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Therapeutic ketogenic diet as 
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Anorexia nervosa (AN) is a severe psychiatric disorder. However, we  lack 
neurobiological models and interventions to explain and treat the core 
characteristics of food restriction, feeling fat, and body size overestimation. 
Research has made progress in understanding brain function involved in the 
pathophysiology of AN, but translating those results into biological therapies 
has been challenging. Studies have suggested that metabolic factors could 
contribute to developing and maintaining AN pathophysiology. Here, 
we describe a neurobiological model for why using a therapeutic ketogenic diet 
could address key alterations in brain function in AN and prevent the desire for 
weight loss and associated eating disorder-specific symptoms. This translational 
model is based on animal studies and human data and integrates behavioral 
traits, brain neural energy metabolism, and neurotransmitter function. Pilot data 
indicate that the intervention can dramatically reduce eating and body-related 
fears, although larger studies across illness stages still need to be conducted.
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Introduction

Anorexia nervosa (AN) is a severe psychiatric illness characterized by food avoidance, 
severe emaciation, and a perception of being overweight despite a very low body weight (1). 
AN is a chronic disorder with frequent relapse, high disease burden, and treatment cost (2–6). 
Treatment effectiveness, however, is limited (7, 8). AN has a mortality rate twelve times higher 
than the death rate from all causes of death for females 15–24 years old (5, 6, 9). AN shows a 
complex interplay between neurobiological, psychological, and environmental factors, and 
little is known about the pathophysiology or biomarkers that characterize AN when 
underweight or weight recovered (10, 11). Notably, in individuals with AN after weight 
recovery (wrAN), fears of weight gain, body dissatisfaction, and body image distortion are 
often elevated similarly or even higher compared to the underweight state, can persist for 
many years, and pose a risk for renewed self-starvation and relapse (4–6, 12–15).

Brain research before and after weight restoration has indicated alterations in circuits that 
compute reward valence or motivational salience of stimuli (stimuli that propel an individual’s 
behavior toward or away from a particular stimulus), which, together with a conditioned fear of 
weight gain, may contribute to the vicious cycle of self-starvation (2, 16, 17). The neural basis of 
what drives self-starvation remains poorly understood (18). A better mechanistic understanding 
of what triggers and perpetuates core behaviors such as food restriction neurobiologically in AN 
and wrAN, besides an environmentally driven ideal of thinness, would help develop more 
effective treatments (11). However, important aspects of the AN pathophysiology are still largely 
not yet identified, and there is a lack of biological treatments available for AN when underweight, 
or relapse prevention after weight restoration, despite decades of brain research. In this 
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hypothesis and theory article, we propose a neurobiological model 
based on animal studies and human pilot data and integrates behavioral 
traits, brain neural energy metabolism, and neurotransmitter function, 
supporting a therapeutic ketogenic diet in AN.

Neurobiology of AN

Brain research from various groups over the past decades has 
provided empirical data to better understand symptoms and behaviors 
in AN. Studies have found changes in the neurotransmitter systems 
for serotonin and dopamine in AN (8), altered brain structure, and 
more recently, tasks that engaged specific brain circuits that separated 
AN from healthy control groups (19–22). Those latter studies found 
evidence that AN is associated with altered brain function for 
processes involving the reward circuitry, cognition, emotion-
regulating pathways, and regions that process executive function (21, 
23, 24). Studies from our group, for instance, suggested that food 
avoidance and weight loss in AN alter circuits that process 
motivational salience (what stimuli to approach or avoid) and reward 
valence (whether expectations are violated) and involve cortical and 
subcortical regions that affect appetitive drive (16, 19, 25–33).

The primary brain regions that compute motivational salience and 
reward valence include the ventral striatum, insula, and orbitofrontal 
cortex (34). Another region, the amygdala, acts as an “early integrating” 
brain region for the salience of stimuli. It responds to expectation and 
triggers the dopamine response and associated behaviors in the nucleus 
accumbens and ventral striatum (35–37). Importantly, the frontal 
cortex processes whether an individual feels safe or whether a situation 
is associated with threat and fear, which activates those dopaminergic 
circuits to drive either approach or dread and avoidance (38, 39). Those 
mechanisms apply to AN, where fear of weight gain causes food and 
eating to become conditioned fear-inducing stimuli, leading to negative 
ruminations and ambiance (40, 41). The amygdala, in turn, responds 
to those fear and anxiety-inducing stimuli, modulates the dopaminergic 
motivational salience response, and triggers food avoidance (36, 42–44).

Individuals with AN overestimate their body size even when they 
are thin or underweight. Environmental factors, including thin-body 
messages from the media, may trigger those thoughts and condition 
a fear response (45–47). A “multisensory impairment of body 
perception” was proposed in some studies (48–50), but others 
suggested that affective factors drive body size overestimation in AN 
instead (50–53). Interestingly, some studies raised the possibility of a 
frontal cortical cognitive dysfunction in AN (54), and especially in 
restricting type AN, a psychotic-delusional component to the 
overvalued ideas of thinness could drive body size overestimation (55, 
56). Those overvalued ideas may be driven by diminished sensory 
processing, which has also been associated with altered dopamine 
reward prediction error response (57). Brain dopamine activity is tied 
to glucose utilization, linking brain energy metabolism to a likely 
central aspect of AN neurobiology (57–59).

Anxious traits and stress may affect 
brain metabolism in AN

Negative affect and deficits in regulating emotions, together with 
elevated anxious traits, are considered important for the etiology of 
AN (60–62). Unpleasant feelings such as anxiety, sadness, fear, or 

anger contribute to the negative affect experience and may drive AN 
behaviors (63). Worry, for instance, was related to fasting and fear of 
gaining weight or becoming fat in a sample of individuals with AN or 
wrAN (64). Stress and resulting negative affect may thus drive negative 
body image and body size overestimation (65, 66), consistent with 
ecological momentary assessment research showing that negative 
affect is involved in maintaining restrictive eating across AN subtypes 
(67–69). In wrAN, negative affect assessed over 2 weeks was related to 
a self-perception of inefficiency (70). Fear predicted increased dietary 
restraint, whereas dietary restraint predicted increased guilt and 
hostility (71). The importance of negative affect has been recognized 
already in youth with AN, and negative affect may contribute to 
developing AN (41, 72). Furthermore, difficulties with negative affect 
and emotion regulation persist long into recovery and may pose 
significant long-term risk factors for relapse (73).

It has long been known that stress affects glucose metabolism, 
altering blood sugar levels (74). Recent research has refined those 
studies. For instance, animal studies found that 40% of mice had a 
stress-susceptible phenotype associated with elevated blood glucose 
but reduced brain glucose metabolism, suggesting a specific 
mechanism in susceptible individuals (75). It was subsequently 
hypothesized that stress-related disorders could be associated with 
altered glucose metabolism (76). Research in humans indicated, for 
instance, altered brain glucose metabolism after acute stress using the 
Trier Social Stress Test (77), or in individuals with a chronic stress 
condition, posttraumatic stress disorder, showing lower brain glucose 
metabolism after administration of the stress hormone hydrocortisone 
(78). A recent study in cancer patients showed that negative affect was 
negatively correlated with glucose metabolism across cortical and 
subcortical brain regions, indicating global effects (79).

Those studies may have direct implications for the pathophysiology 
of AN or wrAN as self-perceived stress and sensitivity to negative 
affect may create a condition of chronic stress affecting brain glucose 
metabolism. This hypothesis is supported by studies that showed 
elevated baseline levels of the stress hormone cortisol in AN, altered 
cortisol response to a stressor compared to controls, and altered stress 
axis response that persisted in wrAN (80). That research directly 
associated stress and “psychological burden” with the biological stress 
response in AN, including stress axis function.

It has previously been hypothesized that the pathophysiology of 
AN may include metabolic abnormalities, or AN may be a “metabolic 
disorder of psychological origin” (81), which has only recently again 
received attention (82, 83). We propose, based on the above-described 
literature, that elevated anxious traits and distress over negative affect 
in individuals prone to AN interfere with brain glucose utilization 
and, thus, normal brain metabolism and function (84, 85).

AN as a metabolic disorder

Several studies have found metabolic abnormalities in AN (81, 82) 
and associated elevated oxidative stress and inflammatory markers 
(86, 87). Recent genetic studies suggested that AN is associated with 
metabolic traits as a possible risk factor for developing the condition 
(88). A model that integrated biological and environmental factors 
hypothesized that anxiety and stress are critical factors in AN that 
drive altered glucose distribution between brain and body and induce 
changes in the lateral hypothalamus-pituitary–adrenal axis (89). That 
model is consistent with behavioral studies that indicated elevated 
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intolerance of uncertainty and anxiety in AN, triggering the body’s 
biological stress response (90, 91). Stress leads to an increased 
allocation of glucose to the brain; however, while stress is associated 
with higher glucose needs, it is also associated with decreased glucose 
brain utilization, particularly in frontal cortical, thalamic, 
hippocampal, and temporal regions (85, 92, 93). In some individuals, 
this increased glucose requirement may deplete body energy 
resources; in others, reduced glucose utilization in the context of stress 
may lead to overeating (89, 90, 94). This model has been hypothesized 
to be relevant for psychiatric disorders, and computational models 
support the underlying premise (95, 96).

Research on the metabolic underpinnings of AN is still largely 
lacking. An animal study that evaluated glucose metabolism in nine 
female rats modeled AN brain response and randomized the animals 
to food restriction or regular food access (97). That study suggested 
increased glucose metabolism in the cerebellum but decreased 
metabolism in the hippocampus and striatum after food restriction. 
A few genetic studies suggested altered energy, including glucose 
homeostasis in AN (83, 98–101), and AN has been associated with 
altered glucose metabolism related to changes in insulin sensitivity 
(99). Others found mitochondrial dysfunction in AN related to 
oxidative stress and altered metabolic signaling (102), or metabolic 
dysfunction in the gut microbiome in AN that was opposite to that 
found in high-weight individuals (83). Those data, together with 
genetic markers, supported the possibility of critical metabolic targets 
that need to be identified for successful treatment development for AN 
(83). Only a few human brain imaging studies have investigated 
glucose metabolism in AN compared to healthy controls, and the 
samples were generally small and results inconsistent. One earlier 
study found glucose hypometabolism in AN (n = 10) that tended to 
normalize with weight gain (103), while another found glucose 
hypermetabolism in a small sample (n = 5) in cortical and subcortical 
regions (104). Another study in underweight AN (n = 14) found lower 
regional glucose metabolism in the anterior and posterior cingulate, 
dorsolateral prefrontal cortex, left middle temporal, and right superior 
temporal gyrus (105). After hormone replacement in six individuals 
with AN, regional glucose metabolism normalized in the anterior and 
posterior cingulate, premotor, parietal cortex, and caudate nucleus. A 
study that investigated brain glucose metabolism in AN before and 
after nucleus accumbens brain stimulation found increased regional 
glucose metabolism in AN (n = 6) versus healthy controls (n = 12) in 
the bilateral superior, medial and inferior frontal cortex, bilateral 
amygdala and hippocampus, left insula and bilateral putamen (106). 
The authors further reported that frontal cortical and hippocampal 
hypermetabolism decreased with nucleus accumbens stimulation.

Overall, the human neuroimaging results are mixed. The studies, 
in part, are decades old, and potential confounds such as nutritional 
status or comorbidity were not considered. Glucose metabolism has 
been linked to the neurotransmitters dopamine and serotonin, and 
altered neurotransmitter function found in AN as described above 
further supports the hypothesis of altered energy homeostasis, 
including glucose metabolism in AN (107, 108).

We propose that in individuals who have a predisposition for AN, 
there is reduced utilization of glucose in the brain despite high needs due 
to high anxious traits and sensitivity to stress and negative affect, which 
interfere with brain glucose metabolism (Figure 1) (91, 109–114).

While there is evidence that the vicious cycle of weight loss 
followed by more food restriction is, at least in part, due to the 

interactions between conditioned fear of weight gain and altered 
dopamine circuit function, which may drive dread and avoidance 
(16), we propose that there are fundamental metabolic abnormalities 
in individuals who develop AN that drive the development of the 
illness, hinder recovery from AN and trigger relapse in 
wrAN. Individuals with AN often report that food restriction reduces 
anxiety and improves mood (115). This may be due to cognitive and 
emotional factors where weight loss is seen as a success toward a 
certain body shape or in part due to elevated cortisol release, although 
the results are mixed (116–119). Here, we postulate that individuals 
with AN may have a metabolic reason why it is so desirable for them 
to pursue the starvation state. Individuals who develop AN tend to 
score high on state and trait anxiety and have perfectionistic traits that 
drive fear of failure and anxiety (28, 42, 120–124).

We hypothesize that high state and trait anxiety levels create 
ongoing interference with brain glucose utilization in AN as a risk 
factor before, during, or after weight loss. If a person with that 
disposition loses weight and enters a ketosis state, the brain will use 
ketones as an alternative energy source that may be less affected by 
anxiety. Thus, the individual learns that starvation paradoxically 
provides a better subjective feeling of having sufficient energy, and 
food restriction becomes self-reinforcing. However, this state also 
depletes the body’s resources and eventually leads to death. 
We propose that providing a person with that disposition with ketone 
bodies while ensuring normal weight will remove the desire to self-
starve and support weight maintenance.

The therapeutic ketogenic diet 
provides an alternative energy source 
to reduce anxiety and normalize 
inflammation

TKD is beneficial in neurological conditions such as seizure 
disorders, and there is emerging evidence that it might also be an 
effective intervention to treat psychiatric conditions (125–127).

TKD mimics some aspects of fasting (128). During fasting, the 
body faces an energy deficit in its cellular fuel supply as glucose and 
insulin levels decrease. The metabolism of white fat increases, and the 
resulting fatty acids are used to supplement the energy needs of most 
organs. The brain is unique, however, because fatty acids cannot easily 
cross the protective blood–brain barrier (129), and thus, the brain is 
highly sensitive to drops in glucose. For decades, it was thought the 
brain could only utilize glucose (130). This presented an enigma because 
human glucose stores are limited and can be sustained for only a few 
days. Yet, there have been many documented instances where 
individuals are capable of fasting (as long as they drink water) for several 
weeks before succumbing. This paradox was explained in an experiment 

FIGURE 1

Anxiety, stress and brain glucose metabolism. We hypothesize that in 
AN, high anxiety and stress lead to elevated brain glucose need but 
reduced glucose utilization.
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performed on three obese patients who were starved for 6 weeks in a 
metabolic ward, and their internal carotid arteries and jugular veins 
were cannulated at the start and end of the experiment (131). The study 
demonstrated that beta-hydroxybutyrate and acetoacetate replaced 
glucose as the predominant fuel for brain metabolism.

The underlying principle of TKD is that most energy is supplied 
via fat in the diet, which is then broken down into fatty acids for 
energy consumption (132). However, sufficient calories are in the food 
to maintain normal weight. During fasting or TKD, fat metabolism 
increases, and fatty acids are transported to the liver. Fatty acids are 
composed of long chains of carbons. In the liver, fatty acids are 
ordinarily converted into acetyl-CoA, which enters the tricarboxylic 
acid (TCA) cycle. When fatty acid levels are elevated and exceed the 
metabolic capacity of the TCA cycle, acetyl-CoA is shunted to 
ketogenesis. Two acetyl-CoAs can combine through a thiolase enzyme 
to produce acetoacetyl-CoA, a precursor for acetoacetate synthesis 
(ACA) and β-hydroxybutyrate (BHB). Acetone, the other major 
ketone body, is produced primarily from spontaneous decarboxylation 
of ACA and can be eliminated as a volatile substrate through the lungs 
and kidneys. In the blood, ACA and BHB are transported from the 
vascular lumen to the brain interstitial space and both glia and 
neurons by monocarboxylic acid transporters (MCTs). MCT-1 is the 
principal carrier localized to the vascular endothelium. Within 
neurons, both ACA and BHB are transported directly into 
mitochondria and then converted to acetyl-CoA through several 
enzymatic steps. BHB is converted to ACA through 
D-β-hydroxybutyrate dehydrogenase, and ACA undergoes subsequent 
conversion to acetoacetyl-CoA through a succinyl-CoA transferase 
enzyme. Finally, acetoacetyl-CoA-thiolase converts acetoacetyl-CoA 
to two acetyl-CoA moieties, which then enter the TCA cycle (132).

TKD or exogenous ketones have been associated with marked 
changes in brain glucose metabolism. Specifically, elevated blood 
ketone levels resulted in lower brain glucose uptake in humans, which 
was studied using the radiotracer [18F]fluorodeoxyglucose ([18F]FDG) 
and positron emission tomography (PET). In one study, infusion of 
BHB ketone bodies reduced brain glucose uptake and enhanced blood 
flow, supporting the notion of TKD’s neuroprotective effects (133). A 
study that briefly applied a ketogenic diet found regionally specific 
effects of blood ketosis on lowering brain glucose uptake (134), 
including the precuneus, a brain region necessary for visuospatial 
function, episodic memory retrieval, and self-referential processing, 
affecting one’s perceptual image or mental concept of oneself (135), 
which could have implications for AN in the pathophysiology of body 
image distortion (136, 137). The ketogenic diet in that study was 
maintained only for 48 h, and results may differ after prolonged ketosis 
as in this study (134). A study testing the effects of ketogenic diet over 
4 days led to global decreases in glucose metabolism across widespread 
cortical and subcortical regions, with the strongest decrease in the 
middle frontal gyrus (Brodmann area 8, 46) followed by the frontal 
pole (Brodmann area 10) and cuneus (Brodmann area 17) (138). 
Three weeks of a ketogenic diet in an animal model also led to 
widespread cortical reductions in glucose metabolism (139). Thus, 
short and longer-term ketogenic diets led to extensive regional glucose 
metabolism reductions, with longer duration associated with more 
extensive glucose metabolism decreases. The above-referenced study 
by Courchesne-Loyer et al. (138) suggests that the middle frontal 
cortex is most affected. However, there were large reductions across 
all frontal, temporal, parietal, occipital, cingulate, and subcortical 
regions tested. Those data indicate large global decreases without 

specific circuits delineated, although some areas were more affected 
than others (138).

The metabolic shift with TKD is associated with a variety of 
central nervous system and general effects on the body. Aside from 
the ketone bodies enhancing cell energy metabolism by replenishing 
the metabolic pathway, TKD has been associated with reducing 
oxidative stress and inflammatory processes and regulating 
neurotransmitter systems (140–142), which are all processes 
implicated in the pathophysiology of AN (21, 23, 86, 87). Furthermore, 
replacing glucose with ketone bodies via TKD to supply the brain with 
energy enhances γ-aminobutyric acid (GABA) in the brain via 
enhanced glutamate production converted to glutamine and GABA 
(143). GABA is a primary inhibitory neurotransmitter that reduces 
anxiety (144, 145). In the animal model, enhancing systemic ketone 
body levels reduced stress and anxiety (146, 147). In AN, altered 
GABA function has been reported in an animal model for AN, and 
enhancing GABA via ketosis might effectively reduce AN-specific and 
non-specific anxiety (148, 149). Other studies have found elevated 
inflammatory markers in AN, and elevating blood ketone levels has 
been shown to reduce inflammation (150).

Metabolism as neurobiological target 
in AN

It has been hypothesized that brain metabolic alterations, perhaps 
relating to cell mitochondria, have a critical role in psychiatric disorders 
(151, 152). Psychiatric disorders have been associated with inborn 
errors of metabolism, supporting the link between altered metabolism 
and psychiatric pathophysiology (153). Research has also increasingly 
recognized other abnormalities associated with psychiatric conditions, 
such as elevated inflammatory markers and markers for oxidative stress 
(154–156). It has been hypothesized that AN’s pathophysiology includes 
metabolic abnormalities (82), or that AN may be a “metabolic disorder 
of psychological origin” (81). Thus, there is growing evidence that 
nutrition and mental health are linked, and diet may be particularly 
appealing as a therapeutic intervention (157).

TKD has received increasing attention since it was found effective 
in pediatric epilepsy (158). Others have suggested that TKD could 
improve autism-related behaviors, symptoms associated with 
Alzheimer’s disease, or disorders related to mood or psychotic 
symptoms (159–161). These findings have led to the suggestion that 
TKD could be  an effective metabolism-directed intervention for 
psychiatric conditions (162, 163).

A neurobiological model for TKD as a 
possible treatment intervention for AN

The TKD may be an effective treatment intervention for AN to 
normalize energy homeostasis and remove the need to self-starve for 
nutritional ketosis. Figure  2 provides a conceptual model of 
dysfunctional brain glucose metabolism and the therapeutic effects of 
TKD (85, 93, 132, 147, 164). (1) At baseline and under typical 
conditions, glucose is used by the brain mitochondria to generate 
energy and support brain function and associated behaviors. (2) In 
individuals with AN, high levels of anxiety and perfectionism lead to 
stress, which reduces glucose utilization despite high energy needs. (3) 
Body dissatisfaction and drive for thinness in susceptible individuals 
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drive starvation. Transient imbalances between nutritional intake and 
energy requirements lead to the generation of ketones and the use of 
beta-hydroxybutyrate (BHB), acetone, and acetoacetate (ACA) as 
alternative energy compounds that enter the brain mitochondrial 
Krebs cycle and are better utilized than glucose and independent from 
the effects of stress. (4) Ketosis leads to elevated production of 
neuronal GABA via glutamine and glutamate, which may help with 
emotion regulation and reduce anxiety. (5) Ketosis leads to improved 
brain energy supply and elevated GABA production, which stabilizes 
neuronal function and causes positive feedback to promote further 
starvation-mediated ketosis. (6) A ketogenic diet that is energy-rich 
to accomplish weight maintenance in wrAN or weight gain in AN 
eliminates the need for ketosis via starvation, thus replacing 
“starvation ketosis” with “nutritional ketosis” (85, 93, 132, 147, 164).

Supporting preliminary studies

A single case study suggested that TKD, followed by ketamine 
infusion, could help that patient recover (165). That individual 
remains recovered to this date (Dr. Scolnick, personal 
communications). That study laid the foundation for an IRB-approved 
protocol in five wrAN who were still highly affected by the illness 
(166). In that study, we conducted an open-label trial to test whether 
the case report response could be replicated. Those five wrAN adults 
with persistent eating disorder thoughts and behaviors adopted the 
TKD to maintain weight. In addition, participants received six 
ketamine infusions after 4 to 8 weeks of stable ketosis and were 
followed over six months. All participants completed the study 
protocol without significant adverse effects. The participants 
consumed the TKD for at least 8 weeks (4 to 8 weeks TKD alone, then 
with added ketamine for 4 weeks); two individuals continued TKD 
after the formal study intervention for a total of 4 months on TKD and 

two individuals for 6 months of TKD, suggesting good tolerability. The 
group showed significant improvements (repeated measures ANOVA) 
on the Clinical Impairment Assessment (p = 0.008), Eating Disorder 
Examination Questionnaire (EDEQ) Global score (p = 0.006), EDEQ-
Eating Concerns (p = 0.005), EDEQ-Shape Concerns (p = 0.016), 
EDEQ-Weight Concerns (p = 0.032), Eating Disorders Recovery 
Questionnaire (EDRQ) Acceptance of Self and Body (0.027) and 
EDRQ-Social and Emotional Connection (p = 0.001). Weight 
remained stable during the trial. Figure 3 shows a change in composite 
scores and BMI over time. The baseline was at “0”; time point one 
indicates 4 weeks of TKD for all participants, timepoint 2 indicates 
8 weeks of TKD for two subjects, and 4 weeks of TKD plus ketamine 
in 3 subjects; time points three and later are post study intervention 
assessments. EDEQ global score, Restraint, Eating Concern, Weight 
Concern, Acceptance of Self and Body, and Clinical Impairment 
showed steep improvements before adding ketamine, suggesting that 
TKD alone was highly effective.

Of note, in the case report and the case series (165, 166), ketamine 
infusions were added once the subjects had been on the TKD for at 
least 4 weeks. The choice was clinically driven and based on a small 
positive report of decreased obsessions/compulsions in a pilot study 
of twelve patients with AN (167). Ketamine is an N-methyl 
D-aspartate (NMDA) glutamate antagonist that has been in use since 
the 1960s as an anesthetic (168). Over the past two decades, ketamine 
has been in use as a rapid antidepressant agent (169). There have been 
accelerating efforts to discern the mechanism of action and focus on 
the effects of ketamine on energy metabolism, mitochondrial function, 
and glutamate/GABA function (170, 171). All these areas overlap with 
the effects of TKD, which corresponded to our clinical observation 
that the two modalities (TKD and ketamine) led to extended 
improvement. This warrants further study.

Four of the 5 study participants have remained recovered (low 
symptom scores, normal weight) for at least 12 months since the end 

FIGURE 2

Therapeutic ketogenic diet in anorexie nervosa conceptual model. ACA, acetoacetate; BHB, beta-hydroxybutyrate; TCA, tricarboxylic acid cycle.
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of the study; one participant who stopped TKD after 8 weeks relapsed 
4 months after treatment (unpublished data). The small study 
suggested that this novel treatment is safe and effective for wrAN 
adults with chronic AN-related psychopathology. The results from this 
open trial supported the idea that specific neurobiological 
underpinnings for AN can be modified with TKD.

Discussion

AN remains a severe psychiatric disorder without approved 
biological intervention. The above neurobiological model, with 
evidence from basic science and human genetic and preliminary 
clinical data, supports the possibility that brain metabolism may be a 
key target for intervention to treat this disorder and provide a 
treatment that targets the disorder’s pathophysiology mechanistically. 
The pilot data to date are from weight recovered individuals. We are 
currently conducting a follow-up study in a larger group of 
individuals in the wrAN group to test for reduction of thoughts, 
feelings, and behaviors that are specific to AN. Future studies will 
need to investigate individuals underweight with AN when we have 
further indications that this treatment is safe and effective. An 
important aspect to also consider is that while we  can change 
neurobiology and provide effective treatment, individuals with AN 
have often learned to live with the disorder. Once those thoughts, 
feelings, and behaviors are diminishing, the individual has to 
re-organize their life, which can be anxiety-provoking in itself. In 

summary, there is much reason to believe that a TKD could support 
treatment outcomes in AN, and further study is needed to understand 
the underlying mechanisms in vivo and in relation to specific 
illness behaviors.
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