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Objective: To test associations of candidate obesity-related single nucleotide 
polymorphisms (SNPs) and obesity polygenic risk scores (PRS) with neural 
reward reactivity to food cues.

Methods: After consuming a pre-load meal, 9–12-year-old children completed 
a functional magnetic resonance imaging (fMRI) paradigm with exposure to 
food and non-food commercials. Genetic exposures included FTO rs9939609, 
MC4R rs571312, and a pediatric-specific obesity PRS. A targeted region-of-
interest (ROI) analysis for 7 bilateral reward regions and a whole-brain analysis 
were conducted. Independent associations between each genetic factor and 
reward responsivity to food cues in each ROI were evaluated using linear models.

Results: Analyses included 151 children (M  =  10.9  years). Each FTO rs9939609 
obesity risk allele was related to a higher food-cue-related response in the 
right lateral hypothalamus after controlling for covariates including the current 
BMI Z-score (p  <  0.01), however, the association did not remain significant after 
applying the multiple testing correction. MC4R rs571312 and the PRS were not 
related to heightened food-cue-related reward responsivity in any examined 
regions. The whole-brain analysis did not identify additional regions of food-
cue-related response related to the examined genetic factors.

Conclusion: Children genetically at risk for obesity, as indicated by the FTO 
genotype, may be predisposed to higher food-cue-related reward responsivity 
in the lateral hypothalamus in the sated state, which, in turn, could contribute 
to overconsumption.

Clinical trial registration: https://clinicaltrials.gov/study/NCT03766191, 
identifier NCT03766191.
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1 Introduction

Obesity currently affects approximately 20% of children and 
adolescents aged 2–19 years in the United  States according to the 
National Health Statistics Report (1). Obesity often continues from 
childhood into adulthood (2), and obesity in adulthood is a known 
risk factor for the development of multiple comorbidities including 
type 2 diabetes, cardiovascular diseases, and cancer (3). The etiology 
of obesity is multifactorial, affected by genes, environment, and gene-
environment interactions (4, 5).

Environmental food cues include the smell, taste, and sight of highly 
palatable food or food-related situations and play a crucial role in obesity 
development through physiological and psychological responses (6–9). 
They are often presented through media in the form of advertisements 
for highly palatable, nutrient-poor, and energy-dense foods and 
beverages (10). Marketing of highly palatable foods and beverages is 
often directed toward younger children, and these exposures promote 
the development of unhealthy food preferences and eating behavior 
patterns that may ultimately lead to childhood obesity (10–15).

Exposure to highly palatable food and beverage cues may activate 
a response in dopaminergic reward regions of the brain that are 
associated with increased food consumption (16–18) and weight gain 
(19–21). Previous functional magnetic resonance imaging (fMRI) 
studies have identified the brain regions involved in the corticolimbic 
reward circuitries related to food cues: nucleus accumbens, orbitofrontal 
cortex, amygdala, insula, lateral hypothalamus (LH), substantia nigra, 
and ventral tegmental area (22–28). Further, these regions have been 
related to food cravings and appetitive motivation (29–33).

Several genes, including the fat mass and obesity-associated gene 
(FTO) and melanocortin 4 receptor gene (MC4R), have been 
implicated in obesity risk. Research has shown that divergent central 
nervous system (CNS) mechanisms may drive overconsumption in 
those with FTO risk alleles. A rodent study has shown that FTO is 
present primarily in the hypothalamus, a region related to hunger/
satiation control (34). A common genetic variant within the first 
intron of the FTO gene, rs9939609, is known to be associated with 
higher energy intake (35–38) and BMI (39–41) in children. A previous 
study from our group also found that FTO rs9939609 was associated 
with children’s food-cue-related neural reactivity in the left and right 
nucleus accumbens (42), a potential mediator of excess consumption 
and adiposity gain. Participants were only provided a light snack in 
that study to help control their hunger, so the association between FTO 
and food cue reactivity in the post-prandial state was not examined.

Melanocortin 4 receptors are also expressed in the hypothalamus 
as part of the leptin-melanocortin pathway and play a crucial role in 
regulating appetite, energy balance, and body weight (43–45). MC4R 
rs571312, a common near-MC4R variant, has been related to higher 
caloric intake (46) and greater BMI or obesity (47–49). Another study 
found a strong association between rs12970134 and obesogenic eating 
behaviors including greater food responsiveness and less satiety 
responsiveness in children (50). However, no studies to date have 
examined the effect of common MC4R polymorphisms on food-cue-
related neural reward reactivity.

Though some individuals may have obesity due to a rare mutation 
in a single gene, most individuals with obesity have numerous 
polymorphisms that jointly affect their adiposity (51). A 
comprehensive genetic obesity risk can be summarized through an 
obesity polygenic risk score (PRS) that is constructed based on the 
effects of variants observed in genome-wide association studies 
(GWAS). Richardson et al. (52) created a 295 SNP PRS to predict 
adiposity in early life. Though previous studies in children have 
demonstrated an association between weight status and food-cue-
related neural response to food cues (21, 53–55), the relationship 
between comprehensive genetic risk for obesity, characterized by a 
PRS, and food-cue-related neural responsivity has not yet 
been examined.

In this study, we  aimed to test whether some children are 
genetically predisposed to heightened food-cue-related neural reward 
reactivity in the post-prandial period. We  hypothesized that the 
genetic risk of obesity, defined by FTO rs9939609, MC4R rs571312, 
and a pediatric PRS, would relate to greater differential activation in 
brain reward regions in response to food advertisements. Additionally, 
we  conducted a hypothesis-generating whole-brain exploratory 
analysis to identify additional regions that may be  related to the 
associations between genetic exposures and post-prandial responsivity 
to food cues. This study builds upon previous work by examining a 
greater range of obesity-related factors and by examining how these 
genetic factors affect neural food cue reactivity when children are in 
the sated state.

2 Methods

2.1 Study participants

The data in this paper are from a larger study measuring the 
genetic associations with children’s neural reward reactivity and eating 
in the absence of hunger in response to food cues. The study enrolled 
189 pre-adolescent children from the Northern New England 
community. Seven participants were excluded after genotyping quality 
control, and 31 participants were excluded after MRI scanning quality 
control. Scan data from 31 participants were excluded due to: refusal 
to be scanned (n = 12); excessive movement in the scanner (n = 9); and 
technical issues (n = 10). The final analysis included 151 children (86 
of whom were male) between the ages of 9 and 12 [mean (SD) = 10.9 
(1.16) y]. Dartmouth College’s Committee for the Protection of 
Human Subjects approved all study protocols.

2.2 Study overview

Participants attended a study visit alongside a parent or guardian. 
Visits were scheduled at either lunchtime (11:00 am–1:00 pm) or 
dinnertime (4:00 pm–6:00 pm). A trained research staff member 
collected children’s saliva samples for genetic analysis, measured 
height and weight, and administered questionnaires to the parents. 
The parent-reported child’s physical activity, date of birth, biological 
sex, race, ethnicity, annual household income, and parent education 
level. Participant height was measured to the nearest 0.1 cm using Seca 
264 Stadiometer (Hamburg, Germany), and weight was measured to 
the nearest 0.01 kg using a Seca 703 Medical Scale (Hamburg, 

Abbreviations: BMI, Body mass index; PRS, Polygenic risk score; SNP, Single 

nucleotide polymorphism; EER, Estimated daily energy requirement.
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Germany). Children consumed a standardized pre-load meal 
consisting of macaroni and cheese, apple sauce, corn, milk, and water. 
Satiety level was measured prior to the scan using the Freddy Fullness 
scale (56), a validated visual analog scale for estimating fullness in 
children. The fullness scale was reported across a range of 0-150 mm 
and converted into percentages (out of 150 mm); higher scores 
indicated greater fullness.

2.3 Genotyping

DNA extracted from saliva samples was genotyped for >600,000 
single nucleotide polymorphisms (SNPs) with the Illumina Global 
Screening Array 24 v1.0 or v3.0 (57). Pre-specified quality control 
thresholds were applied to generate genotype calls using 
GenomeStudio software (58) with downstream quality control steps 
and determination of European or non-European ancestry with 
principal components, as previously described (59, 60). Using the 
Michigan Imputation Server, haplotype-based imputation was 
performed with a quality score threshold of R2 > 0.8 selected for SNPs 
with high-quality imputation (61, 62). Seven children were excluded 
for failing genotype quality control.

As primary exposures of genetic risk, two single SNPs were 
considered (FTO rs9939609 and MC4R rs571312), and a pediatric-
specific PRS with 265 of 295 SNPs available in the data (52), the 
“Pediatric PRS.” In additional exploratory analyses, we also analyzed 
three PRS previously associated with adult BMI. These included a 97 
SNPs PRS (63), 557 SNP PRS (52), and a ~ 2 million SNP PRS (64), 
henceforth referred to as the “Adult 97 PRS,” “Adult 557 PRS,” and 
“Adult 2M PRS,” respectively. Each PRS was computed as the product 
of the dosage of each risk allele (0, 1, or 2) and the published effect 
size, summed and standardized into Z-scores.

2.4 Scanning paradigm

Using E-Prime (65), children were presented with a series of 
videos that were designed to replicate a typical television show. The 
stimuli included three 5 min segments of a popular science show 
(MythBusters) interspersed with four 5 min commercial breaks.

Four functional runs were conducted in each scan. Additional 
functional runs were collected as part of the larger study after the 
experimental paradigm of this study, but are not relevant to this 
presented analysis. Each functional run began and ended with a 15 s 
presentation of a fixation cross. For each run, 5 food and 5 non-food 
TV commercials were presented which alternated in an AB pattern 
(66, 67). The block pattern for each run was randomized between 
participants (AB or BA) and which commercials were played during 
each block were also randomized between participants. Each 
commercial ran for approximately 15 s, and each functional run was 
approximately 5 min in length. The total duration of the scan was 
approximately 1 h.

2.5 Stimuli

Age-appropriate food and non-food commercials that were 
included in this study were rated by children for interest and 

excitement (42). There was no overall difference in interest and 
excitement between the food and non-food commercials.

2.6 Image acquisition

Scans were conducted using a 3.0 T Siemens MAGNETOM 
Prisma MRI scanner equipped with a 32-channel head coil. For 
T1-weighted structural scans (MPRAGE), the following parameters 
were employed: echo time (TE) of 2.32 ms, repetition time (TR) of 
2,300 ms, flip angle of 8 degrees, matrix size of 256 × 256 mm, field of 
view of 240 × 240 mm, 192 slices with a slice thickness of 0.9 mm, and 
voxel size of 0.9 × 0.9 × 0.9 mm. Functional imaging utilized a 
T2*-weighted echo planar imaging (EPI) sequence with TE = 33 ms, 
TR = 1,250 ms, flip angle = 64 degrees, matrix size = 96 × 96, field of 
view = 240 × 240 mm, 56 slices with a slice thickness = 2.5 mm, and 
voxel dimensions of 2.5 × 2.5 × 2.5 mm. Four functional runs of 144 
volumes were included in the analysis for each participant.

2.7 Model covariates

BMI was calculated based on participants’ height and weight using 
the U.S. Center for Disease Control and Prevention (CDC) 2020 
age-and sex-specific distributions (68). A missing value for physical 
activity (N = 1) was imputed with the most frequently reported value. 
A missing value for the fullness measure (N = 1) was imputed with the 
median value. One fullness value of 180 mm was imputed with the 
median due to researcher measurement error.

2.8 MRI pre-processing

Anatomical data preprocessing and functional data preprocessing 
were performed using fMRIPrep 1.2.5 (69, 70), which is based on 
Nipype 1.1.6 (71, 72). The pipeline and protocol used are described in 
detail as a template provided by fMRIPrep in a previously published 
article (73).

2.9 Statistical analysis

2.9.1 Subject-level analysis
Following pre-processing, participants’ individual fMRI data were 

analyzed using the NLTools Python package (74). A general linear 
model (GLM) was conducted for subject-level analysis for each 
participant. This included constructing a design matrix, convolving 
with the hemodynamic response function (HRF), incorporating 
nuisance variables such as intercepts, linear and quadratic trends, 
motion covariates (comprising 24 parameters: six demeaned 
realignment parameters, their squares, derivatives, and squared 
derivatives), and identifying motion spikes (defined as spikes between 
successive TRs and global spikes exceeding an intensity change 
threshold of 2.5 standard deviations from the mean). The data 
underwent spatial smoothing using a Gaussian kernel with a full-
width at half maximum (FWHM) of 6 mm. We conducted a standard 
visual inspection of scans with a frame-wise displacement of 1 or 
greater, and one of four functional runs was excluded for 17 
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participants (~11%) due to such visual inspections (73). Additionally, 
we examined functional runs for extreme head motion defined as 
>25% motion spikes (> 36 spikes) of the scan volumes; however, no 
functional run was excluded from further analyses. To generate the 
food-specific regression coefficient maps for individuals, the 
coefficients in each voxel were averaged across functional runs for 
food and non-food ad conditions, separately, and then the within-
subject difference between the two conditions was computed to create 
contrast maps. All individual-level contrast maps were used in the 
targeted region of interest (ROI) and whole brain analyses. Multiple 
comparison correction using the false discovery rate (FDR) was 
applied to the p-values across 7 bilateral ROIs with significance set at 
q < 0.05.

2.9.2 Region of interest analyses
For the a priori ROI analysis, seven bilateral ROIs were selected as 

candidate reward regions based on previous literature (25): the nucleus 
accumbens (NAcc), orbitofrontal cortex (OFC), amygdala, insula, 
lateral hypothalamus (LH), ventral tegmental area (VTA), and 
substantia nigra (SN). The masks of the bilateral NAcc, OFC, amygdala, 
and insula were extracted for each participant using FreeSurfer’s 
autosegmentation.1 The final group-level ROI masks were created by 
including those voxels that are counted in the individual-level masks 
for at least 75% of participants. As FreeSurfer does not include 
autosegmentation of the lateral hypothalamus and SN, masks of these 
regions were generated using the anatomical atlas of the human 
hypothalamic regions (75). The mask of the ventral tegmental area was 
defined by the sphere with a radius of 5 mm centered at the MNI 
coordinate [±4, −16, −10] (76). The ROI masks are shown in Figure 1. 
Beta values were then averaged across each mask and analyzed using 
R (77). We investigated the Pearson correlation between corresponding 
lateral reward ROIs as well as across reward ROIs.

1 http://freesurfer.net

Child age, biological sex, BMI Z-score, satiety level post preload-
meal, and European ancestry were selected as covariates a priori for 
all adjusted models given potential relationships with genetic 
exposures and/or neural response to stimuli, for all adjusted models. 
After examining the bivariate relationships between the other 
potential covariates and the neural response in any ROIs using a 
threshold of p < 0.1, physical activity and annual household income 
were added into adjusted models. Linear models were used to test the 
independent associations between the genetic factors (MC4R 
rs571312, FTO rs9939609, Pediatric PRS) and the neural response in 
the bilateral ROIs. In an exploratory analysis, the linear models were 
repeated with the secondary genetic exposures of 3 adult obesity 
PRS. Given that the pediatric and adult obesity PRS measures were 
trained on individuals of European ancestry, the distribution of each 
genotype and PRS in participants with European and non-European 
ancestry was explored in Supplementary Table S1, and the regression 
models of the four PRS measures were repeated restricting the sample 
to participants with European ancestry in a sensitivity analysis.

2.9.3 Exploratory whole-brain analysis
A whole-brain analysis was conducted using the individual beta 

maps as input to a group-level analysis to test the unadjusted and 
adjusted linear relationships between food-cue-related response and 
genotypes. To determine significance at the group level, an initial 
voxel-wise significance threshold of p-value <0.001 was applied and 
was then cluster-corrected using a threshold of a cluster size of k = 90 
for an overall p-value <0.05. Clustering parameters were based on 
10,000 Monte-Carlo simulations determined using 3dClustSim 
from AFNI.

3 Results

Seven participants were excluded after genotype quality control, 
and 31 participants were excluded after MRI quality control, 
leaving 151 participants in the analysis (Table 1). Most participants 

FIGURE 1

Axial view of masks used in the regions-of-interest (ROI) analysis. (A) Orbitofrontal cortex. (B) Blue: nucleus accumbens. Light green: lateral 
hypothalamus. Red: amygdala. Dark green: substantia nigra. Orange: ventral tegmental area. (C) Insula.
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were white (94.7%) and non-Hispanic (93.4%). The average (SD) 
BMI Z-score was 0.468 (0.95), and 30% of participants were 
categorized as either having overweight or obesity. The average 
(SD) caloric consumption of the standardized preload meal was 449 
(171 kcal). Examining the distribution of MC4R rs571312 in our 
sample, 4.6% were highest-risk (AA) children (N = 7), 41.1% were 
heterozygotes (AC) children (N = 62), and 54.3% were homozygous 
low-risk (CC) participants (N = 82). Due to the limited number of 
participants in the highest-risk group, the MC4R AA and AC 
genotypes were collapsed into one category and analyzed with a 
dominant model (AA and AC vs. CC). In our sample, the 
distribution of FTO rs9939609 was 10.6% with the highest obesity 
risk (AA) (N = 16), 48.3% with moderate risk (AT) children 
(N = 73), and 41.1% with the lowest risk (TT) children (N = 62). The 
additive model of the FTO genotype (AA vs. AT vs. TT) was used 
in further analyses.

3.1 ROI analyses

The correlations between the responses of food > non-food 
contrast maps in 14 bilateral reward regions are shown in Figure 2. 
In general, all bilateral reward regions tested were positively and 
significantly correlated ranging from 0.93 for the OFC and 0.62 for 
the LH (Supplementary Figure S1). The right LH exhibited 
correlations with three other ROIs, and the bilateral VTA exhibited 
positive correlations with five ROIs. The ROI analysis examining the 
associations between each genetic exposure and neural response to 
food cues in the full cohort is presented in Table 2. Children with the 
FTO rs9939609 risk allele had a significantly higher food-related 
neural response in the right LH in models adjusted for covariates 
even after controlling for current adiposity (t = 2.6, p = 0.01) 
(Figure 3). However, the association did not remain significant after 
applying the FDR correction. The association between FTO 
rs9939609 risk alleles and food-related response in the left LH did 
not reach statistical significance (t = 1.7, p = 0.08). The MC4R 
genotype and Pediatric PRS were not significantly associated with 
the food-related reward reactivity in any of the explored ROIs 
(Table 2).

In the exploratory analysis that tested three additional adult 
obesity PRS associations, the 97 PRS with food cue-related activity 
in the left insula did not reach statistical significance (t = 1.9, 
p = 0.06) (Supplementary Table S2). In the sensitivity analyses of 
the PRS measures restricting the sample to participants with 
European ancestry (N = 136), the adult 97 and 557 PRS with food-
related response in the LH did not reach statistical significance 
(t = 1.8, p = 0.08; t = 1.7, p = 0.08, respectively) 
(Supplementary Table S3).

No additional relationships between genetic factors and food-
related responsivity in the whole brain analysis.

TABLE 1 Baseline characteristics of study participants (N  =  151).

Mean (SD) or N (%)

Age (years) 10.9 (1.16)

Child biological sex

  Male 86 (57.0%)

  Female 65 (43.0%)

Ethnicity

  Non-Hispanic 141 (93.4%)

  Hispanic 6 (4.0%)

  Prefer not to answer 4 (2.6%)

Race

  White 143 (94.7%)

  Non-White 8 (5.3%)

BMI Z-score 0.468 (0.953)

BMI category

  Underweight (<5th percentile) 1 (0.7%)

  Healthy weight (5th to <85th percentile) 105 (79.5%)

  Overweight (85th percentile to <95th percentile) 21 (13.9%)

  Obese (≥95th percentile) 24 (15.9%)

Household annual income

  <$25,000 2 (1.3%)

  $25,000–64,999 19 (12.6%)

  $65,000–144,999 75 (49.7%)

  $145,000–225,000 35 (23.2%)

  >$225,000 16 (10.6%)

  Prefer not to answer 4 (2.6%)

Parent’s education level

  High school graduate or GED 5 (3.3%)

  Some post-high school, no degree 11 (7.3%)

  Associates degree 8 (5.3%)

  Bachelor’s degree 41 (27.2%)

  Professional school or graduate school 85 (56.3%)

  Missing 1 (0.7%)

Physical activity (active for at least 60 min per day in the past 7 days)

  No days 3 (2.0%)

  1 day 4 (2.6%)

  2–3 days 50 (33.1%)

  4–5 days 61 (40.4%)

  6–7 days 32 (21.2%)

  Missing 1 (0.7%)

European ancestry

  European 136 (90.1%)

  Non-European 15 (9.9%)

MC4R rs571312

  CC (0) 82 (54.3%)

  AC (1) 62 (41.1%)

  AA (2) 7 (4.6%)

(Continued)

TABLE 1 (Continued)

Mean (SD) or N (%)

FTO_rs9939609

  TT (0) 62 (41.1%)

  AT (1) 73 (48.3%)

  AA (2) 16 (10.6%)
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4 Discussion

In this study of 151 children aged 9–12 years old, we found that 
the genetic risk of obesity was associated with greater brain activation 
in response to food advertisements in the lateral hypothalamus after 
eating a meal to satiety. Specifically, each risk allele of the FTO 
rs9939609 genotype was associated with heightened food-related 
responsivity in the right lateral hypothalamus.

In the brain, FTO is highly expressed in the hypothalamus, a 
region involved in the regulation of central energy homeostasis to 
control body energy balance, energy expenditure, and food intake (78). 
Many studies have reported the connection between FTO SNPs and 
obesity-related traits such as BMI, body fat mass, waist circumference, 
hip circumference, and energy intake (79–81). In addition, FTO risk 
alleles have been related to fat or carbohydrate intake, reduced satiety, 
overeating, and loss of control over eating (39, 82, 83). The lateral 
hypothalamus, as part of the hypothalamus, receives a high level of 
melanocortinergic inputs from the arcuate nucleus of the 
hypothalamus. Animal studies have identified that the LH is 
specifically involved in food-seeking behaviors, reward behaviors, and 
autonomic function (84–86). Our study finding that FTO is related to 
greater food-related reward activity in the lateral hypothalamus when 
children are in a sated state highlights a potential biological mechanism 
that may mediate the association between genetic obesity risk and 
excess weight gain. As the understanding of the LH’s precise functions 

and mechanisms remains limited, further research is needed to 
understand if the higher food-related reward activity corresponds to 
cued non-homeostatic caloric intake in the post-prandial period.

In our previous study with an independent study cohort of the 
same age group, we observed a heightened reward response in the 
bilateral nucleus accumbens in response to food vs. non-food TV 
commercials among children with at least one FTO risk allele 
compared to those with no risk alleles (42). In that study, children 
were provided a light snack prior to imaging, rather than a full meal 
eaten to satiety. Together, these studies suggest that the FTO genotype 
is related to the heightened reward response to food cues in different 
brain regions at different states of satiety.

In our current study, we did not find significant neural reward 
reactivity to food cues associated with the MC4R genotype nor four 
PRS measures. Given the composite nature of PRS, they may have 
limited utility in clarifying the biological mechanisms underlying the 
genetic-reward activity relationship.

This study provides evidence that the FTO genotype is related to 
neural reward reactivity to food cues in children in the post-prandial 
period. Nevertheless, it is important to acknowledge the limitations 
of our study. Given the distinct role of the lateral hypothalamus in 
food-seeking and reward behaviors within the hypothalamus, 
we aimed to study this specific region. While we used a mask, future 
research could use manual segmentation of the lateral hypothalamus 
to potentially provide more accurate segmentation. Our sample 

FIGURE 2

Pearson correlations between the reward regions are shown. Only correlations statistically significant at the p <  0.05 are numbered. NAcc, nucleus 
accumbens; OFC, orbitofrontal cortex; VTA, ventral tegmental area; SN, substantia nigra; LH, lateral hypothalamus.
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predominantly consisted of individuals of a white, non-Hispanic 
population and relatively higher socioeconomic status. Additionally, 
the additive effect of the MC4R genotype was not explored due to 
the limited number the high-risk (AA) individuals. Due to 
limitations in sample size, the analysis did not extend to additional 
candidate genes associated with obesity. Future research should aim 
to explore the genetic effects on heightened neural reward 
responsivity in a larger and more diverse population, allowing for 
broader generalization of the findings.

5 Conclusion

Our findings indicate that some children possess a genetic 
predisposition towards heightened food-cue-related neural reward 
reactivity in the post-prandial period. Given the prevalence of 
extensive media exposure among children which often includes the 
promotion of a variety of unhealthy food products, it is crucial to 
understand the genetic influences on food-related neural responses in 
children and mitigate exposure that may contribute to excess 
consumption. Longitudinal studies are needed to understand whether 
this heightened reward response to food cues leads to greater cued 
consumption and, ultimately, to excess weight gain.
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European ancestry, and satiety post-meal (%).
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