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In recent years there has been increased interest in identifying biological signatures 
of food consumption for use as biomarkers. Traditional metabolomics-based 
biomarker discovery approaches rely on multivariate statistics which cannot 
differentiate between host- and food-derived compounds, thus novel approaches 
to biomarker discovery are required to advance the field. To this aim, we have 
developed a new method that combines global untargeted stable isotope traced 
metabolomics and a machine learning approach to identify biological signatures 
of cruciferous vegetable consumption. Participants consumed a single serving of 
broccoli (n = 16), alfalfa sprouts (n = 16) or collard greens (n = 26) which contained 
either control unlabeled metabolites, or that were grown in the presence of 
deuterium-labeled water to intrinsically label metabolites. Mass spectrometry 
analysis indicated 133 metabolites in broccoli sprouts and 139 metabolites in 
the alfalfa sprouts were labeled with deuterium isotopes. Urine and plasma 
were collected and analyzed using untargeted metabolomics on an AB SCIEX 
TripleTOF 5,600 mass spectrometer. Global untargeted stable isotope tracing was 
completed using openly available software and a novel random forest machine 
learning based classifier. Among participants who consumed labeled broccoli 
sprouts or collard greens, 13 deuterium-incorporated metabolomic features were 
detected in urine representing 8 urine metabolites. Plasma was analyzed among 
collard green consumers and 11 labeled features were detected representing 5 
plasma metabolites. These deuterium-labeled metabolites represent potential 
biological signatures of cruciferous vegetables consumption. Isoleucine, 
indole-3-acetic acid-N-O-glucuronide, dihydrosinapic acid were annotated as 
labeled compounds but other labeled metabolites could not be annotated. This 
work presents a novel framework for identifying biological signatures of food 
consumption for biomarker discovery. Additionally, this work presents novel 
applications of metabolomics and machine learning in the life sciences.
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1 Introduction

Interest in biomarker discovery has grown tremendously over the 
last decade with biomarkers of disease and exposures being developed 
across the life sciences (1–5). Discovery of biological signatures of 
specific foods and dietary patterns is of interest because of the 
potential of food biomarkers to improve our understanding of the role 
of nutrition in the etiology and prevention of disease (6–9). Liquid 
chromatography-mass spectrometry based metabolomics presents a 
powerful approach to conduct metabolite-based biological signature 
and biomarker discovery (10–12). Untargeted metabolomics allows 
investigators to utilize a data-driven approach to identify compounds 
that are associated with the biological question under investigation, 
without relying on a priori knowledge to guide data analysis. 
Traditional untargeted metabolomics approaches to biomarker 
discovery identify metabolomic features associated with a specific 
food or other environmental exposures. However, these techniques are 
unable to differentiate between metabolites produced by the exposed 
individual (host-derived metabolites) and metabolites that originate 
directly from the exposure (10, 13). As a result, discovered signatures 
and biomarkers from these methods may not be  specific to the 
exposure of interest and instead may be endogenous compounds that 
respond to an exposure (effect biomarkers) (7). As effect biomarkers 
are produced by the host they could also be influenced by physiological 
status and other confounding dietary components, making effect 
biomarkers potentially non-specific to the exposure of interest. 
Likewise, other foods that the participant consume during the study 
period may also alter the participant’s metabolome (both through 
direct metabolites from the food or by changing the host’s endogenous 
metabolome) adding difficulty in identifying clear signatures of 
consumption. These problems highlight a need for more advanced 
methodologies that directly associate potential biomarkers with the 
specific food that is under investigation (6). An ideal food biomarker 
is not present prior to ingestion of the food and has a measurable time- 
and dose-dependent response to consumption (7, 12).

Global untargeted stable isotope traced metabolomics uses 
substrates like foods labeled with relatively-rare heavy isotopes, such as 
13C and 2H, offering a possible innovative tool to address the problem of 
non-specific biomarker discovery. Stable isotope tracing is achieved in 
the nutrition field by introducing the isotope (like 2H) during production 
of the food of interest and creating a labeled food. Labeled vegetables 
can be generated by growing them with deuterium-oxide (D2O) mixed 
into the water. This results in the molecules in the labeled vegetable 
having a distinct and detectable mass isotopologue distribution. An 
isotopologue is defined as a molecule that has an identical structure and 
chemical formula, but differs only in isotopic composition. In labeled 
vegetables, the resulting mass isotopologue distribution is unique to the 
labeled food and importantly differs from the isotopologue distribution 
of endogenous and non-labeled metabolites. After consumption of the 
labeled food, labeled molecules can be detected in participants’ urine 
and plasma samples via global untargeted stable isotope traced 
metabolomics. The presence of the label in the metabolite of interest 
facilitates the determination if the metabolite is from the food of interest 
(labeled metabolite) or present in the participant independent of 

vegetable consumption (unlabeled metabolite). The resulting identified 
metabolic signatures of consumption are potential biomarker candidates 
for further validation and quantification. Stable isotope tracing has been 
in use for years but its application has been limited to looking for specific 
metabolites of a labeled compound in a known metabolic pathway 
(13–15). Recent advances now allow for global untargeted stable isotope 
tracing which is an important advance in biomarker discovery because 
compounds derived from foods and microbes are often unannotated 
(16–18). Currently many tools for global untargeted stable isotope 
traced metabolomics, including software like X13CMS, geoRge, and 
HiResTEC, have been developed and tested specifically on cell culture 
models that are relatively simple and well controlled systems (19–23). 
These software platforms compare isotopologue distributions from 
labeled samples against unlabeled controls to identify stable-isotope 
labeled metabolites. In human biological samples, endogenous 
metabolism of labeled-compounds can dilute the abundance of labeled 
compounds and decrease their degree of labeling. This issue coupled 
with the complexity of untargeted metabolomics (ion suppression, and 
a high number of coeluting peaks) leads to a high number of false 
positive and false negative results from these currently available software 
tools. Thus, there is a pressing need for the development of new tools for 
use in complex biological systems and machine learning modeling can 
address this need by quickly ranking candidates for manual curation 
and validation (24).

To address this need, our objective was to conduct global 
untargeted stable isotope tracing in human biological samples and 
develop a machine learning approach to classify candidate labeled-
metabolites detected by HiResTEC as labeled or unlabeled. 
We  conducted this work using biological samples from human 
subjects fed labeled cruciferous vegetables (collard greens or broccoli 
sprouts) or control (alfalfa sprouts). Cruciferous vegetables are widely 
studied because they contain compounds that are known to have 
chemopreventive and cancer-suppressive properties (25, 26). 
Increased consumption of cruciferous vegetables has been inversely 
associated with the risk of developing prostate, breast, colorectal, lung, 
bladder, gastric, pancreatic and renal cancer and cruciferous vegetables 
may be beneficial in preventing other chronic diseases (27, 28). The 
development of methods to identify biological signatures of 
cruciferous vegetables consumption could aid in further 
understanding the health benefits of cruciferous vegetables, and in 
advancing the field of precision nutrition. Our approach performed 
successfully on metabolomics data from human urine and human 
plasma, generated from two different feeding studies, utilizing 
cruciferous vegetables grown for different periods of time with 
D2O. This work presents a novel approach to discovering biological 
signatures of food consumption and demonstrates the feasibility of 
utilizing global untargeted stable isotope tracing to identify stable-
isotope enriched metabolites derived from foods in humans.

2 Materials and methods

2.1 Study summary

Biological samples (urine and plasma) were collected from two 
different human feeding studies that were previously published: (1) 
broccoli sprouts feeding study (includes a non-cruciferous vegetable 
control arm where participant consumed alfalfa sprouts) 

Abbreviations: AUC, Area Under the Curve; ML, Machine Learning; RF, Random 

Forest; ROC, Receiving Operator Curve; SMCSO, S-methyl-L-cysteine sulfoxide.
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(NCT04641026) (29), and (2) collard greens feeding study with 
collard greens as a source of phylloquinone (vitamin K) 
(NCT00336232) (30). We also utilized the vegetable material from 
these studies to train our machine learning approach. This included 
labeled and unlabeled 6-day old broccoli sprouts, 6-day old alfalfa 
sprouts, and 3 month old collard greens. All human study protocols 
were approved by the Oregon State University Institutional Review 
Board (IRB-2019-0123, IRB8343) and the Tufts University 
Institutional Review Board (IRB7421). All subjects provided written 
informed consent prior to being enrolled into each study.

2.2 Cultivation of labeled vegetables

Broccoli sprouts, alfalfa sprouts and collard greens were grown in 
the presence (labeled) or absence (unlabeled) of D2O. Broccoli and 
alfalfa sprouts were grown from commercially available seed (Sprout 
House, Kingston, NY and True Leaf Market, Salt Lake City, UT). 
Sprout seeds were sanitized with calcium hypochlorite (20,000 ppm, 
15 min), rinsed, and then soaked overnight in H20 or 25% D2O as 
previously described (31–37). Sprouts were then rinsed twice daily 
with H20 or 25% D2O for 5 additional days, harvested on day 6 and 
refrigerated until use. For labeled collard greens, we took advantage of 
archived samples from a separate trial conducted at Tufts University. 
Collard greens were grown hydroponically in the presence of 31% 
D2O as previously described (30) and growing conditions varied 
because the vegetables are consumed at differing ages of maturity. 
Unlabeled collard greens were purchased locally from First Alternative 
Co-Op (Corvallis, OR) and sourced from Winter Green Farm 
(Noti, OR).

2.3 Human study designs

2.3.1 Broccoli spout study
For the broccoli study, thirty two healthy women and men, 

19–55 years old, were recruited in Corvallis, Oregon (29). The study 
was conducted in the Linus Pauling Institute and the Moore Family 
Center metabolic kitchen between April and November 2021. 
Exclusion criteria included (1) tobacco use; (2) BMI <18.5 or > 30.0 kg/
m2; (3) pregnancy or breastfeeding; (4) use of oral antibiotic 
medication (within past 6 months); (5) extensive vigorous exercise (7+ 
hours per week); (6) use of medications to control cholesterol levels or 
fat absorption; and (7) a history of significant acute or chronic illness 
and, bariatric surgery and, gastrointestinal procedures or disorders. 
Eligibility of subjects was confirmed. Subjects were randomized to 
four treatment groups, receiving either (1) unlabeled broccoli sprouts, 
(2) labeled broccoli sprouts, (3) unlabeled alfalfa sprouts, or (4) 
labeled alfalfa sprouts. The study was organized as 8 cohorts and there 
were no differences between treatment groups in age (mean age 33), 
sex (59% female, 41% male), nor racial composition (50% White, 28% 
Asian, and the remaining 22% included person identifying as 
American Indian/Alaskan Native, African American, more than one 
race, other race, or decline to answer).

Participants in the broccoli arms consumed fresh broccoli sprouts 
(40.5 g on average) containing 100 μmol sulforaphane equivalents. 
Sulforaphane contents in broccoli sprouts were analyzed on the day of 
harvest for every cohort as previously described (29). The alfalfa 

sprout dose was equivalent in weight to the amount of sprouts 
consumed by the broccoli sprout participants. Participants in all arms 
consumed sprouts with a standardized breakfast and fasted for at least 
8 h prior to the meal (32). One week before and throughout the sample 
collection period, subjects self-reported dietary intake and were 
instructed to avoid consuming foods, beverages, and supplements 
containing cruciferous vegetables, and live/active cultures, or 
probiotics. Participant intake records indicated compliance with 
avoiding confounding food items. Diet records were analyzed using 
Food Processor® SQL (EHSA, Salem, OR).

Baseline 0 h spot urine collections were obtained prior to sprout 
consumption. Following consumption of sprouts, total urine was 
collected over 72 h with urine collections occurring between 0–3, 3–6, 
6–24, 24–48, and 48–72 h post consumption. While in the subject’s 
possession, urine was refrigerated or kept on ice in opaque jugs 
containing granulated boric acid (~20 mg/mL) to stabilize metabolites. 
Upon receipt, the urine was acidified with trifluoroacetic acid (TFA) 
to a final concentration of 10% v/v, frozen in liquid nitrogen, and 
stored at -80C until analysis.

2.3.2 Collard greens study
The collard greens study took advantage of unique archived urine 

and plasma samples that were collected pre- and post- consumption 
of heavily labeled collard greens (30). These samples were generated 
when 21 participants, 18–40 year old, resided at the Metabolic 
Research Unit (MRU) at JM USDA HNRC at Tufts University and 
consumed a diet low in cruciferous vegetables. The diet was provided 
on a rotating menu every 3 days for 1 month. On day 28 participants 
consumed a single dose of 100 g steamed deuterium-labeled collard 
greens with breakfast. Total 24 h urine was collected during the 
cruciferous vegetable depletion phase (control urine) or during the 
24 h following collard green consumption (labeled urine). Control 
plasma was collected at 0 h and labeled plasma was collected 4 h post-
labeled collard greens consumption. Details of how urine and plasma 
samples were processed are previous published (30). Because 
HiResTEC software requires unlabeled control samples to do global 
untargeted stable isotope tracing, we conducted a small trial (n = 5, 
Corvallis, Oregon) to generate the needed unlabeled samples. Like the 
urine and plasma samples from the archived collard green samples, 
healthy adult participants consumed 100 g of steamed collard greens, 
although the collard greens were unlabeled. The methods of plasma 
and urine collection replicated those at Tufts University (30).

2.4 Metabolomics analysis

The same metabolomics method was used on all samples, 
however, extraction protocols differed (see below). Briefly, HPLC was 
performed on a Shimadzu Nexera system with a phenyl-3 stationary 
phase column (Inertsil Phenyl-3, 5 μm, 4.6 × 150 mm, GL Sciences) 
coupled to a quadrupole time-of-flight MS (AB SCIEX TripleTOF 
5,600), as previously described (38, 39) (Figure 1A).

Metabolomics data preprocessing is described in Figure  1. 
Preprocessing of metabolomic features was completed using XCMS 
(v3.12.0) (40–42) Optimal preprocessing parameters for XCMS were 
selected using AutoTuner (v1.4.0) (43). XCMS preprocessing 
parameters are shown in Supplementary Table S1. HiResTEC (v0.59) 
was used to identify candidates to evaluate with our machine learning 
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(ML) model (23) (Figure 1B). HiResTEC was chosen over X13CMS 
and geoRge as it has been shown to perform the best of the three 
packages (44). Metabolite annotation was conducted using Canopus 
for de novo annotation, or using our in-house metabolite library, or 
manual interpretation of MS/MS fragmentation patterns (45).

2.4.1 Human biofluid metabolite extraction
Metabolites from urine were extracted (100 μL urine/400 μL ice 

cold methanol), mixed vigorously, and clarified by centrifugation 
(14,000 rpm for 5 min) then transferred to MS vials (46). Metabolites 
from plasma were extracted (50 μL plasma/200 μL ice cold 
methanol:ethanol (1:1, v/v)), mixed vigorously, and clarified by 
centrifugation (13,000 rpm for 15 min) then transferred to MS 
vials (33).

2.4.2 Plant metabolite extraction
To extract metabolites from broccoli and alfalfa sprouts, sprouts 

were first freeze dried then extracted (30 mg freeze dried sprouts/700 μL 
ice cold methanol). Sprout and methanol mixture was homogenized 
on ice with Precellys beads then clarified with centrifugation 
(13,000 rpm for 10 min). Extracted supernatant from sprout samples 
was diluted 1:10 with 1:1 methanol:water (v/v) and transferred to MS 
vials. For collard greens, cooked collard green samples were 
homogenized using a hand-blender in an ice cold 80:20 (v/v) solution 
of methanol:water. Homogenate was centrifuged and extracted 
supernatant was diluted 1:10 with 80:20 (v/v) methanol:water.

2.5 Label identification approach summary

Our approach first uses HiResTEC to identify candidate 
metabolites from labeled or unlabeled samples. Next it extracts a 

set of features describing each isotopologue of a candidate 
metabolite and applies a random forest classifier to predict the 
probability that the isotopologue comes from a deuterated 
compound. Isotopologues are defined as a set of compounds 
which differ only in the number of isotopes they contain (here 2H 
atoms), and thus have the same structure and identity. For each 
candidate, we aggregate the predicted probabilities for all of its 
isotopologues from the labeled and unlabeled conditions, 
respectively. Lastly, using the aggregated probabilities the 
candidates are scored and the top scoring candidates are 
investigated for label incorporation.

2.6 Machine learning method for scoring 
candidates

The ML-based scoring of candidates consists of three main steps:
The first step applies a set of filtering rules to remove noisy 

candidate metabolites erroneously detected by XCMS. These filtering 
rules are created by hand, based on domain knowledge and manual 
inspection of typical noisy detections. The specific filtering rules are 
listed in Supplementary Table S2.

In the second step, we apply a classifier to predict the probability 
that each isotopologue comes from a labeled compound. As input to 
the classifier, each isotopologue is described by a set of features, which 
are described in Supplementary Table S3 (Figure  1C). In many 
isotopologues, not all four peaks are observed. The M1 peak is critical 
and most reliably available. Due to its critical importance, we impute 
the features associated with missing M1 peaks using a random forest 
classifier trained on complete isotopologue data. All features 
associated with M2 and M3 peaks are discretized with an additional 
“missing” category to address missing M2 and M3 peaks.

FIGURE 1

Description of analysis pipeline.
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Our training data for building the classifier comes from 
metabolites extracted from the broccoli and alfalfa plants themselves. 
Labeled compounds in the plants display a high degree of label 
incorporation and HiResTEC has reasonable success in identifying 
labeled metabolites from these samples. While HiResTEC produces a 
reasonable set of true positive isotopologues, the resulting candidates 
do not resemble the typical isotopologues observed in human samples 
due to their high degree of labeling, thus not appropriate for training 
our classifier. To overcome this problem, labeled plant compounds 
rejected by HiResTEC were verified by human inspection to identify 
false negatives and build a training set that better resembles the 
isotopologue patterns anticipated to be observed in human samples. 
These candidates were selected by manually evaluating the 600 
rejected candidates by HiResTEC. In total, our training data contains 
600 candidates from broccoli and alfalfa. Some candidates were 
labeled only in broccoli or alfalfa, while others were labeled in both 
resulting in a total of 272 labeled and 928 unlabeled candidates.

We chose Random Forest (RF) as our classifier because it is 
particularly robust to overfitting, which is a crucial property as 
we need our classifier to apply to inputs that differ significantly from 
the training data. We tested the transferrability of the random forest 
classifier by training it using the alfalfa data and tested it on the 
broccoli data. It achieved an area-under-the-ROC-curve score of 0.95, 
and an area-under-the-precision-recall-curve score of 0.952 (see 
Supplementary Figure S1), indicating strong prediction performance 
and robustness to transfer.

Using the combined broccoli and alfalfa data set, we trained a 
Random Forest (RF) classifier with 100 trees (maximum depth = 5 and 
minimum instance counts =10) as implemented by the python 
package SciKitLearn (47). The hyperparameters were selected using 
cross-validation on the training data.

In the final step, we applied our trained RF model and produced 
a final score for each candidate (Figure 1D). Note that a candidate 
compound must be detected in multiple labeled samples as well as 
multiple unlabeled samples. We take all the isotopologues associated 
with a candidate and apply the RF classifier to predict the probability 
of each isotopologue being labeled. We  then group all the 
isotopologues from the labeled samples and compute their average 
predicted probability of being labeled, denoted as pL. Similarly, 
we  group all the isotopologues from the unlabeled samples and 
compute their average predicted probability of being labeled, denoted 

as pU. Finally, we compute the score of the candidate by p
p c

L

U +
, where 

pU is used as a reference point to normalize pL. Here c = 0.01, and is 
introduced to ensure numerical stability. For a candidate to score high, 
its pL must be significantly higher than its pU. This effectively allows us 
to rule out noisy detections that score high by our RF classifier but 
have similar pL and pU values.

To evaluate the generalizability of our approach, we tested it on 
two different biofluids derived from the consumption of 2 different 
cruciferous vegetables. First, we evaluated if the classifier, which was 
trained on plant-data, could provide useful ranking of the candidates 
for human urine data. We did a blinded test of three methods where 
candidates were generated using (1) our classifier-informed ranking 
method, (2) using p-values generated by HiResTEC, or (3) by 
randomly selecting candidates, and then evaluated for the plausibility 
of label being incorporated into the candidates. Our classifier-
informed ranking method out-performed the other two methods 
indicating strong performance and usability. Given our success with 

this task, we next wanted to evaluate if our approach would work on 
plants that were significantly more labeled than the broccoli and 
alfalfa sprouts, so we used our approach on the urine from labeled-
collard green consumers. Lastly, we wanted to evaluate our approach 
on another biofluid so we used our approach the plasma of labeled-
collard green consumers.

2.7 Validation of deuterium incorporation

PeakView software (AB SCIEX, Framingham, MA) was used to 
validate the incorporation of label into metabolites selected by our 
machine learning model. Briefly, identified metabolites were searched 
across all samples using retention time and mass. The ratio of the 

intensity of two consecutive isotopologues (
M
M

n

n+1
) was calculated for 

each compound and compared between the labeled and unlabeled 
conditions. Altered isotopologue ratios in the label-condition 
indicated the incorporation of deuterium into metabolites. Since 
we do not have a definitive chemical formula for most metabolites and 
we are not interested in the degree of label incorporation, we did not 
conduct natural isotope abundance correction.

2.8 Data and code availability

Metabolomics data is available on metabolomics workbench. 
Scripts and training data are available on github at “school-count/
Metabolomics_project”.

3 Results

3.1 Hydroponic growth of plants in the 
presence of D2O labels metabolites

To validate that growing broccoli and alfalfa sprouts in the 
presence of D2O leads to deuterium incorporation and enrichment, 
plant material was analyzed using untargeted metabolomics. 
Subsequent analysis of the resulting MS data with HiResTEC led to 
many positive hits which were further hand validated for label 
incorporation (Figure 2). Overall, 195 metabolites were validated for 
label, 77 of which were labeled in both broccoli and alfalfa sprouts. 
Among the labeled metabolites that were unique to a single type of 
sprout, 56 of the labeled metabolites were labeled only in broccoli 
sprouts while 62 metabolites were labeled only in alfalfa sprouts. These 
results suggest unique compounds in each plant are labeled with 
deuterium and thus identification of label in human samples following 
consumption may be  indicative of consumption of that vegetable. 
Analysis of the collard greens also showed a high level of label 
incorporation, with many positive hits using HiResTEC. In the collard 
green plants, a notably higher degree of deuterium incorporation was 
observed, presumably due to the longer exposure to label (3 months 
vs. 5 days). Overall, between both sprouts and collard greens, 
incorporation of label into plant material resulted in a greater number 
of isotopologues and an altered isotopologue ratio compared to the 
unlabeled controls (which contain naturally occurring 13C isotopes). 
Additionally, this analysis showed that deuterium-labeled metabolites 
can be detected via untargeted metabolomics without deuterium-
hydrogen exchange occurring.
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To evaluate the feasibility of using a machine learning approach 
to rank candidate labeled metabolites in human samples, a model was 
trained on candidates from the alfalfa sprouts and tested on 
candidates from the broccoli sprouts. The receiver operating 
characteristic (ROC) curve area under the curve (AUC) was 0.95 and 
the AUC of the precision-recall curve was 0.95 for predicting label 
(Supplementary Figure S1). These results indicated that our model 
was successful in discriminating between labeled and unlabeled 
metabolites in broccoli.

3.2 Labeled metabolites can 
be successfully detected in human urine 
and plasma

Principal component analysis (PCA) revealed significant 
differences in metabolite profile of urine over time following broccoli 
sprout consumption (Supplementary Figure S2A). The 3 and 6 h time 
points were clearly separated on the PCA plots from baseline samples, 
while the 24 h collection was only modestly distinct. Importantly, 
samples for individuals who consumed labeled broccoli sprouts were 
not distinct from those consuming unlabeled sprouts at a given 
timepoint on the PCA plot. We next looked in the human samples for 
labeled metabolites and unlike in the plant material, HiResTEC 
software yielded hundreds of false positive and false negative candidate 
labeled metabolites. Sorting through these results was time and labor 
intensive. To address this issue, we used our machine learning model, 
which was trained on labeled and unlabeled metabolites from the 
vegetable samples, to prioritize which candidates to further investigate 
as labeled in human samples. We applied our model to metabolite data 
derived from the urine of subjects who consumed a single serving of 
broccoli sprouts grown in the presence of either D2O or H2O for 5 days. 
We  successfully identified 6 metabolomic features representing 3 
metabolites enriched with deuterium in the urine samples of 

individuals who consumed labeled broccoli (Figure 3A). Table 1 shows 
the mean isotopolgue ratio for each metabolite for all 16 labeled and 
unlabeled consumers as well as the standard deviation. 
Supplementary Table S4 shows the raw intensities of each isotoplogue 
for all samples measured and is organized by labeled metabolite 
(Supplementary Table S4). Supplementary Figure S3 provides the MS/
MS data for labeled metabolites (Supplementary Figure S3). No labeled 
metabolites were detected in the urine of labeled nor unlabeled alfalfa 
sprout-consumers. The deuterium-enriched metabolites were only 
present in urine between 0–3 and 3–6 h. The fast metabolite excretion 
is consistent with a previous metabolomics study and indicated that 
these compounds are most likely bioactive xenobiotics (33). MS/MS 
matching to publicly available databases yielded no probable hits, thus 
we  utilized de novo annotation techniques to predict class and 
molecular formula of identified metabolites (45). All three of the 
metabolites were predicted as glucuronidated compounds supporting 
the notion that the labeled metabolites were bioactive xenobiotics 
derived from broccoli which had been conjugated with glucuronic acid 
(Table 2). One of these metabolites we predicted to be indole-3-acetic 
acid-N-O-glucuronide supporting this hypothesis. Indeed, indole-3-
acetic acid is a known plant hormone but it may also be derived from 
glucosinolates in the broccoli sprouts. The labeled metabolites were not 
present in urine of alfalfa sprouts consumers indicating that they are 
likely unique to broccoli (Supplementary Table S5).

As our model was successful in identifying labeled metabolites 
from the urine of individuals who consumed labeled broccoli sprouts, 
we wanted to evaluate the model’s ability to identify labeled metabolites 
from other vegetables. We next applied our model to the metabolite 
data derived from urine of individuals who consumed collard greens 
grown in the presence of 33% D2O for 3 months. PCA showed modest 
differences in the urine between the baseline and 24 h post collards 
sample (Supplementary Figure S2B) which may be due to a difference 
in urine collection method (total 24 h urine collection vs. 0–3, 3–6 time 
frame windows). In the urine of collard greens consumers, we detected 

FIGURE 2

Growing sprouts in D2O significantly alters their isotopologue distribution. Spectra of matched unlabeled (A) and labeled (B) metabolites extracted from 
broccoli sprouts grown in the presence of H2O or 25% D2O, respectively. Each column represents one metabolite. Metabolites from broccoli grown in 
the presence of D2O display a markedly different isotopologue pattern exhibiting a greater number of isotopologues and an altered isotopologue ratio 
compared to metabolites from sprouts grown in H2O.
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7 metabolomic features representing 5 metabolites which were 
enriched with deuterium (Table  1; Figure  3B). Of the detected 
metabolites, one was predicted to be dihydrosinapic acid, an N-acyl-
alpha amino acid, an aminopyrimidine, and a sulfuric acid monoester 
(Table  2). All labeled compounds detected in the collard green 
consumers’ urine except the aminopyrimidine were found to 
be present, but not labeled, at all timepoints in both the alfalfa and the 
broccoli consumers’ urine (Supplementary Table S5). Conversely, the 
aminopyrimidine was found in neither the alfalfa nor broccoli 
consumers’ urine. Comparison of the presence of labeled metabolites 
across treatment groups is shown in Supplementary Table S5.

To evaluate the usability of our approach on other biological 
fluids, and compare signatures discovered in plasma to those in urine, 
we applied our model to metabolomics data generated from plasma 
samples collected 4 h following the consumption of labeled collard 
greens. In the plasma, we detected deuterium-incorporation in 11 
metabolomic features corresponding to 5 metabolites. 
Supplementary Table S6 shows the mean isotopolgue ratio for each 
metabolite for all 16 labeled and unlabeled consumers as well as the 
standard deviation. Of these 5 metabolites, one was annotated as 
isoleucine via our in-house library, one was predicted to be a linoleic 
acid or derivative, one was predicted as an alkaloid, and the final two 
did not have MS/MS information (Table 2). The detected fatty acid has 
a markedly different isotopologue pattern compared to the other 
detected deuterium-labeled metabolites and the fatty acid’s 
isotopologue pattern was more similar to those detected in the plants 
themselves as opposed to those detected in urine (Figure 3C).

Taken together, these results indicate that deuterium-labeled 
metabolites can be  recovered from human plasma and urine 
following the consumption of foods intrinsically labeled with 
deuterium. Furthermore, our ML-based approach to label 
identification is fast, flexible and yields positive results in both human 
urine and plasma samples as well as from samples collected after the 
consumption of two different plants grown in the presence of 
deuterium for different lengths of time.

4 Discussion

In this study, participants were fed broccoli sprouts, alfalfa sprouts, 
and collard greens grown in the presence of D2O to label their 
metabolites. First, we showed that plant metabolites can be successfully 
enriched with deuterium, intrinsically labeling their metabolites. This 
approach was taken to identify food-derived biosignatures of 
cruciferous vegetable consumption as opposed to endogenous 
compounds which are altered with consumption, or effect biomarkers. 
Next, we met our objective of conducting global untargeted stable 
isotope tracing and demonstrated that a machine learning classifier 
trained on data generated from deuterium-labeled plants can be used 
to prioritize metabolites in human urine and plasma for discovery of 
labeled human metabolites that may act as biosignatures of food 
consumption. These compounds can potentially be used for further 
annotation and validation as food biomarkers. While not an automatic 
process, our machine learning approach allowed us to quickly sort 
through thousands of metabolites for those most-likely to be labeled. 
This helped resolve the challenges presented by currently available 
software which yields a high number of false positives and false 
negatives. Using our machine learning approach, we  successfully 
identified a total of 24 deuterium-labeled metabolomic features in 
human urine and plasma which corresponded to 8 metabolites in 
urine and 5 metabolites in plasma. The presence of label in these 
metabolites allows us to conclude that the metabolites were directly 
derived from the food of interest, and not an endogenous metabolite 
that increased in abundance in response to the consumption of the 
study food. These metabolites may represent novel biosignatures of 
broccoli sprout consumption in our clinical trials, however, validation 
of these metabolites as biosignatures will require more research across 
a larger and more diverse cohort of individuals. Additionally, their 
rapid elimination suggest they are bioactive. To our knowledge, this is 
the first time global untargeted stable isotope traced metabolomics has 
been successfully used in human samples to identify labeled 
metabolites from a food-source. Importantly, as global untargeted 

FIGURE 3

Spectra of metabolites recovered from the plasma and urine of broccoli sprouts and collard green consumers. Matched spectra from (A) broccoli 
sprout consumer urine, (B) collard green consumer urine, (C) collard green consumer plasma. Top panel represents unlabeled metabolites and bottom 
spectra represent matched labeled metabolites. The higher number of co-eluting peaks in (B) and high degree of label in (C) make detecting label 
particularly challenging.
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stable isotope traced metabolomics has been used broadly across the 
life sciences, our new research tool published here should be useful to 
other fields of research (14, 48, 49).

In recent years there has been increasing interest in identifying 
biological signature of foods as biomarkers of food intake (6–9). This 

study represents a significant advance in this area and presents a novel 
framework and approach for biomarker discovery. While food-
metabolite based biomarker discovery has typically been carried out 
using untargeted metabolomics without labeled foods, these analyses 
cannot separate between host- and plant-derived metabolites (11, 12, 

TABLE 1 Mean isotopologue ratios of labeled-compounds detected in urine.

Studya Ionization 
mode

RT m/z Time post 
consumption

Condition M0/M1 
ratiob

M1/M2 
ratio

M2/M3 
ratio

M3/M4 
ratio

Broccoli 

Urine

Negative 23 426.1023 0–3 h Unlabeled 4.71 ± 0.61 3.7 ± 1.7

Labeled 1.27 ± 0.16 1.68 ± 0.1

3–6 h Unlabeled 4.04 ± 0.54

Labeled 1.2 ± 0.11 1.85 ± 0.13

21.18 366.0817 0–3 h Unlabeled 4.61 ± 1.23 4.74 ± 1.3

Labeled 1.07 ± 0.12 1.96 ± 0.22

3–6 h Unlabeled 4.28 ± 1.08 4.15 ± 1.0

Labeled 1.21 ± 0.11 1.91 ± 0.24

20.7 510.1234 0–3 h Unlabeled 3.14 ± 1.0

Labeled 0.78 ± 0.16

3–6 h Unlabeled 3.25 ± 1.0 4.27 ± 0.27 2.74 ± 1.6

Labeled 0.78 ± 0.12 1.31 ± 0.18 1.61 ± 0.18

Positive 23 404.0952 0–3 h Unlabeled 4.01 ± 0.61 4.2 ± 0.64

Labeled 1.05 ± 0.10 1.83 ± 0.30

3–6 h Unlabeled 3.69 ± 0.48

Labeled 1.18 ± 0.13 1.93 ± 0.24

21.18 390.0787 0–3 h Unlabeled 3.84 ± 0.81 3.85 ± 0.67

Labeled 1.0 ± 0.17 2.12 ± 0.22

3–6 h Unlabeled 1.03 ± 0.55

Labeled 0.77 ± 0.28

20.7 512.1394 0–3 h Unlabeled 2.85 ± 1 3.67 ± 0.85

Labeled 0.72 ± 0.13 1.50 ± 0.16

3–6 h Unlabeled 2.78 ± 0.91 3.51 ± 1.1

Labeled 0.70 ± 0.11 1.41 ± 0.16

Collard 

Greens 

Urine

Negative 17.79 250.0728 0–24 h Unlabeled 7.70 ± 0.41

Labeled 4.06 ± 0.71 1.95 ± 0.75 1.86 ± 0.40 2.67 ± 0.30

15.91 251.0138 0–24 h Unlabeled 8.77 ± 0.34

Labeled 0.88 ± 0.44 0.99 ± 0.07 2.16 ± 0.34

18.97 289.0394 0–24 h Unlabeled 7.54 ± 0.21

Labeled 4.12 ± 0.9 1.54 ± 0.33 1.36 ± 0.1 1.49 ± 0.34

20 225.0765 0–24 h Unlabeled 9.68 ± 1.69 4.18 ± 0.95

Labeled 4.51 ± 2.04 0.57 ± 0.16 1.81 ± 0.95 1.26 ± 0.11

Positive 20 227.0907 0–24 h Unlabeled 7.5 ± 1.13

Labeled 2.52 ± 1.0 0.75 ± 0.17 1.66 ± 0.57 1.93 ± 0.65

20 249.0727 0–24 h Unlabeled 8.85 ± 1.37

Labeled 2.75 ± 1.11 0.63 ± 0.17 1.82 ± 0.74 1.55 ± 0.21

21.17 304.2494 0–24 h Unlabeled 9.07 ± 1.42

Labeled 2.14 ± 0.93 1.22 ± 0.33 1.3 ± 0.23 1.76 ± 0.37

aData are from participants that consumed either labeled broccoli sprouts (n = 8), unlabeled broccoli sprouts (n = 8), or labeled collard greens (n = 21) as indicated in the table.
bData are the mean ratio of the indicated isotope abundance ± standard deviation in the indicated ratio.
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50). Food derived-compounds which are not present before 
consumption generate superior biomarker candidates compared to 
host-derived metabolites, thus presenting a key advantage of our work 
(7). Previous work conducted in rodents has proposed circulating 
glutathione levels as a potential biomarker of cruciferous vegetable 
consumption (11). While glutathione may serve as an “effect 
biomarker,” glutathione levels are known to be influenced by other 
dietary components such as polyphenols and vitamin E making it a 
poor food intake biomarker for cruciferous vegetables (7, 51–53). 
Discovering biomarkers for food groups that are specific to the food 
group is a key challenge that research in this field faces. We identified 
only a small number of labeled-metabolites in the urine of broccoli-
consumers and these metabolites were present for a limited period of 
time (3–6 h post consumption). However, some of these metabolites 
represent compounds which appear to be unique to broccoli. The fast 
excretion of these compounds follows a similar pattern to sulforaphane 
and other isothiocyanates, compounds which are unique to 
cruciferous vegetables and which are known for their anti-cancer 
effects (31, 32, 35, 36). Recent work employing machine learning to 
identify biomarkers of broccoli consumption in the fecal metabolome 
exhibited poor performance, most likely due to a high overlap between 
compounds from broccoli and those from other dietary sources (50). 
These findings may also explain why no labeled metabolites were 
detected in people who consumed alfalfa sprouts: there were no 

dietary restrictions on other plants from family Fabaceae, thus any 
unique alfalfa compounds were diluted by other dietary sources. 
Future work is needed to validate the specificity and use of the 
detected-labeled compounds as signatures and biomarkers of broccoli 
sprout consumption. Additionally, work is also needed to determine 
whether the labeled compounds we detected are present following 
consumption of mature broccoli, akin to what consumers commonly 
purchase at the supermarket. Another avenue of important future 
work is the elucidation of the structure, and investigation of the 
potential bioactivity of the identified labeled compounds.

The discovery of isoleucine, indole-3-acetic acid-N-O-glucuronide, 
and dihydrosinapic acid as labeled metabolite from collard greens or 
broccoli sprouts highlights the difficulties in identifying food specific 
biosignatures and biomarkers. Due to its lack of specificity to cruciferous 
vegetables these metabolites are poor biomarkers. These metabolites are 
an example of a major limitation to the methodology, namely the 
potential biomarkers identified may not be specific to the food source as 
other food groups may also contain the same metabolite. In the case of 
isoleucine it was enriched with deuterium because of the long duration 
of collard greens being grown with D2O. While one would assume that 
the label pattern of isoleucine from collard greens would be diluted due 
to the high abundance of isoleucine, both in circulation and from other 
dietary components, investigation of the label patterns at baseline, in the 
plants, and following consumption of labeled sprouts gives greater insight 

TABLE 2 Masses, retention times, and annotations of labeled-compounds.

Study Retention time m/z Adduct Neutral mass Identification

Broccoli Urine 23 426.1023 [M-H + FA]- 381.105 Predicted: Glucuronidated Compound

404.0952 [M + Na]+

21.18 366.0817 [M-H]- 367.0892 Predicted: indole-3-acetic acid-N-O-

glucuronide390.0787 [M + Na]+

20.7 510.1234 [M-H]- 511.1314 Predicted: Glucuronidated Compound

512.1394 [M + H]+

Collard Greens 

Urine

20 225.0765 [M-H]- 226.0835 Predicted: Dihydrosinapic Acid

227.0907 [M + H]+

249.0727 [M + Na]+

21.17 304.2494 [M +?]+ Predicted: No MS/MS Captured

17.79 250.0728 [M +?]- Predicted: N-Acyl-Alpha Amino Acids

15.91 251.0138 [M +?]- Predicted: Aminopyrimidines

18.97 289.0394 [M +?]- Predicted: Sulfuric Acid Monoesters

Collard Greens 

Plasma

6.36 130.0867 [M-H]+ 131.0939 Isoleucine

132.1011 [M + H]+

24.8 311.2229 [M-H]+ 312.2291 Predicted: Linoleic Acids and Derivatives

295.2247 [M + H-H2O]+

24.8 313.2372 [M-H]+ 314.2426 No MS/MS Captured

297.2375 [M + H-H2O]+

24.8 333.2044 [M-H]- 334.2113 Predicted: Alkaloids

335.2181 [M + H]+

24.8 335.2199 [M-H]- 336.2254 No MS/MS Captured

403.2071 [M-H + HCOONa]-

337.2327 [M + H]+
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FIGURE 4

Spectra of isoleucine from (A) collard greens, (B) baseline plasma, (C) 4  h plasma. Isoleucine detected in collard green plant show a high degree of 
label (A) while isoleucine detected in circulation prior to consumption of labeled collard greens contains no label (B). Isoleucine detected in circulation 
4  h after the consumption of labeled collard greens shows a similar M0 and M1 pattern as at baseline, however, M2, M3, and M4 can be detected 
representing the deuterium-incorporated isotopologues.

into the disposition of label in vivo. In the plant, many isotopologues are 
observed (Figure 4A), while at baseline (pre-consumption of plants) only 
the monoisotopic mass (M0) and an isotopologue containing a singular 
13C atom (M1) are observed (Figure 4B). In plasma, however, while the 
ratio of M0 and M1 look similar in between the labeled- and unlabeled- 
collard green consumers, the labeled-consumers exhibit a tail of heavier 
isotopologues (M2, M3, M4) which are not present in the unlabeled-
consumers (Figure 4C). This heavy isotopologue tail can be assumed to 
be directly attributed to the presence of these heavier isotopologues in the 
plant, thus, isotopologue distribution detected in circulation appears to 
be a mixture of the isotopologue patterns observed at baseline and in the 
plants. Similarly, other metabolites detected in the urine of collard green 
consumers appeared in the urine of broccoli and alfalfa consumers, 
including at baseline. This again highlights the difficulty of identifying 
specific biomarkers of food as some compounds are most likely 
non-specific plant compounds that were labeled due to the long growing 
period of collard greens with D2O. Future work should consider the 
degree of label achieved in the food of interest to work towards 
discovering biomarkers that are specific to the food of interest.

A major limitation of this study is the lack of annotations for many 
of the deuterium-labeled metabolites we identified which is a problem 
with food biomarker discovery. Indeed, we tentatively annotated a small 
number of metabolites however these compounds are common and well 
known plant metabolite that lack specificity to cruciferous vegetables. 
Within the field of metabolomics, annotation of metabolites is typically 
completed via MS/MS matching using databases, however, these 

databases are typically skewed towards endogenous compounds and 
pharmaceuticals while lacking plant- and bacterial-derived metabolites 
(54–56). Given that the deuterium-labeled metabolites are derived 
directly from the plants, it is unsurprising that MS/MS matching yielded 
poor results. To overcome this problem, a de novo annotation software 
was utilized to broadly predict the classes of the detected metabolites, 
which while informative is less specific and has higher uncertainty than 
MS/MS matching. Unsurprisingly, some of the predicted classes were for 
compounds that contained glucuronides, which are conjugated with 
glucuronic acid. These findings support our hypothesis that many of the 
labeled metabolites we  identified are bioactive secondary plant 
metabolites as a major excretory pathway for xenobiotics is via glucuronic 
acid conjugation. While these findings support our hypothesis, the 
metabolism and biotransformation of these metabolites creates a further 
challenge in annotation as the parent metabolite in the plants may not 
have a similar mass nor retention time. Additionally, for compounds such 
as glucosinolates, which undergo enzymatic hydrolysis to become 
bioactive, many plant derived metabolites may have different structures 
altogether then the parent compounds in plants (57, 58). Other 
limitations in the plant labeling and LC–MS/MS methodology should 
also be considered for future work in this field. We did not detect any 
labeled isothiocyanates, presumably because the glucosinolates in the 
sprouts were already formed in the seeds of the plants and thus 
glucoraphanin did not incorporate label. Our chromatographic method 
is focused on polar compounds (i.e., metabolites), thus chromatographic 
resolution for highly non-polar compounds, such as fatty acids, is limited. 
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Previous work using deuterated collard greens have shown that both 
vitamins E and K become deuterated, however, due to their strong 
lipophilicity we  could not detect them in our analysis (30, 59–62). 
Likewise, we  did not identify a potential biomarker of cruciferous 
vegetable consumption called S-methyl-L-cysteine sulfoxide (SMCSO) 
in our LC–MS/MS data due to limitations in LC–MS/MS 
methodology (63).

A major innovation of our study was the application of machine 
learning for biological signature discovery in conjunction with stable-
isotope tracing. Currently available software tools perform poorly on 
metabolites with a low degree of labeling, such as those in human urine, 
yielding a high number of false positives and false negatives. A key 
challenge we faced was the lack of training examples from the human 
samples. Instead, we had to resort to training our model from plant data, 
for which the labeled metabolites have a higher degree of deuterium-
incorporation and are easier to detect. Our approach took a model 
learned on such “clean” data and successfully adapted it for human data. 
Data generated from this study, and others using similar approaches, can 
be compiled to generate new training data which is more robust and 
representative of metabolites in human samples to supplement this data.

In conclusion, in this study we  utilized a machine-learning 
approach to rapidly prioritize candidate metabolites to evaluate for 
label incorporation. We  applied this approach to untargeted 
metabolomics data of human urine and plasma following the 
consumption of deuterium-labeled vegetables to identify biological 
signatures of cruciferous vegetable consumption. A major strength of 
our approach is that it allows us to identify signatures of food intake 
derived directly from broccoli sprouts or collard greens as opposed to 
host metabolites which reflect a functional response to a food 
exposure. This work highlights an innovative use of machine learning 
in biological sciences, a field likely to grow in the coming future. All 
in all, this work presents a novel approach to identifying biological 
signatures of food consumption for biomarker discovery and proves 
the feasibility of global untargeted stable isotope tracing in humans. 
Similar approaches can be applied to other foods and environmental 
exposures potentially advancing knowledge and accelerating signature 
and biomarker discovery in fields such as nutrition, environmental 
and molecular toxicology, and the pharmaceutical sciences.
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