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Background: The association between dietary zinc intake and epilepsy remains 
unclear. This study aimed to investigate the relationship between zinc intake 
from the diet and epilepsy, employing Mendelian randomization (MR) to explore 
potential causal links between zinc and epilepsy.

Methods: The cross-sectional study utilized data from the National Health 
and Nutrition Examination Survey (NHANES) conducted between 2013 and 
2018. Among the 4,434 participants included, 1.5% (67/4,434) reported having 
epilepsy. Restricted cubic spline models and logistic regression models were 
employed to examine the relationships between dietary zinc intakes and 
epilepsy. Subsequently, a 2-sample Mendelian randomization (MR) analysis was 
conducted using the inverse variance weighted (IVW) approach as the primary 
analysis.

Results: In the restricted cubic spline (RCS) analysis, the relationship between 
dietary zinc consumption and epilepsy displayed an L-shaped curve (nonlinear, 
p  =  0.049). After multivariate adjustments, the adjusted odds ratios for epilepsy 
in T2 (5.0–11.0  mg/day) and T3 (≥11.0  mg/day) were 0.49 (95% confidence 
interval [CI]: 0.26–0.92, p  =  0.026) and 0.60 (95% CI: 0.31–1.17, p  =  0.132), 
respectively, compared to the lowest dietary zinc consumption tertile (T1, 
≤5.0  mg/day). The IVW method indicated that genetically predicted zinc intake 
per standard-deviation increase was inversely associated with three types of 
epilepsy, including all types of epilepsy (OR  =  1.06, 95% CI: 1.02–1.11, p  =  0.008), 
generalized epilepsy (OR  =  1.13, 95% CI: 1.01–1.25, p  =  0.030), and focal epilepsy 
(documented hippocampal sclerosis) (OR  =  1.01, 95% CI: 1.00–1.02, p  =  0.025).

Conclusion: Our findings suggest that a daily zinc intake ranging from 5.0 to 
11.0  mg is associated with the lowest risk of epilepsy. Furthermore, Mendelian 
randomization (MR) studies provide additional support for the existence of a 
causal relationship between zinc and epilepsy.
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1 Introduction

With an estimated 68 million cases worldwide, epilepsy stands as 
one of the most prevalent and serious chronic neurological disorders 
(1). Despite extensive research, the process of epileptogenesis, the 
emergence of epilepsy, remains poorly understood. Zinc has been 
implicated in several proposed theories to explain the pathophysiology 
of epilepsy (2).

From early neonatal brain development to the maintenance of 
adult brain function, the trace metal zinc is a biofactor crucial to the 
central nervous system. Zinc regulates synaptic activity and neural 
plasticity at the cellular level during both development and adulthood 
(3). At the molecular level, zinc controls the activity of numerous 
important enzymes involved in brain metabolism, as well as gene 
expression via transcription factor activity. Depending on the 
concentration levels in the CNS, zinc exhibits a biphasic response that 
can be  both neurotoxic and neuroprotective (4). Research has 
emphasized zinc’s dual action in studying its impact on seizure latency 
and severity in rats modeling temporal lobe epilepsy. This was 
achieved through zinc supplementation alone or combined with 
valproic acid pre-treatment, a common antiseizure medication (5).

Zinc might have a significant impact on the pathophysiology of 
epilepsy and/or seizures. Studies on zinc’s effects on seizures have 
revealed that zinc exhibits dose-dependent pro- and anticonvulsant 
properties (3, 6, 7). Zinc may be  neurotoxic in large quantities; 
however, in animal models, zinc at moderate concentrations has been 
demonstrated to enhance the anti-epileptic effects of conventional 
medications (8). Despite the diverse roles zinc plays in the central 
nervous system, one term encapsulating all its multiple effects is 
“homeostasis” (3). Zinc homeostasis can be altered by an excessive or 
insufficient zinc intake, leading to malfunctioning cellular systems. 
Therefore, moderate zinc intake through diet can work in conjunction 
with conventional antiseizure medication (4).

There is a paucity of studies related to dietary zinc intake in people 
with epilepsy and there is a lack of clarity about the levels of zinc ingested. 
Utilizing information from the National Health and Nutrition 
Examination Survey (NHANES), we conducted a cross-sectional study 
to investigate the relationship between dietary zinc intake and epilepsy. 
Previous studies have also not assessed the causal association between 
the two. Genetic variations are used as instrumental variables in genetic 
Mendelian randomization (MR) analysis, a technique that examines the 
relationship between disease phenotypes and clinical features (9). To 
control for confounders and reverse causation, MR is preferable to 
observational research. This is because genetic alleles are randomly 
assigned during meiosis and are not influenced by environmental factors 
(10). Therefore, we also conducted a concurrent MR study to determine 
the causal association between the two.

2 Methods

2.1 Overall study design

The current investigation comprised two sections. In the initial 
section, we examined the association between dietary zinc intake 
levels and epilepsy using data from the NHANES, while controlling 
for various potential confounders. In the subsequent section, 
we utilized MR analysis of summary statistics from a genome-wide 

association study (GWAS) to assess the causal relationship between 
genetically predicted zinc levels and epilepsy.

2.2 Observational study

2.2.1 Study population in NHANES
The Centers for Disease Control and Prevention conducts NHANES, 

an annual cross-sectional survey involving approximately 5,000 
Americans. The survey covers demographics, nutrition, examination, 
laboratory, and questionnaire areas (11). The study adhered to the 
Declaration of Helsinki, obtaining written consent from participants. 
Professionals conducted investigations, including blood tests in mobile 
centers and interviews at participants’ homes. NHANES data can 
be accessed on their website1 as of December 1, 2023. We analyzed 
NHANES data from three cycles (2013–2014, 2015–2016, and 2017–
2018) regarding epilepsy and diet. Preliminary data excluded 12,343 
minors among 29,400 respondents. Among 17,057 adults, 8,716 lacked 
sufficient data on zinc intake, and 3,461 lacked sufficient data on epilepsy. 
An additional 446 participants were disqualified due to incomplete 
demographic information. Ultimately, 67 out of 4,434 individuals with 
complete data had an official epilepsy diagnosis (Figure 1).

2.2.2 Diagnosis of epilepsy
Data on epilepsy were collected through face-to-face interactions 

between the subjects and the researchers. During the survey, respondents 
were asked to list any prescription drugs they had taken in the previous 
30 days under medical supervision, along with a detailed explanation of 
the reasons for their use. If a medication reported for seizures was not to 
be an Anti-Seizure Medication (ASM) upon manual review, we excluded 
such medications from our case definition (Supplementary Table S1). 
The International Classification of Diseases (ICD) code for “epilepsy and 
recurrent seizures” (G40) was used to categorize participants, and those 
on medication were considered to be epilepsy patients.

2.2.3 Dietary zinc intake
The NHANES dietary survey, conducted between 2013 and 2018, 

assessed participants’ food and drink intake over a 24 h period. The 
Automated Multiple Pass Method by the United States Department of 
Agriculture was employed for data collection (12). These data enabled 
precise nutrient calculations for participants based on their dietary 
choices. While 24 h dietary recalls have inherent limitations, they offer 
more detailed information on food types and quantities compared to 
food frequency questionnaires (13, 14). Patients were stratified into 
three groups according to their zinc intake levels: T1 group (<5.0 mg 
per day), T2 group (5.0–11.0 mg per day), and T3 group (>11.0 mg per 
day). Detailed methodologies are outlined in the NHANES Dietary 
Interviewers Procedure Manuals (11).

2.2.4 Covariates
A variety of potential covariates were assessed according to previous 

studies (15–18), including age, sex, marital status, race/ethnicity, 
education level, family income, and dietary supplements taken. In the 
investigation of the association between dietary zinc consumption and 

1 http://www.cdc.gov/nchs/nhanes.htm
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epilepsy, all relevant covariates were considered potential confounders. 
Participants were categorized into two age groups: 20–50 and >50 years 
old. Race and ethnicity were classified into Mexican Americans, 
non-Hispanic Whites, non-Hispanic Blacks, and other races. Marital 
status had three categories: married, living with a partner, and living 
alone. Educational achievement was divided into three ranges: less than 
nine years, nine to twelve years, and more than twelve years. According 
to a US government report (12), the poverty income ratio (PIR) was 
used to divide household income into three categories: low (PIR ≤ 1.3), 
medium (PIR > 1.3 to 3.5), and high (PIR > 3.5). The question about 
medications and nutritional supplements taken during the previous 
month was used to calculate dietary supplements. This study followed 
the Strengthening the Reporting of Observational Studies in 
Epidemiology (STROBE) reporting guideline (19).

2.2.5 Statistical analysis
NHANES aimed to collect data representative of the 

noninstitutionalized civilian population in the United  States. 
Continuous variables in the characteristics of the study population are 
reported as the mean (standard deviation, SD) or proportions (%). 
Participants were stratified into tertiles based on their dietary zinc 
intake concentrations, with the lowest level assigned as the reference 
group (tertile 1, T1). The association between dietary zinc intake and 
epilepsy was examined through multivariable logistic regression 
analyses. Model 1 adjusted for age, sex, marital status, race/ethnicity, 
and education level. Model 2 incorporated family income and additional 

dietary supplements in addition to the variables in Model 1. Inflection 
points were determined using the likelihood-ratio test and bootstrap 
resampling method. Potential modifications to the relationship between 
dietary zinc and epilepsy were assessed for the following variables: sex, 
age (20–50 vs. >50 years), marital status (married or living alone vs. 
living with a partner), education level (≤12 years vs. >12 years), family 
income (low vs. medium or high), and dietary supplements. Subgroup 
heterogeneity was evaluated using multivariate logistic regression, and 
interactions between subgroups and dietary zinc intake were examined 
using likelihood ratio testing. Restricted cubic splines were employed to 
model the dose–response association between dietary zinc intake levels 
and epilepsy. R 4.3.2 (http://www.R-project.org, The R Foundation, 
Shanghai, China) (Accessed on December 1, 2023) and Free Statistics 
software (version 1.9; Beijing Free Clinical Medical Technology Co., 
Ltd.) (20) were the statistical software packages used for all analyses. A 
two-tailed test determined that a p-value of less than 0.05 was significant.

2.3 Mendelian randomization

2.3.1 Study design
In order to establish the causative association between genetically 

predicted zinc levels and epilepsy in our investigation, we conducted 
a univariable two-sample MR analysis (Figure 2). To investigate the 
causal effects of exposure on the outcome, MR analysis must satisfy 
three assumptions: (1) genetic variants should be correlated with zinc 

FIGURE 1

The study’s flow diagram.
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levels; (2) these variants should not be associated with confounding 
factors; and (3) they should only influence epilepsy through the 
mediation of zinc levels.

2.3.2 Genetic instrument selection
We integrated data from the GWAS for zinc, incorporating 

information from 2,603 European individuals (Supplementary Table S2). 
Our instrument selection process involved selecting single nucleotide 
polymorphisms (SNPs) with a genome-wide association with zinc levels 
(p < 5.0 × 10−6). Excluding SNPs in linkage disequilibrium (r2 threshold 
<0.001 within a 10,000 kb window), we extracted the remaining SNPs 
from the outcome datasets. Only SNPs with a minor Allele frequency 
(MAF) greater than 1% were considered in the study. F-statistics were 
calculated for each SNP to assess the strength of the exposures, 
excluding weak ones (F-statistics <10) (Supplementary Table S3) (21). 
The institutional review board approved and gave informed consent 
was obtained for all participants involved in this research. The study was 
conducted in compliance with STROBE-MR criteria (22).

2.3.3 Outcome data
We combined pooled data from the GWAS encompassing various 

forms of epilepsy. The data for this study were provided by the 
International League Against Epilepsy (ILAE) Consortium cohort 
(23) (Supplementary Table S2).

2.3.4 Statistical analysis
We utilized the inverse variance weighted (IVW) technique with 

random effects for obtaining causal estimates in the primary analysis. 
As secondary methods to address pleiotropy, we  employed the 
weighted median (WM) method and MR-Egger regression. The 
Cochran Q test was used to assess the heterogeneity of certain SNPs, 

and a p-value of 0.05 from the Cochran Q indicated potential 
pleiotropy. To ascertain the balance of pleiotropy, we calculated the 
intercept using MR-Egger regression as a measure of directional 
pleiotropy (24, 25). The study and analysis were performed using 
R-version 4.3.2, utilizing the Mendelian Randomization and 
TwoSampleMR packages (26, 27).

3 Results

3.1 Sociodemographic characteristics

Table 1 presents the demographic information and health status 
of the participants. There were 1999 males, with a mean age of 59.0 
(45.0, 70.0) years. A total of 67 individuals, accounting for 1.5% of the 
total, reported having epilepsy. Participants who were younger, male, 
married or cohabiting, non-Hispanic White, possessed higher 
educational levels, and had a medium family income tended to have a 
higher dietary zinc consumption.

3.2 Association between epilepsy and 
dietary zinc intake

As presented in Table 2, multivariable logistic regression models 
were employed to assess the association between dietary zinc intake 
and epilepsy. In Model 1, the risk of epilepsy in the second tertile (T2: 
5.0–11.0 mg/day) and third tertile (T3: ≥11.0 mg/day) of dietary zinc 
consumption was 0.45 (95% CI: 0.24–0.84, p = 0.013) and 0.53 (95% 
CI: 0.27–1.02, p = 0.058), respectively, compared to the lowest tertile 
(T1: ≤5.0 mg/day). Following adjustment for all covariates, the odds 

FIGURE 2

Principles of Mendelian randomization and assumptions. Principles of Mendelian randomization and assumptions. Assumption 1: exposure is robustly 
associated with genetic variants; Assumption 2: confounders are not associated with genetic variants; Assumption 3: genetic variants should influence 
the outcomes only mediated by the exposure of interest.
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ratios for epilepsy in T2 and T3 were 0.49 (95% CI: 0.26–0.92, 
p = 0.026) and 0.60 (95% CI: 0.31–1.17, p = 0.132), respectively, 
compared to the lowest tertile (T1: ≤5.0 mg/day). The risk of epilepsy 
was lowest with a daily consumption of 5.0–11.0 milligrams of zinc.

3.3 Dose–response relationship analysis

The association between dietary zinc intake and epilepsy revealed 
an L-shaped curve (nonlinear, p = 0.049) in RCS (Figure 3). In the 
threshold analysis, individuals consuming less than 8.0 mg of zinc 
daily had an OR of 0.81 (95% CI: 0.67–0.98, p = 0.031) for developing 
epilepsy (Supplementary Table S4). This suggests that beyond this 
threshold, increasing dietary zinc consumption is no longer associated 
with a decreased risk of epilepsy.

3.4 Stratified analyses based on additional 
variables

Stratified analyses were conducted in various subgroups to evaluate 
potential effect modifications in the relationship between dietary zinc 
and epilepsy. Subgroups included family income, sex, age, marital status, 
education level, and dietary supplements. No significant interactions 

were observed in any of the subgroups (Supplementary Table S5 and 
Supplementary Figure S1).

3.5 Mendelian randomization primary 
analysis and sensitivity assessment

The causal association between zinc and epilepsy was investigated 
through MR. In the initial stage, we aggregated effect estimates from 
individual genetic instruments using the IVW method. The IVW 
analysis indicated that genetically predicted zinc per standard-deviation 
increase was inversely associated with three types of epilepsy, 
encompassing all types of epilepsy (OR = 1.06, 95% CI: 1.02–1.11, 
p = 0.008), generalized epilepsy (OR = 1.13, 95% CI: 1.01–1.25, p = 0.030), 
and focal epilepsy (documented hippocampal sclerosis) (OR = 1.01, 95% 
CI: 1.00–1.02, p = 0.025) (Table 3). Sensitivity analysis indicated that 
none of the selected instruments exhibited horizontal pleiotropy (P 
intercept >0.05) or heterogeneity (P Q > 0.05) (Supplementary Table S6).

4 Discussion

Grains and pulses are major zinc sources for the majority of 
people worldwide (28). In the United States, around 30% of dietary 

TABLE 1 Population characteristics by categories of dietary zinc intake.

Characteristic Zinc intake, mg/d p-value

Total T1 (≤5.0) T2 (5.0–11.0) T3 (≥11.0)

NO. 4,434 663 2,174 1,597

Age (year), Mean (SD) 59.0 (45.0, 70.0) 61.0 (48.0, 71.0) 60.0 (45.0, 70.0) 57.0 (43.0, 68.0) <0.001

Sex, n (%) <0.001

  Male 1999 (45.1) 187 (28.2) 878 (40.4) 934 (58.5)

  Female 2,435 (54.9) 476 (71.8) 1,296 (59.6) 663 (41.5)

Race/ethnicity, n (%) <0.001

  Non-Hispanic white 2059 (46.4) 259 (39.1) 970 (44.6) 830 (52.0)

  Non-Hispanic black 971 (21.9) 214 (32.3) 474 (21.8) 283 (17.7)

  Mexican American 450 (10.1) 58 (8.7) 220 (10.1) 172 (10.8)

  Others 954 (21.5) 132 (19.9) 510 (23.5) 312 (19.5)

Education level (year), n (%) <0.001

  <9 298 (6.7) 59 (8.9) 156 (7.2) 83 (5.2)

  9–12 1,487 (33.5) 255 (38.5) 708 (32.6) 524 (32.8)

  >12 2,649 (59.7) 349 (52.6) 1,310 (60.3) 990 (62.0)

Marital status, n (%) <0.001

  Married or living with a partner 2,652 (59.8) 347 (52.3) 1,290 (59.3) 1,015 (63.6)

  Living alone 1782 (40.2) 316 (47.7) 884 (40.7) 582 (36.4)

Family income, n (%) <0.001

  Low 1,186 (26.7) 236 (35.6) 584 (26.9) 366 (22.9)

  Medium 1,695 (38.2) 254 (38.3) 816 (37.5) 625 (39.1)

  High 1,553 (35.0) 173 (26.1) 774 (35.6) 606 (37.9)

Dietary supplements taken, n (%) 2,811 (63.4) 406 (61.2) 1,377 (63.3) 1,028 (64.4) 0.370

Epilepsy, n (%) 67 (1.5) 17 (2.6) 26 (1.2) 24 (1.5) 0.041
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zinc is derived from pulses and cereals, with 50% coming from meat, 
and 20% from dairy products (29). Animal-based foods are the 
primary sources of easily accessible zinc. While fish and poultry have 
lower zinc content compared to red meat, which is the most abundant 
and common source of the mineral (30). Discussions typically focus 
on the potential adverse health effects associated with zinc intake, 
considering both deficiency (when intake is too low) and toxicity 
(when intake is too high). Whether diagnosing healthy populations or 
special populations, it is essential to investigate dietary zinc intake 
within the appropriate range. This ensures a comprehensive 
understanding of its impact on health outcomes, considering the 
varied dietary sources and potential adverse effects associated with 
both deficiency and toxicity.

We integrated NHANES 2013–2018 data, incorporating 4,434 
US participants aged 20 or older in this study. The investigation 
assessed the association between dietary zinc intake and epilepsy, 
revealing an L-shaped relationship in the adult American 
population. The lowest risk of epilepsy was associated with a daily 
zinc intake of 5.0–11.0 mg. Stratified analyses affirmed the 
robustness of the relationship. Importantly, Mendelian 
randomization analyses indicated a potential causal link between 
zinc and certain types of epilepsy, including all types of epilepsy, 
generalized epilepsy, and focal epilepsy (documented hippocampal 
sclerosis). This study represents the initial exploration of the 
relationship between dietary zinc intake and epilepsy in the US 
adult population, providing insights into a potential 
causal connection.

Zinc, a crucial divalent cation and the second most abundant 
metal in the human body, plays an indispensable role in supporting 
life. Despite being required in minimal quantities, around 100 
enzymes depend on zinc to execute vital chemical reactions. The 
potential link between zinc and epilepsy is substantiated by the 
observation that the highest levels of zinc in the brain resided in the 
hippocampus (31)—an essential region for cognition (32–34) and 
mood (35, 36), extensively studied in relation to epilepsy (37). 
Seizures, often associated with an imbalance between neuronal 
excitation and inhibition (38), reveal zinc’s interaction with both 
excitatory (glutamatergic) and inhibitory (γ-aminobutyric acid 
(GABA)-ergic) systems, influencing excitation and inhibition. 
Notably, zinc demonstrates dose-dependent actions, serving both pro- 
and anti-convulsant roles. Despite zinc’s diverse functions in the 
central nervous system, the concept of homeostasis succinctly captures 
its multifaceted roles (39, 40). Alterations in zinc homeostasis, 
whether through excessive or insufficient zinc intake, can disrupt 

cellular systems, highlighting the delicate balance required for 
optimal functioning.

Zinc, beneficial at normal levels, becomes detrimental when 
homeostasis is disrupted, leading to neuronal death through distinct 
mechanisms. In mice with epilepsy, a low zinc diet decreases brain 
zinc levels, increasing susceptibility to seizures (41), while a high zinc 
diet has the opposite effect. Zinc’s impact on brain function during 
seizures is dose-dependent, with levels above a certain threshold 
(>100 mM) potentially causing neural cell death (42). Studies reveal 
low calcium, iron, and zinc intake in children with refractory 
epilepsy, along with notably reduced serum zinc levels in individuals 
with epilepsy (43–45). Unchecked zinc supplementation can be toxic 
and induce epilepsy (3). Clinical trials show variations in serum zinc 
levels in epilepsy patients, suggesting a potential link between zinc 
and epilepsy (46). Moderate zinc intake, along with standard anti-
epileptic medications, demonstrates a synergistic effect (41). 
Monitoring zinc levels and providing supplements as needed could 
serve as adjuvant therapies for epilepsy treatment. Our study aimed 
to evaluate dietary zinc intake in US adult epilepsy patients and 
analyze its impact on seizures.

Most nutritional epidemiology relies on food frequency 
questionnaires, but MR provides an alternative method to establish 
causal relationships. In this study, a two-sample MR analysis was 
employed to investigate the causal link between zinc and epilepsy. Our 
findings suggest a causal relationship between zinc and certain forms 
of epilepsy, including all types of epilepsy, generalized epilepsy, and 
focal epilepsy (documented hippocampal sclerosis). The robustness of 
our MR study is underscored by the extensive GWAS summary data 
and sensitivity analyses, confirming the resilience of our results. This 
method allowed us to mitigate confounding variables and potential 
biases in observational research. In summary, integrating GWAS-
derived genetic risk factors with the MR design and IVW statistic 
method enhances the reliability of our findings, providing valuable 
insights into the relationship between zinc and epilepsy.

4.1 Limitations

However, our study has some limitations. One such limitation is 
the relatively small number of individuals with epilepsy included in 
the statistical analysis, a result of the NHANES database adopting ICD 
codes for diagnosis post-2013. Additionally, biological measures were 
absent in this study. Dietary data were collected using a 24 h memory 
test, relying on the participant’s ability to recall information, which 

TABLE 2 Association between dietary zinc intake and epilepsy.

Tertiles OR (95% CI)

No. Crude p-value Model 1 p-value Model 2 p-value

Dietary zinc (mg/day)

T1(≤5.0) 663 1 (Ref) 1 (Ref) 1 (Ref)

T2(5.0–11.0) 2,174 0.46 (0.25–0.85) 0.014 0.45 (0.24–0.84) 0.013 0.49 (0.26–0.92) 0.026

T3(≥11.0) 1,597 0.58 (0.31–1.09) 0.089 0.53 (0.27–1.02) 0.058 0.6 (0.31–1.17) 0.132

Trend test 4,434 0.200 0.129 0.235

T, tertiles; OR, odds ratio; CI, confidence interval; Ref, reference. Model 1 was adjusted for sociodemographic (age, sex, marital status, race/ethnicity, education level). Model 2 was adjusted for 
sociodemographic (age, sex, marital status, race/ethnicity, education level, family income) and dietary supplements taken.
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may introduce recall bias and not accurately reflect typical intake. Due 
to the cross-sectional design, strict control over other influencing 
variables was not feasible. Despite employing genetic variants with 
strong associations as instrumental variables, the possibility of weak 
instrument bias remains. In our observational investigation, 
we  identified a nonlinear association between zinc and epilepsy. 
However, nonlinear causality cannot be ruled out since the MR study 
only examined linear causal relationships. Moreover, our study 
predominantly includes individuals of European ancestry, limiting the 
generalizability of our findings to non-European populations. 
Additionally, the sample size for specific epilepsy subtypes was 
relatively small.

Although zinc levels may influence the development and control of 
seizures in individuals with epilepsy, it’s important to acknowledge that 
epilepsy itself has a diverse range of underlying causes. Various factors 
may contribute to its onset and severity, indicating that the influence of 
zinc is just one aspect among many. Therefore, while the findings of our 
study suggest a potential association between zinc and epilepsy, it’s 

essential to exercise caution in drawing definitive conclusions. Further 
research, including more comprehensive and detailed studies, is 
necessary to substantiate and expand upon our findings.

5 Conclusion

The results suggest that individuals with epilepsy experienced the 
lowest risk when their daily zinc intake ranged from 5.0 to 11.0 mg. 
From both clinical and nutritional perspectives, maintaining a 
moderate dietary zinc intake could offer benefits for people with 
epilepsy, potentially introducing a novel avenue for epilepsy 
treatment. Through the utilization of a 2-sample Mendelian 
randomization approach, we investigated the association between 
zinc and epilepsy, and our findings lend support to the notion that 
elevated zinc levels are associated with an increased risk of specific 
types of epilepsy. Nonetheless, it’s important to exercise caution in 
drawing definitive conclusions.

FIGURE 3

Association between dietary zinc intake and epilepsy odds ratio. Solid and dashed lines represent the predicted value and 95% confidence intervals. 
They were adjusted for sociodemographic (age, sex, marital status, race/ethnicity, education level, family income) and dietary supplements taken. Only 
99% of the data is shown.
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informed consent. The studies were conducted in accordance with the 

TABLE 3 IVW-MR association between zinc and epilepsy outcomes.

Two sample Mendelian randomization

Outcome Exposure Method NSNP Beta Se CI 
lower 
bound

CI 
upper 
bound

OR OR 
lower 
bound

OR 
upper 
bound

p-value

All epilepsy Zinc Inverse variance 

weighted

5 0.062 0.023 0.016 0.108 1.064 1.016 1.114
0.008*

Weighted median 5 0.072 0.031 0.011 0.133 1.075 1.011 1.142 0.020*

MR Egger 5 0.063 0.110 −0.153 0.279 1.065 0.858 1.322 0.608

Generalized 

epilepsy

Zinc Inverse variance 

weighted

5 0.117 0.054 0.012 0.223 1.125 1.012 1.250
0.030*

Weighted median 5 0.060 0.054 −0.046 0.165 1.061 0.955 1.180 0.268

MR Egger 5 0.028 0.250 −0.461 0.518 1.029 0.630 1.679 0.917

Focal epilepsy

Zinc Inverse variance 

weighted

5 0.037 0.027 −0.015 0.089 1.037 0.985 1.093
0.168

Weighted median 5 0.039 0.033 −0.025 0.103 1.040 0.975 1.109 0.234

MR Egger 6 0.038 0.108 −0.174 0.251 1.039 0.840 1.285 0.747

JME

Zinc Inverse variance 

weighted

6 −0.004 0.006 −0.015 0.008 0.996 0.985 1.008
0.523

Weighted median 6 −0.009 0.006 −0.021 0.003 0.991 0.979 1.003 0.127

MR Egger 6 −0.033 0.018 −0.069 0.002 0.967 0.934 1.002 0.139

JAE

Zinc Inverse variance 

weighted

6 0.005 0.003 −0.001 0.010 1.005 0.999 1.010
0.104

Weighted median 6 0.006 0.004 −0.001 0.013 1.006 0.999 1.013 0.123

MR Egger 6 0.004 0.010 −0.016 0.025 1.004 0.984 1.025 0.692

CAE

Zinc Inverse variance 

weighted

6 0.007 0.004 −0.002 0.015 1.007 0.998 1.015
0.122

Weighted median 6 0.005 0.005 −0.005 0.015 1.005 0.995 1.015 0.321

MR Egger 6 −0.009 0.015 −0.039 0.022 0.991 0.962 1.022 0.606

Focal epilepsy 

(documented 

hippocampal 

sclerosis)

Zinc Inverse variance 

weighted

6 0.009 0.004 0.001 0.018 1.009 1.001 1.018
0.025*

Weighted median 6 0.012 0.005 0.003 0.022 1.013 1.003 1.022 0.010*

MR Egger 6 0.032 0.013 0.006 0.057 1.032 1.006 1.059 0.073

Focal epilepsy 

(documented lesion 

negative)

Zinc Inverse variance 

weighted

6 0.014 0.007 −0.001 0.029 1.014 0.999 1.029
0.060

Weighted median 6 0.018 0.009 0.001 0.035 1.018 1.001 1.035 0.042*

MR Egger 6 0.037 0.028 −0.018 0.091 1.037 0.982 1.095 0.258

Focal epilepsy 

(documented lesion 

other than 

hippocampal 

sclerosis)

Zinc Inverse variance 

weighted

6 0.003 0.007 −0.009 0.016 1.003 0.991 1.016 0.596

Weighted median 6 0.000 0.008 −0.017 0.017 1.000 0.984 1.017 0.996

MR Egger 6 0.005 0.023 −0.041 0.051 1.005 0.960 1.052 0.842

Generalized 

epilepsy with 

tonic–clonic 

seizures

Zinc Inverse variance 

weighted

6 0.000 0.002 −0.004 0.005 1.000 0.996 1.005 0.824

Weighted median 6 0.000 0.003 −0.005 0.006 1.000 0.995 1.006 0.920

MR Egger 6 0.000 0.008 −0.016 0.015 1.000 0.984 1.015 0.952

OR, odds ratio; CI, confidence interval.
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