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Background: Observational studies have explored the impact of iron homeostasis 
on infertility; however, establishing definitive causal relationships remains 
challenging. This study utilized a two-sample Mendelian randomization approach 
to investigate the potential causal relationship between iron status and infertility.

Materials and methods: Four indicators of iron status-serum iron, ferritin, transferrin 
saturation, and total iron binding capacity, were considered as exposure factors. 
Infertility was the outcome variable for both men and women. Robust causality was 
assessed using the primary inverse-variance-weighted method, complemented by 
three supplementary Mendelian randomization approaches. Sensitivity analyses 
were performed to enhance the precision and reliability of the results.

Results: No statistically significant associations were identified between the four 
indicators of iron status and infertility. These results remained consistent across 
multiple Mendelian randomization methodologies.

Conclusion: In conclusion, there is no evidence of a genetic causal relationship 
between iron status and infertility. Nevertheless, this does not preclude the 
possibility of a connection between iron status and infertility at different 
mechanistic levels.
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Introduction

Infertility, defined as the inability to conceive after 12 months of regular, unprotected 
sexual intercourse, is a pervasive global health concern (1). It is estimated that approximately 
15% of the global population is affected by this condition, prompting extensive discourse and 
research efforts (2). Infertility exerts a dual impact, profoundly affecting both individuals and 
their families, while also imposing a significant economic strain on society. This condition can 
stem from various factors, including male or female reproductive issues, as well as associations 
with diseases (3), lifestyle choices (4), nutritional deficiencies (5), and other yet-to-be-
discovered elements (6). Therefore, it is essential to pinpoint the underlying factors causing 
infertility to develop better prevention strategies.

Iron, though a trace element, plays a pivotal role in essential metabolic processes crucial for 
human health, including oxygen transport, DNA synthesis, and ATP production (7). Indicators 
of iron status, including serum iron, ferritin, transferrin saturation (TSAT), and total iron-binding 
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capacity (TIBC), are crucial for reflecting the metabolism and utilization 
of iron in the body (8). Serum iron directly reflects the level of free iron 
in the body but fluctuates physiologically (9). Ferritin is the most reliable 
and sensitive indicator of iron deficiency in the body (10). TIBC, the 
maximum capacity of serum transferrin to bind iron, indirectly reflects 
serum transferrin levels (11). TSAT, determined by the ratio of serum 
iron to TIBC, provides insight into the circulating iron available (12). 
Research suggests that women diagnosed with infertility typically have 
iron deficiency (13). A recent study on recurrent pregnancy loss indicated 
that women prone to miscarriage have lower serum iron levels and are 
more likely to have low iron status (14). In men, iron is essential for 
spermatogenesis (15), and low serum iron levels can impair fertility and 
lead to poor semen quality (16). However, elevated iron levels can induce 
oxidative stress, which may significantly contribute to idiopathic 
infertility (17, 18). Thus, maintaining iron homeostasis is crucial for 
reproductive health. However, the causal link between iron status and 
infertility remains unclear.

The association between risk factors and outcomes in observational 
studies is susceptible to the influence of age, environment, mental state, 
lifestyle, and other confounding factors (19). Utilizing single nucleotide 
polymorphisms (SNPs) as instrumental variables (IVs), Mendelian 
randomization (MR) analysis, is widely used to investigate causal 
relationships, mitigating bias caused by confounding factors through 
randomly segregated alleles (20, 21). Numerous studies have demonstrated 
the utility of MR methods in investigating causal relationships between 
risk factors and outcomes, such as the association between iron status and 
osteoarthritis (22) and the causal link between gut microbiota and 
infertility risk (23). However, there is a scarcity of research specifically 
investigating the connection between iron status and infertility using MR 
analysis. To elucidate this relationship, we conducted a two-sample MR 
analysis using genome-wide association study summary statistics to 
investigate the causal effects of iron status on infertility.

Materials and methods

Study design

We conducted a two-sample MR analysis to assess the causal 
relationship between iron status and infertility. The workflow of this 
study is illustrated in Figure 1.

Data sources

For this study, all datasets were sourced from publicly available 
databases. Genetic variants data related to iron status, including serum 
iron, ferritin, TSAT, and TIBC, were obtained from a meta-analysis of 
a genome-wide association study (8). This meta-analysis amalgamated 
data from three cohorts in Iceland, the United Kingdom, and Denmark, 
with information on serum iron (n = 163,511), ferritin (n = 246,139), 
TSAT (n = 131,471), and TIBC (n = 135,430) detailed in 
Supplementary Table S1. Genetic variants linked to both male and 
female infertility were extracted from the FinnGen Consortium version 
R9.1 The summary statistics for female infertility comprised 13,142 cases 

1 https://r9.finngen.fi/

and 107,564 controls, while those for male infertility included 1,271 
cases and 119,297 controls, as outlined in Supplementary Table S1 (24). 
The diagnosis of female infertility in FinnGen is defined by the 
International Classification of Diseases 10th Revision (ICD-10) code 
N97, which includes infertility caused by issues with the ovaries, 
fallopian tubes, and uterus. The diagnosis of male infertility is defined 
by the ICD-10 code N46, which includes azoospermia and oligospermia.

Instrumental variable selection

To ensure the reliability of the MR analysis, we strictly adhered to 
the following principles when selecting instrumental variables: (1) SNPs 
were chosen as IVs based on a threshold of p < 5 × 10−8 for the four iron 
indicators. (2) The linkage disequilibrium between IVs was removed 
(clumping distance = 10,000 kb and clumping r2 < 0.001) (25, 26). (3) The 
F-statistics of the selected IVs surpassed the conventional threshold of 
10. After preliminary filtering, 16, 51, 19, and 26 SNPs corresponding to 
serum iron, ferritin, TSAT, and TIBC were selected. We then used the 
PhenoScanner website2 to retrieve SNPs with potential associations with 
both exposure and outcome. Asthma (3), rheumatoid arthritis (27), total 
cholesterol (28, 29), body mass index (30, 31), glycated hemoglobin (32, 
33), and vitamin B12 levels (34, 35) have been reported to be associated 
with infertility. Therefore, we removed these confounders to exclude the 
possibility of genetic pleiotropy. Eventually, 15, 43, 17, and 20 SNPs 
corresponding to serum iron, ferritin, TSAT, and TIBC were used in the 
subsequent analysis (Supplementary Table S2). Additionally, 
we specifically list the above SNPs in Supplementary Table S3.

Statistical analysis

Four methods, including inverse variance weighted (IVW), 
MR-Egger, weighted median, and weighted mode, were utilized to 
investigate the causal link between iron status and infertility. IVW was 
utilized as the primary analytical approach due to its ability to yield 
unbiased results in the absence of pleiotropy (36, 37). Furthermore, the 
inclusion of three supplementary methods aimed to ensure more 
robust findings across diverse scenarios. Specific sensitivity analyses, 
encompassing heterogeneity tests, pleiotropy tests, and MR-Pleiotropy 
Residual Sum and Outlier (MR-PRESSO) tests, were conducted to 
evaluate and address potential issues related to heterogeneity and 
pleiotropy (38). MR analysis was performed using the “TwoSampleMR” 
package (39) in R software version 4.1.3. Radial plots of the MR 
estimates were prepared using the “RadialMR” package (40).

Results

Mendelian randomization analysis

The results of the MR analysis that investigated the causal link 
between iron status and infertility were shown in Table 1. However, our 
analysis found no significant evidence of genetic causality between iron 

2 http://www.phenoscanner.medschl.cam.ac.uk
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and infertility. In our analysis of the causal association between serum 
iron with female infertility, we rigorously screened the instrumental 
variables according to the three conditions described in the Methods 
section, and subsequently, 15 SNPs were used for MR analysis. Our 
analysis revealed that serum iron tended to show a negative causal 
association with female infertility; however, although the MR-Egger 
analysis did not reach statistical significance (p = 0.116, se = 0.108), 
IVW (p = 0.005, se = 0.066), weighted median (p = 0.011, se = 0.075), 
and weighted mode (p = 0.019, se = 0.078) analyses consistently 

indicated a negative causal association between serum iron and female 
infertility (Table 1; Figure 2A). However, it seems that this negative 
causal association was mainly influenced by one SNP, rs2072860, 
which is located in the known iron-associated gene TMPRSS6, as 
indicated by the scatterplot and leave-one-out plots (Figures 2A,B). To 
avoid the influence of a single SNP on our MR results, we excluded this 
SNP and re-ran the MR analysis using the remaining 14 SNPs as 
instrumental variables. Ultimately, our analysis showed no causal 
association between serum iron levels and female infertility (Table 1; 

FIGURE 1

Workflow for this study. TSAT, transferrin saturation; TIBC, total iron-binding capacity; HbA1c, glycated hemoglobin. The image was drawn by Figdraw 
(https://www.figdraw.com).

TABLE 1 MR studies of the causal link between body iron status and infertility.

Exposure n SNP Method Outcome: female infertility Outcome: male infertility

b se p-val b se p-val

Serum iron

15 IVW −0.184 0.066 0.005 0.046 0.200 0.817

15 MR Egger −0.181 0.108 0.116 −0.253 0.321 0.444

15 Weighted median −0.191 0.075 0.011 −0.069 0.232 0.768

15 Weighted mode −0.206 0.078 0.019 −0.115 0.235 0.632

14 IVW −0.104 0.114 0.363 / / /

14 MR Egger 0.451 0.361 0.235 / / /

14 Weighted median 0.048 0.170 0.776 / / /

14 Weighted mode 0.075 0.208 0.722 / / /

Ferritin

43 IVW −0.136 0.095 0.151 −0.085 0.262 0.745

43 MR Egger −0.101 0.180 0.577 0.260 0.491 0.599

43 Weighted median 0.022 0.120 0.856 0.321 0.354 0.365

43 Weighted mode −0.056 0.135 0.681 0.600 0.491 0.229

TSAT

17 IVW −0.028 0.054 0.600 −0.067 0.147 0.650

17 MR Egger −0.012 0.081 0.880 0.058 0.216 0.793

17 Weighted median −0.007 0.066 0.916 0.006 0.166 0.972

17 Weighted mode −0.016 0.058 0.788 −0.001 0.151 0.994

TIBC

20 IVW −0.022 0.062 0.727 0.012 0.120 0.921

20 MR Egger −0.052 0.079 0.521 −0.203 0.132 0.142

20 Weighted median −0.039 0.040 0.327 0.025 0.126 0.842

20 Weighted mode −0.044 0.037 0.255 −0.030 0.104 0.780

TSAT, transferrin saturation; TIBC, total iron binding capacity; IVW, Inverse variance weighted.
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Figures 2C,D). In addition, ferritin (p-IVW = 0.151, se = 0.095), TSAT 
(p-IVW = 0.600, se = 0.054), and TIBC (p-IVW = 0.727, se = 0.062) did 
not indicate a significant causal association with female infertility 
(Table  1). Similar to the findings regarding female infertility, our 
analysis did not observe a meaningful causal association between iron 
status and male infertility (Table 1). Additionally, radial plots for IVW 
and MR-Egger analysis were generated, and several outliers were 
identified (Figure  3). Nevertheless, the results still did not reach 
statistical significance after removing the outliers (results not shown).

Sensitivity analysis

To validate the reliability of the IVW results, sensitivity analyses 
were conducted and presented in Table 2. In the analysis of the causal 

association between serum iron and infertility, there was neither 
heterogeneity (p > 0.05) nor horizontal pleiotropy (p > 0.05) detected in 
the MR analysis. Similarly, in analyzing the association between TSAT 
and infertility, no heterogeneity or pleiotropy was detected. These 
findings imply that the results of the above MR analysis are reliable. 
However, heterogeneity was observed when analyzing the causal 
association of ferritin with infertility (p < 0.05), and although the 
MR-Egger regression analysis did not show pleiotropy (p > 0.05) the 
MR-PRESSO analysis suggested that there might be potential pleiotropy 
(p < 0.05). Whereas similar results existed when analyzing the association 
of TIBC with infertility. These findings suggest that the results of the 
latter two sets of analyses are not very robust (Table 2). It is worth noting 
out that some outliers were detected while performing the MR-PRESSO 
analysis, and after removing them and rerunning the MR analysis, 
significant results were still not obtained (Supplementary Table S2).

FIGURE 2

MR analyses of the causal effects of serum iron on female infertility. (A) Scatter plots (15 SNPs). (B) Leave-one-out plot (15 SNPs). (C) Scatter plots (14 
SNPs). (D) Forest plot (14 SNPs).
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Discussion

In this MR investigation, we aimed to identify the potential causal 
link between systemic iron status and infertility. This study is, to our 
knowledge, the first attempt to explore this association using a genetic 
epidemiological approach. Our findings indicate that there is no 
significant genetic causal relationship between four iron status 

indicators (serum iron, ferritin, TSAT, and TIBC) and both male and 
female infertility.

Our conclusions markedly differ from those of previous biological 
studies. In fact, an increasing number of researchers have focused on 
the relationship between iron status and female infertility. Iron 
deficiency poses a significant global health challenge, particularly for 
women (41). A recent observational study showed that iron status is 

FIGURE 3

Radial plots showing MR estimates of iron status and infertility. (A-D) MR radial plots with female infertility as an outcome and serum iron, ferritin, TSAT, 
and TIBC as exposures. (E-H) Using male infertility as an outcome, serum iron, ferritin, TSAT, and TIBC were used as exposed MR radial plots. Both IVW 
and radial MR-Egger regressions were conducted using the RadialMR software package. The horizontal axis ( )Wj of the Radial plot is the square root 

of the actual weight obtained for each SNP in the MR analysis, while the vertical axis ( )
∧
β j Wj represents the ratio estimates for each SNP multiplied by 

the same square root weight. Outliers (depicted in yellow and pink) are identified for both methods, while variants (valid SNPs) are represented by black 
dots. The curves display ratio estimates for each SNP (blue for IVW methods, orange for MR-Egger methods). TSAT, transferrin saturation; TIBC, total 
iron binding capacity.
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associated with unexplained infertility in women, especially when 
serum ferritin levels are below 30 μg/L (considered iron deficient) 
(13). A comprehensive prospective study spanning 8 years and 
involving 18,555 premenopausal women showed a significant 
reduction in the likelihood of infertility in females who consumed 
iron supplements (42). Another animal experiment produced 
comparable results, revealing significantly lower pregnancy rates in 
rats with iron deficiency consuming low-iron foods (43). Potential 
mechanisms underlying female infertility due to iron deficiency may 
involve impaired follicular development or ovulation (44), abnormal 
endometrial function (45), and impaired immune function (46). 
Additionally, iron is a determinant of healthy fetal delivery. The high 
iron requirements of the metabolically active placenta (47, 48) and the 
rapidly growing fetus (49) demonstrate the important role of iron in 
successful pregnancy and fetal development. While the above studies 
highlight the impact of iron deficiency on female infertility, it is 
important to note that iron overload can also have adverse effects on 
female pregnancy. A recent review provided a thorough overview of 
the correlation between iron overload and various female reproductive 
health issues, including hypogonadism, toxicity to preimplantation 
embryos, reduced endometrial tolerance, and infertility-related 
disorders such as polycystic ovary syndrome and endometriosis (17). 
The mechanisms underlying female infertility due to iron overload 
may involve oxidative stress, ovarian dysfunction, and endocrine 
disruption (17, 50). In summary, there is a broad and complex 
association between iron status and female infertility in biological 
studies. Our findings contrast with these observations, potentially due 
to the nonlinear nature of the causal link between iron markers and 
infertility. This is evidenced by the U-shaped associations identified in 
prior observational studies (51).

Our results did not indicate a causal association between iron 
status and male infertility. Despite this, the existing literature 
highlights the essential role of iron in male reproductive function (52). 
Iron is crucial for maintaining ejaculate motility and sperm pH within 
a functional range (53). Imbalances in iron levels, whether deficient 
or excessive, have been linked to negative effects on semen quality. 
Iron, as a component of antioxidant enzymes, guards against 
reproductive disorders by mitigating oxidative stress (54–56). 
Conversely, excess iron may contribute to compromised semen quality 
through heightened levels of reactive oxygen species and subsequent 
lipid peroxidation (57, 58). A recent study also found that serum iron 
and ferritin were associated with reproductive hormones produced by 
the anterior pituitary gland in infertile men, and that these hormones 

may play an important role in processes such as spermatogenesis and 
testosterone production (59). While the existing literature underscores 
the significance of iron in male reproductive health, our study focused 
on diagnosing male infertility using azoospermia or oligozoospermia 
criteria. This suggests that there is no apparent causal link between 
iron and male azoospermia or oligozoospermia (24). However, to gain 
a more nuanced understanding of the relationship between iron status 
and male reproduction, additional research is warranted.

The study’s strengths lie in the effective use of MR, a robust method 
for assessing causal associations while minimizing confounding factors. 
Additionally, the utilization of publicly available genome-wide 
association study data with a large sample size enhances the identification 
of reliable genetic variations and, consequently, the generation of more 
robust causal associations. Notably, this research represents the first 
attempt to employ MR in unveiling a causal association between iron 
status and infertility. However, limitations are acknowledged. Although 
MR methods control most of the known confounders, there may still 
be  some unknown hidden confounders affecting the results. 
Heterogeneity of IVs in MR analyses for specific iron status indicators 
and outcomes was observed, although this was addressed through 
random effects IVW analyses. The presence of pleiotropy in some 
analyses, with inconsistent results from MR-PRESSO and MR-Egger 
regression, underscores the need for cautious interpretation, given the 
different assumptions and models employed by these methods to handle 
pleiotropy. The results derived from diverse methods should 
be  synthesized, and efforts to identify more suitable IVs should 
be pursued in future studies to mitigate the impact of heterogeneity and 
pleiotropy on MR outcomes. In addition, considering that both iron 
deficiency and iron excess are detrimental to health, subsequent studies 
need to focus on the nonlinear causal association of iron markers with 
infertility. Moreover, the applicability of our results to non-European 
populations requires additional investigation. Genetic variations and 
dietary disparities across races and geographical regions may influence 
individual iron status, consequently impacting infertility outcomes.

Conclusion

In summary, our findings indicate that, from a genetic perspective, 
there is no evident causal link between the four indicators of iron 
homeostasis and infertility. However, the critical role of iron in 
reproductive health should not be dismissed, and the two may have 
unknown associations at other levels. The complex etiology of 

TABLE 2 Sensitivity analysis of the MR studies.

Exposure Outcome p-heterogeneity p-pleiotropy p-MR-PRESSO

Serum iron
female infertility 0.462 0.130 0.482

male infertility 0.479 0.253 0.522

Ferritin
female infertility 0.003 0.820 0.003

male infertility 0.045 0.410 0.037

TSAT
female infertility 0.142 0.789 0.173

male infertility 0.335 0.438 0.423

TIBC
female infertility 2.00E-06 0.538 0.018

male infertility 0.171 0.015 0.277

TSAT, transferrin saturation; TIBC, total iron binding capacity; p-heterogeneity, which calculated by inverse variance weighted method. p-pleiotropy, which calculated by MR-Egger regression 
tests.
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infertility and the potential pleiotropy of our genetic instrumentation 
need to be  interpreted with caution. For future investigations, 
we  propose utilizing larger and more diverse cohorts, along with 
refined instrumental variables to better address confounding factors.
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