedDiet and fecal calprotectin.

(Continued)
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bloodstream (12). While dietary fiber has been shown to promote

weight loss and improve glycemic control, the complete biological

role of SCFAs in this process remains unclear (83). Some SCFAs

have been shown to beneficially affect host metabolism through

secretion of gut hormones, such as glucagon-like peptide-1 (GLP1)

and peptide YY, that affect appetite, reduce inflammation, and

increase fat oxidation, as reviewed by Hernandez et al. (169).

Studies in mice, which allow experimental designs that cannot be

performed in humans, have added greatly to our understanding

of diet contributions to gut microbiota-derived metabolic changes.

Recently, Bachem et al. showed the impact of gut microbiota

on the fate of CD8+ T-cells through the production of SCFAs

in mice consuming a high-fiber diet (Figure 1) (171). SCFA

supplementation also restored the number of enteric neurons that

were depleted following antibiotic treatment in mice (177). In mice,

reduction of SCFAs by a fiber-deficient diet led to alterations of the

gut microbiota, increased intestinal permeability, inflammation,

and cognitive impairment. Furthermore, SCFA supplementation

improved these deficits (178). These recent studies support a

role for SCFAs in modulation of immunity, inflammation, and

potentially obesity.

Dietary fiber that affects production of SCFAs can come from

many sources, but mostly fruits, vegetables, and whole grains,

which are staples of a MedDiet. Several recent clinical studies

have shown that there is increased production of some SCFAs,

based on blood and/or feces measurements (see Table 2), following

MedDiet intervention in healthy volunteers (66) or individuals

with disorders such as ulcerative colitis (63), intestinal barrier

impairment (158), overweight, or obesity (90, 167). Observational

studies have also shown that better adherence to the MedDiet has

been associated with increased levels of SCFAs (128, 132, 144).

Another study of individuals who followed a hypocaloric MedDiet

(n= 21), a very-low-calorie ketogenic diet (n= 18) and volunteers

who underwent sleeve gastrectomy bariatric surgery (n = 22)

showed MedDiet was enriched in several pathways related to SCFA

fermentation (179). Following MedDiet intervention in volunteers

with overweight, SCFAs were negatively correlated with changes

in some inflammatory cytokines, including VEGF, MCP-1, IL-17,

IP-10, and IL-12 (90). Meanwhile, a few studies have shown no

significant changes (91) or decreases (65) in SCFAs following a

MedDiet. Tracking the changes in specific SCFAs may be useful to

our understanding as future studies continue.

Due to resource constraints, many intervention studies are

limited to a very short time interval with the longest dietary

intervention investigating changes in SCFAs described above

spanning 3 months. This short time frame sets a significant

limitation on the conclusions that can be drawn from the studies in

terms of generalizing to a stable effect over years. In a small study

of 21 healthy-weight individuals who consumed a MedDiet for 3

days, then a Canadian diet [reflecting the average Canadian dietary

intake, which would be considered a Western diet (180)] for 13

days, followed by a MedDiet for an additional 3 days, circulating

SCFAs and branched-chain fatty acids were not significantly

altered by the first MedDiet intervention, but propionate, valerate,

isobutyrate, and isovalerate were increased by the Canadian diet,

then decreased after the second MedDiet (65). While the data

show that circulating SCFA concentrations can be altered following

MedDiet, and changes can occur over a short period of time, one
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must be careful about extrapolation of results from a few days to

an effect that might occur after years of following a specific dietary

pattern. Additional interventional long-term studies are needed to

resolve discrepancies between study results and to assess whether

these changes remain stable over time.

A systemic meta-analysis of 34 animal studies showed that diets

rich in anthocyanin-rich fruits and vegetables significantly reduced

the Firmicutes/Bacteroides ratio and increased SCFA production in

rodents. They found that higher production of acetic acid, butanoic

acid, and propionic acid was observed with longer periods of

dietary intervention (≥4 weeks) and higher doses of anthocyanins.

Anthocyanin supplementation had the greatest effect on acetic

acid concentration in high fat/cholesterol diet models, while the

greatest effect on butanoic acid and propionic acid were in HFD-

induced obesity models (181). These studies provide an initial

understanding of the role of specific components of the MedDiet

in modulating the gut microbiota and gut-derived SCFAs.

Because humans with obesity have been reported to display

excessive levels of fecal SCFAs (potentially due to lack of ability

to metabolize and absorb these metabolites), as reviewed in

(11, 112, 182), a strategy was proposed to combat obesity by

altering the gut microbiota with a goal to modulate the number

of SCFA-metabolizing or SCFA-producing bacteria through a

dietary change. In a small study of 20 elderly women, obesity

was associated with an increase in pro-inflammatory Collinsella

spp. and Streptococcus spp. There was also a decrease in

SCFA-producers, including Lachnospiraceae and Ruminococcaceae.

Relative abundance of Collinsella spp. was reduced following both

a hypocaloric MedDiet for 15 days and a hypocaloric MedDiet

enriched with a probiotic mixture for 15 days (and both included

an individual-based exercise regimen) (88). These studies make

associations between MedDiet, SCFA, inflammation, and obesity.

In a sub-study of the PREDIMED trial in volunteers with

overweight/obesity, an energy-restricted MedDiet resulted in

weight loss and changes in the gut microbiota after a 1-year

intervention. While SCFAs were not measured directly, there

was an increase in some SCFA-producing microbes, including

Lachnospira spp. and Lachnospiraceae NK4A136 (57). When

selecting subjects with the highest fecal butyrate increase at

4 weeks after MedDiet initiation, higher relative abundances

of Faecalibacterium prausnitzii and Lachnospiraceae family

were also observed (91). Likewise, the Obekit study found

SCFA-producing bacteria, including Bifidobacterium animalis,

Oscillibacter valericigenes, Oscillospira (Flavonifractor) plautii,

Ruminococcus bromii, Roseburia faecis, and Paraprevotella clara,

in a northern-Spanish population with overweight/obesity and

high MedDiet adherence (89). While our discussion is focused

on the MedDiet, many studies have combined caloric restriction

with the MedDiet, so interpretation of results cannot distinguish

the contribution of each of these two variables in many cases.

However, it is evident that diets rich in fiber, flavonoids, and

polyphenols, such as the MedDiet, are shown to impact the gut

microbiota composition, and importantly, increase the number

of bacteria with the ability to produce and metabolize SCFAs.

The studies summarized in Table 2 report circulating and/or

fecal SCFA levels. One cautionary note derives from a study

by Farhat et al. that demonstrated poor correlation between

serum and fecal SCFAs, concluding that one is not a good

proxy for the other (183). In summary, many studies associate

a MedDiet with an increase in SCFAs, and mechanisms are

proposed by which SCFAs modulate immunity/inflammation;

however, results are not entirely consistent across studies, so work

is ongoing.

5.2 Bile acids

BAs, which are secreted into the intestine in the presence of fats

as part of the digestive process, are generated from dietary lipids,

cholesterol, and fat-soluble vitamins in hepatocytes via two main

synthetic pathways. Primary BAs are stored in the gallbladder and

secreted in the gut after conjugation. Secondary BAs are generated

via further interaction of primary BAs with the gut microbiome.

Similar to SCFAs, BAs are critically important in gut physiology,

and secondary BAs alter the gene expression of enterocytes and of

gut bacteria (184). Elevated secondary BAs in serum and feces have

been associated with increased inflammation. Secondary BAs act

as ligands for G-protein-coupled bile acid receptor 1 and farnesoid

X receptor (FXR), the activation of which mediates immunity

and promotes anti-inflammatory effects. Under normal conditions,

there is a balance between primary and secondary BAs; however,

this balance can be disrupted by gut microbiota dysbiosis (185).

While some mechanisms of BA metabolism are known and

can be reviewed here (186), others have yet to be explored. Hang

et al. showed that derivatives of the secondary BA lithocholic

acid (LCA), mediate host immune response by mediating T

helper cells expressing IL-17A (TH17) and regulatory T (Treg) cell

differentiation. Themetabolites 3-oxoLCA and isoLCAwere shown

to inhibit TH17 cell differentiation by binding to transcription

factor retinoid-related orphan receptor (ROR) γt (172, 173), while

production of mitochondrial reactive oxygen species by isoalloLCA

increased expression of FoxP3 and Treg cell differentiation (172)

(Figure 1). A diet of inulin fiber altered the composition of

mouse microbiota and lead to increased production of BAs,

which is presumed to have aided in the production of IL-33 and

activation of innate lymphoid cells and eosinophils to promote

type 2 inflammation (Figure 1). These affects were BA-dependent

because (1) depletion of the BA receptor FXR and (2) genetic

deletion of a BA-metabolizing enzyme abrogated these affects (174).

HFD-fed mice with obesity had significantly increased taurine-

conjugated BAs, but these affects were nearly abrogated in NLRP3-

deficiency (81). During the last several years, there have been

significant discoveries regarding the role of BAs in immunity

and inflammation; it is proposed that manipulation of the gut

microbiota, and thus of BA production, may be a useful approach

to treatment for obesity.

There is an interdependent relationship between the host

biological pathways and bacterial metabolism. The gut microbiome

has been shown to impact the chemistry of all organs, including

amino acid conjugations of host BAs (186). Conversely, BAs

have considerable effects on the structure of the gut microbial

community; they can stimulate the growth of microbes that

utilize BAs as an energy source and repress the growth of

microbes that are intolerant of its effects (184). A recent study

suggested that human gut bacteria from many families within
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FIGURE 1

Diagram of several of the proposed immune modulation pathways that incorporate the four gut microbiota-derived metabolites: SCFA, BA, TMAO,

and LPS, highlighting new findings from recent human and murine studies. (A) Production of SCFAs improves barrier function, Treg cell activation,

and anti-inflammatory e�ects, as reviewed in (24, 170). A murine study showed that by uncoupling the tricarboxylic acid cycle from glycolysis,

butyrate promotes the uptake and oxidation of fatty acids, leading to enhanced cellular metabolism and memory potential of activated CD8+ T-cells

(171). (B) Another murine study showed that derivatives of secondary bile acid LCA, 3-oxoLCA and isoalloLCA, were identified as T-cell regulators.

While 3-oxoLCA inhibited Th17 cell di�erentiation through binding to its main transcription factor, RORγt, isoalloLCA upregulates Treg cell

di�erentiation through the production of mitoROS, which increases FoxP3 expression (172). (C) Using murine models and in vitro studies with

bacteria derived from humans, several bacterial genera were identified as producers of 3-oxoLCA, including Gordonibacter pamelaeae P7-E3,

Eggerthella lenta P7-G7, Raoultibacter massiliensis P7- A2, Collinsella intestinalis P8-C1, Adlercreutzia equolifaciens P11-C8, and Clostridium

citroniae P2-B6. Similar to 3-oxoLCA, isoLCA inhibited Th17 cell di�erentiation through RORγt. Bacterial hydroxysteroid dehydrogenases convert

LCA to 3-oxoLCA and isoLCA (173). (D) Mice fed an inulin diet showed changes in the gut microbiota and BA production associated with type 2

inflammation in the intestine and lungs, including production of IL-33 and activation of group 2 innate lymphoid cells and eosinophilia (174). (E)

TMAO production induces NLRP3 inflammasome and caspase-1 activity leading to increased inflammation; long-term activation of these pathways

contributes to obesity, CVD, and T2D, as reviewed in (15). Interestingly, while dietary TMA disrupted BBB function and tight junction integrity, TMAO

enhanced BBB integrity and protected against inflammatory insult through tight junction regulator annexin A1 (175). (F) Generally, LPS binds TLR4

located on myeloid cells and adipocytes activating inflammatory pathways and causing disruption of the intestinal barrier as reviewed in (166, 176).

However, MedDiet adherence in human studies resulted in reduced levels of circulating LPS markers, reduced inflammation, and maintained

intestinal barrier integrity (158). Dashed arrows represent the outcome following blockage of LPS action. (G) As shown in Table 3, MedDiet alters the

gut microbiota in populations with obesity, including the change in prevalence of several taxa: Bacteroides spp. (42, 63, 65), Roseburia spp.

(42, 63, 91), Lachnospira spp. (63, 65, 91, 168), Ruminococcus spp. (42, 91, 137), Akkermansia spp. (54, 162, 167), and Faecalibacterium prausnitzii

(42, 91, 154, 163), and generally leads to increased bacterial diversity and a reduced Firmicutes/Bacteroides ratio, which were decreased and

increased with obesity, respectively, as reviewed in (11, 12). Image created with BioRender.com. 3-oxoLCA, 3-oxolithocholic acid; BAs, bile acids;

BBB, blood-brain barrier; CA, cholic acid; CRP, C-reactive protein; CVD, cardiovascular disease; F/B, Firmicutes/Bacteroidetes; FXR, farnesoid X

receptor; GRP, G-protein-coupled receptor; IL, interleukin; ILC2, group 2 innate lymphoid cells; isoalloLCA, isoallolithocholic acid; isoLCA,

isolithocholic acid; LCA, lithocholic acid; LPS, lipopolysaccharide; MCP, monocyte chemotactic protein; MedDiet, Mediterranean diet; mitoROS,

mitochondrial reactive oxygen species; MSC, mesenchymal stromal cell; NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells;

NLRP3, NOD-like receptor family pyrin domain-containing 3; RORγt, retinoid-related orphan receptor γt; SCFAs, short-chain fatty acids; T2D, type-2

diabetes; Th17, T helper cells expressing IL-17; TLR4, toll-like receptor 4; TMA, trimethylamine; TMAO, trimethylamine N-oxide; TNF-α, tumor

necrosis factor alpha; Treg, regulatory T cells.

the Actinobacteria and Firmicutes phyla produce 3-oxoLCA,

including Gordonibacter pamelaeae P7-E3, Eggerthella lenta P7-

G7, Raoultibacter massiliensis P7- A2, Collinsella intestinalis P8-C1,

Adlercreutzia equolifaciens P11-C8, and Clostridium citroniae P2-

B6 and these may work together to affect the immune system (173).

In a fecal microbiota transplant pilot clinical trial in volunteers

with obesity, BA profiles were modified to match that of

the lean donor after 12 weeks, including sustained reduction

in taurocholic acid, without any change in BMI (104). This

trial did not document any change in BMI, however the 12-

week time period may not have been long enough to capture

significant weight change and future studies with a longer trial

period are needed. A secondary analysis from fecal samples

collected from these volunteers identified Bacteroides ovatus and
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Phocaeicola dorei, which positively correlated with unconjugated

BAs, and Bifidobacterium adolescentis, Collinsella aerofaciens, and

Faecalibacterium prausnitzii, which positively correlated with

secondary BAs, as the bacterial species candidates that affected

gut BA metabolism (187). In addition to dietary components,

the caloric level of a diet must be considered, as calorie

restriction has been shown to decrease production of BAs (188,

189). Supplementation with non-12α-hydroxylated BAs in mice

increased thermogenesis and slowed weight gain (188). It is well-

known that BAs impact the gut microbiota and are influenced

by dietary changes, however, there are limited studies that

have incorporated the measurement of BAs in relation to the

MedDiet pattern.

The MedDiet pattern limits the amount and types of dietary

fat intake, and therefore has potential to change the amounts and

types of BAs produced by the host. InMedDiet intervention studies,

lower production of primary and secondary BAs has been observed

(42, 91). Fecal secondary BAs were significantly reduced by 4 weeks

and primary BAs were reduced by 8 weeks following initiation of

a MedDiet. Volunteers with the greatest reduction of total BAs

also had higher baseline levels of Bilophila wadsworthia, which

significantly decreased after 4 weeks (91). Although circulating BA

levels remained unchanged after just 4 days of aMedDiet compared

to a fast-food diet, the primary to secondary BA ratio was found

to positively correlate with Bifidobacterium spp. and negatively

correlate with Roseburia spp. (168).

Dietary diversity has been shown to inversely correlate with

several circulating secondary BAs (190), and a MedDiet tends to

have more diverse foods than a Western diet (191). A variety

of fruits and vegetables eaten on a MedDiet contain flavonoids,

which are shown to have anti-inflammatory properties, in part

through pathways involving BAs. Inmurine studies, administration

of the hops-derived prenylated flavonoid xanthohumol, and its

semi-synthetic derivative tetrahydroxanthohumol, altered the gut

microbiota and BA metabolism, and reduced adipose tissue

inflammation (192). The MedDiet also promotes intake of whole

grains compared to refined grains, as eaten in the typical Western

diet. Two secondary BAs were lowest in a diet of unrefined

carbohydrates composed from a high proportion of whole grain

foods (193). A single fat source alonemay not be enough to alter BA

production in humans, as consumption of virgin olive oil with or

without thyme did not alter BA production when volunteers were

asked to limit their polyphenol-rich food intake (96). Compared to

Western diet, MedDiet promotes reduced overall fat intake, with

primary intake of healthy fats like olive oil, resulting in lowered

production of secondary BAs, favoring reduced inflammation and

a decreased risk of obesity.

5.3 TMAO and its dietary precursors

TMAO is a product of choline, L-carnitine, betaine,

and ergothioneine via metabolism by the gut microbiota.

Trimethylamine is generated within the intestinal lumen by

enzymatic changes of the aforementioned precursors, absorbed

from the intestine, and transferred to the liver where flavin-

dependent monooxygenase isoforms 1 and 3 convert it to TMAO.

Dietary choline and L-carnitine are primarily found in animal

products while betaine is mostly from plants. Dietary ergothioneine

is found in both some animal (mostly liver and kidney organs)

and plant (including mushrooms and beans) products (83, 194).

Krueger et al. describe the negative effects of elevated TMAO

on adipose tissue as it relates to the discussion of obesity (108).

Increases in TMAO has been found to correlate with an increase in

BMI and visceral adipose and TMAO levels over 8.2µM predict

the occurrence metabolic syndrome (77). Obese mice that had a

TMAO-producing enzyme (FMO3) conferred protection against

obesity (109). TMAO also have an inflammatory effect through

activation of the NLRP3 inflammasome (195). However, similar to

other metabolites, the physiology of TMAO is complex, as TMAO

acts on multiple organs, with evidence of beneficial effects in the

brain. Long-term exposure to TMAO in mice protected the brain

from inflammatory challenge with LPS and reduced activation

of astrocytes and microglia (Figure 1) (175). While some studies

might paint TMAO as a negative factor andmany proposed healthy

diets eliminate or strictly limit red meat, the study by Hoyles et al.

suggest that the full picture of TMAO’s role in obesity and other

metabolic syndromes has yet to be understood.

Elimination of red meats, which are known to be a source of

dietary choline, is encouraged on the MedDiet. An observational

study comparing healthy adults found circulating levels of TMAO

negatively correlated with MedDiet score after adjusting for BMI,

physical activity, and total energy intake (123). A similar result

was seen in a separate study with a population of volunteers

including 30% with obesity, as those with a morning chronotype

(a term used to describe a person’s circadian preferences) had the

highest adherence to a MedDiet and the lowest circulating TMAO

concentrations (125, 127). Choline participates inmultiple essential

functions, including serving as a precursor of essential cellular

components, and is oxidized to betaine in the methylation cycle of

multiple pathways.

A lower betaine/choline (B/C) ratio is associated with features

of metabolic syndrome, so the B/C ratio is a biomarker of metabolic

function. A case-cohort study within the PREDIMED trial found

that volunteers assigned to the MedDiet intervention with a high

B/C ratio had a lower risk of CVD compared to controls with

a low B/C ratio (136). In contrast, a separate case-cohort of

the PREDIMED study, found that individuals with the highest

quartile of baseline TMAO and α-glycerophosphocholine had

a lower risk of T2D (196). One-year follow-up data from the

Spanish PREDIMED-Plus trial showed the greatest increase in

dietary choline or betaine intake was associated with improved

serum glucose and HbA1c levels, as well as reduced body weight

and total cholesterol in subjects with overweight/obesity (197). A

secondary analysis of a randomized clinical trial in adults with

overweight/obesity comparing the effects of consuming different

concentrations of unprocessed lean red meat, along with a

MedDiet, found that lower consumption of red meat resulted

in lower serum TMAO concentrations after 5 weeks (141). In

individuals with healthy weight, there was a 1.5-fold increase

in urinary TMAO after 2 weeks of a MedDiet compared to a

Western-type diet (87). However, another study involving adults

with overweight/obesity found urinary carnitine was significantly

reduced by 4 weeks following MedDiet intervention and remained

reduced at 8 weeks (91).
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Few studies have examined associations between TMAO,

MedDiet, and gut microbiome composition. Prevotella copri was

significantly lower in female non-human primates fed a MedDiet

compared to a Western Diet. Interestingly, among those fed a

Western-diet, those who had highest amounts of P. copri also

had elevated levels of urinary carnitine-based metabolites (18).

Another study found no difference in plasma TMAO levels, or

its precursors, before and after a 6-month MedDiet intervention

in healthy adults at risk of colon cancer. However, the relative

abundance of Akkermansia mucinophilia in colon biopsies was

modestly and inversely associated with TMAO, betaine, choline,

and carnitine at baseline, and this association was weaker at 6

months following MedDiet introduction (134).

A study involving children and adolescents with obesity found

that non-responders (defined as subjects whose BMI z-score was

maintained or increased) to nutritional or exercise regimens had

significantly increased choline and a decreased B/C ratio after

6 months. Increased choline was associated with Romboutsia

timonensis, Granulicatella adiacens, and Aminipila butyrica, while

decreased choline was associated with Enterocloster aldensis.

Anaerotignum faecicola and Bacteroides stercoris were associated

with a decreased B/C ratio. Volunteers with both increased choline

and a decreased B/C ratio had higher abundance of Romboutsia

timonensis, Granulicatella adiacens, and Pediococcus stilesii (198).

While it is exciting to see specific bacterial species identified as

playing a role in TMAO biology, future RCTs that examine the

effects of MedDiet on TMAO are required to draw conclusions on

this topic.

5.4 Lipopolysaccharide

LPS is also called endotoxin and is derived from Gram-

negative bacterial membranes. Previous studies have shown trends

toward lower endotoxemia in association with Mediterranean-

like diets, while Western-style diets are associated with increased

endotoxemia (149, 199, 200). A mechanism by which the MedDiet

may contribute to improved metabolic health is through the

modulation of the gut microbiota which can lead to a reduction

of metabolic endotoxemia (184). We are beginning to discover

some of the detailed physiology of LPS action. LPS has also

been shown to correlate with the incidence of cardiovascular

events, potentially through upregulation of proprotein convertase

subtilisin/kexin type 9 involved in a mechanism associated with

NADPH oxidase (Nox2)-related oxidative stress (150). Yogurt

supplementation, with associated probiotic bacteria, attenuated

metabolic endotoxemia and inflammation in mice with obesity

likely through reduced activation of the TLR4 signaling pathway

(201). In mice, HFD significantly increased levels of LPS

binding protein (LBP). However, depletion of the NLRP3

inflammasome using knock-out genotyping abrogated the levels of

LBP, implicating the NLRP3 inflammasome as a target to mediate

obesity-related inflammation (81).

The MedDiet is rich in polyphenols from various foods such

as berries, spices, nuts, cocoa, wine, and olive oil, among others.

Polyphenol-rich diets have beneficial effects against obesity-related

dysbiosis and circulating LPS levels. For example, isoflavones

showed reduced production of nitric oxide species and reduced

pro-inflammatory cytokine (TNF-α and IL-6) release in response

to LPS (202). In a cross-sectional study of older adults (60%

with overweight or obesity) greater adherence to Mediterranean-

like diets (MedDiet and prudent diet) were associated with

lower circulating 3-hydroxy fatty acids levels, a proxy of LPS

burden (121). As part of the Progression of Liver Disease and

Cardiovascular Disorders in Non-alcoholic Fatty Liver disease

(PLINIO) study, soluble Nox2-derived peptide, a marker of

systemic oxidative stress, and serum LPS, were higher in patients

with overweight/obesity and correlated with low adherence to

MedDiet (41). In the LIBRE study, women with intestinal barrier

impairment were allocated to followMedDiet (n=124) or a control

diet (n= 136) for 3 months. Adherence to MedDiet was associated

with decreased LBP and gut permeability (Figure 1) (158). While

circulating LPS is typically enhanced in obesity, the MedDiet may

help lessen these levels and reduce inflammation.

Olive oil is a critical component of the MedDiet and it has

been shown to be protective against inflammation. Virgin olive oil

phenolic extract was protective against LPS treatment in murine

and human brain cells by reducing activation of TLR4 and the

NLRP3 signaling cascade (80). Olive oil consumption was also

associated with a less significant increase in blood glucose, a more

marked increase in blood insulin and GLP1, and a significant

reduction in LPS and gut permeability, in individuals with impaired

fasting glucose (203). These recent studies summarize the ability of

the MedDiet to reduce the risk of obesity by maintaining intestinal

barrier integrity and reducing the amount of circulating LPS, thus

reducing the associated inflammation.

6 Conclusions and future directions

Diet has a major impact on obesity and the composition of

the gut microbiota, and in turn, the types of microbial metabolites

in the gut. While some studies suggest that diet may be a

key component of an effective treatment for obesity and for

the restoration of homeostasis (11), a recent systemic review

examining the effects of the MedDiet on the gut microbiota and gut

metabolites found inconsistent and few significant changes, which

may be attributed to differences in methods, cohort characteristics,

and study quality (86). For example, scales to evaluate the MedDiet

used in the studies we reviewed range from 8- to 24-point scores,

thus emphasizing different dietary components (Table 1). The

populations evaluated in each study also varied, from healthy adults

(65, 77, 128), to older adults (42, 121, 154), to individuals with

health conditions such as ulcerative colitis (55, 63) and MASLD

(41).While adherence to the MedDiet improves health and has

some effect on the gut microbiome, more work needs to be

done to determine the extent to which the MedDiet-associated

changes in gut microbiota and their metabolites mediate these

health-promoting effects. Two other critical elements important in

assessing the risk of obesity are an individual’s physical activity level

and the total calories consumed per day, so examination of diet

patterns without controlling for both exercise and caloric intake,

and other potential confounders, may contribute to the conflicting

results for various studies.

In a recent review, Gundogdu and Nalbantoglu note the

mixed results may be due to lack of standardization, study

design limitations, and differences in the defined MedDiet (204).

Though widely accepted, amplicon sequencing approaches (i.e.,
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16S ribosomal RNA gene sequencing) lack the depth to capture

most strain-specific microbes and their functionality (43, 204).

Additionally, an individual’s specific dietary preferences and

responses, whether from a baseline diet or self-selected food

during an intervention, also affect gut microbiota composition,

as reviewed in Fassarella et al. (205), and further complicate

adequately controlled studies. Given the number of potentially

confounding variables, rigorous studies that incorporate measuring

or restricting as many of these variables as possible, in addition

to sequencing of the gut microbiota and measuring metabolites,

are needed.

Obesity is a growing public health concern, and a better

understanding of the pathophysiology related to diet and lifestyle

is needed. Harnessing the ability to systematically change the gut

microbiota, and correspondingly change the microbial metabolites,

is a therapeutic target for investigators and clinicians. However,

larger and more rigorous clinical trials are needed, in addition

to animal studies that can decode the mechanisms, to define

the pathophysiology of obesity. This will be challenging given

the number of interacting parts between the gut microbiota,

metabolites, and host immunity. While unsettling to consider the

huge task of dissecting the complex biology of dietary nutrients,

inflammation, and health consequences, tremendous progress has

been made in the past few decades. The heterogeneity between

studies is not surprising given the number of potential confounding

variables; nevertheless, there is clear evidence to support the

benefits of a Mediterranean-like dietary pattern as a means to

alter the gut microbiota, gut metabolites, and essential biological

pathways within populations with overweight/obesity.
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