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Zinc (Zn) is a vital micronutrient that strengthens the immune system, aids 
cellular activities, and treats infectious diseases. A deficiency in Zn can lead to an 
imbalance in the immune system. This imbalance is particularly evident in severe 
deficiency cases, where there is a high susceptibility to various viral infections, 
including COVID-19 caused by SARS-CoV-2. This review article examines the 
nutritional roles of Zn in human health, the maintenance of Zn concentration, 
and Zn uptake. As Zn is an essential trace element that plays a critical role in the 
immune system and is necessary for immune cell function and cell signaling, 
the roles of Zn in the human immune system, immune cells, interleukins, and 
its role in SARS-CoV-2 infection are further discussed. In summary, this review 
paper encapsulates the nutritional role of Zn in the human immune system, with 
the hope of providing specific insights into Zn research.
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1 Introduction

The nutritional importance of trace metal has been known for a long time, but in the last 
decades its importance in immune modulation has arisen. The nutritional roles of trace metals 
are significant, not only as constituent components of many metal proteins and 
metalloenzymes, but also as essential micronutrients (1). They are required for various body 
functions and the well-being of the immune system (2). Balanced levels of trace metals are 
essential for maintaining immunity and are crucial in the prevention and management of viral 
infections (3). Several trace metals, such as Zn, are essential for the normal functioning of the 
immune system and immune-cell homeostasis. Increasing the Zn concentration can efficiently 
inhibit virus replication in host cells, thus exhibiting antiviral activity (4). Zn deficiency in 
humans is an emerging global health issue. Deficiencies of Zn often coexist with infectious 
diseases and exhibit complex interactions (5). Furthermore, Zn supplementation has shown a 
positive impact on enhancing immunity in viral infections (6). This trace metal has 
immunomodulatory functions, influencing the susceptibility, course, and outcome of a variety 
of viral infections (7). Given the current COVID-19 pandemic, where no effective preventive 
or curative medicine is available, a healthy immune system is one of our most 
important defenses.

In recent years, serum trace metal levels have been frequently reported as reliable markers 
for diagnosing various infectious diseases, such as COVID-19 (8). An exuberant innate 
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FIGURE 1

Zinc uptake and absorption.

immunoinflammatory response is a hallmark of severe COVID-19 
with the cytokine storm, hyperinflammation, and multiorgan failure, 
which are correlated with elevated blood levels of proinflammatory 
cytokines and chemokines, e.g., IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, 
IL-17, IFN-γ, and TNF-α (9). SARS-CoV-2 is a pathogenic coronavirus 
of COVID-19, which caused a pandemic of acute respiratory disease 
(10). The cellular anti-SARS-CoV-2 response starts from NK cells 
through cytokine production. Subsequently, T cells destroy infected 
cells, whereas B cells to produce antibodies (11). The structural or 
non-structural SARS-CoV-2 proteins can elicit a host immune 
response. Among them, the S protein of SARS-CoV-2 contains a 
receptor-binding domain that serves as the critical target for antiviral 
compounds. B cells elicit an early response against the nucleocapsid 
protein of SARS-CoV-2, while antibodies against S protein could 
be detected after 4–8 days from the appearance of initial symptoms 
(12). This article reviews the nutritional roles of Zn on the immune 
system and SARS-CoV-2 infections, highlighting the importance of 
this trace metal in not only optimizing the immune response to 
infections but also in understanding its role in COVID-19 
therapeutic approaches.

2 Zn in human health

2.1 The nutritional roles of Zn in human 
body

In the adult human body, approximately 2–3 g of Zn is present 
(13). The reference range for serum Zn concentration in healthy 
individuals is between 60 and 120 μg/dL, although there may be slight 
regional or national variations (14, 15). For example, the reference 

range for Zn concentration in the human body in Bangladesh is 
60–120 μg/dL (16), in Japan is ≥80 μg/dL (17), and in U.S. is 
80–120 μg/dL (18). In medical testing, serum Zn levels below 60 μg/
dL are indicative of inadequate Zn status (19). This inadequate Zn 
status is associated with a wide variety of systemic disorders, including 
cardiovascular impairment, musculoskeletal dysfunctions, and 
oromaxillary diseases (20). The human body requires daily adequate 
amounts of Zn, which it obtains from food or supplements. The 
jejunum and ileum are the primary organs for Zn absorption 
(Figure 1). Approximately 25–66% of consumed Zn is absorbed from 
the jejunum and ileum, and then distributed throughout the body (in 
tissues, cells, and fluids). The distribution of Zn varies across different 
tissues within the human body (21). The highest content of Zn is 
found in skeletal muscles (57%), bones (29%), and skin (6%) (22). 
Over 95% of total body Zn is present in the intracellular compartments, 
bound to intracellular proteins and cell membranes (Figure 1) (23).

Zn plays a crucial role in various processes within the human 
body, functioning in two states: Zn-finger transcription factors and Zn 
enzymes. It is involved in the synthesis of numerous proteins, as all 
Zn-finger transcription factors require Zn for gene expression 
regulation (24). Additionally, Zn serves as an activator for more than 
300 Zn enzymes and participates in all biochemical reactions 
dependent on these enzymes (25). These reactions encompass growth, 
development, neurological behavior, immune system functionality, 
catalytic functions, acceleration of chemical reactions, modulation of 
neuronal communication, maintenance of cell membrane integrity 
and tissue balance, protein and DNA synthesis, wound healing, and 
cell signaling and division (26, 27). Zn also possesses antioxidant and 
anti-inflammatory properties that prevent damage to cells (28). 
Clinically, Zn supplementation is used for treating several infectious 
diseases, such as diarrhea, malaria, and COVID-19 (29). Of particular 
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interest to many researchers is the fact that Zn is a nutrient required 
for maintaining a healthy sense of taste and smell (30).

2.2 Maintenance of Zn concentration in 
human body

Zn homeostasis is primarily maintained through the 
gastrointestinal system, which manages the absorption of exogenous 
Zn and the excretion of endogenous Zn (31). The primary site for the 
absorption of exogenous Zn in humans is believed to be the proximal 
small bowel, specifically the distal duodenum or proximal jejunum 
(32). The absorption of Zn involves several steps. In the stomach, the 
strong acidic pH liberates Zn from salts, converting it into an ionic 
form. These Zn ions then travel to the small intestine. At the intestinal 
brush border membrane, Zn is absorbed from the lumen into the 
enterocytes. The Zn is then excreted at the basolateral side of the 
enterocytes, releasing Zn ions into the portal blood, which distributes 
the ions throughout the body (33, 34). To maintain homeostatic 
balance in the body, Zn is excreted or eliminated through the kidneys, 
skin, and intestines when necessary (35). After circulating in the body, 
Zn is excreted into the small intestinal lumen along with pancreatic 
secretions and bile (36). Most of the Zn is reabsorbed by the 
duodenum and proximal jejunum, and the remaining portion is 
excreted in the feces (37). A significant source of fecal Zn is the 
pancreatic and biliary secretion of Zn-containing enzymes (38). In 
addition to inadequate consumption of Zn, reduced intestinal 
absorption is a common cause of Zn inadequacy (39). The amount of 
Zn excreted in the feces can vary between 0.8 and 2.7 mg per day. The 
daily urinary Zn excretion is approximately 0.5 mg.

Certain food-derived compounds, such as Phytic acid and Casein, 
can interfere with the absorption of Zn. Phytic acid, a unique natural 
substance found in plant seeds (present in cereals, corn, and rice), can 
bind to certain dietary minerals including Iron, Zn, Manganese, and 
to a lesser extent, Calcium (40). This binding can slow their absorption 
from consumed meals (41). Casein, which makes up about 80% of the 
total protein in cow’s milk, also exerts a modest inhibitory effect on 
Zn absorption (42, 43). Therefore, the consumption of cow’s milk can 
potentially lead to Zn deficiency. The binding of Zn to casein is 
pH-dependent. At slightly alkaline pH, 1 mg of casein binds 8.4 μg of 
Zn (44). In addition, some trace elements also affect the absorption of 
Zn. For instance, iron supplementation can negatively influence Zn 
absorption. Supplements containing 25 mg of iron or more can reduce 
Zn absorption and plasma Zn concentrations. This is because Zn and 
Iron, both positively charged ions, compete with each other for 
intestinal absorption (45).

Copper and Zn are antagonists, competing for the GABA (A) 
receptor sites in the body (46). This implies that an excess of either 
mineral can cause and mask a deficiency of the other. High dietary Zn 
intakes depress copper absorption, increase copper sequestration in 
the mucosal cell bound to metallothioneins, and increase fecal 
excretion of copper (46). Conversely, Zn-deficient animals have shown 
increased copper absorption, and high dietary copper can depress Zn 
absorption (47). According to research, the ideal Zn to copper ratio is 
between 8:1 and 15:1 (48). Maintaining this ratio is crucial for good 
health and various physiological functions. An excess of copper, 
coupled with a lack of Zn, may predispose an individual to oxidative 
stress and trigger the inflammatory process (49). Disruption of this 

balance can lead to several health conditions. For instance, copper 
toxicity can cause symptoms such as diarrhea, headaches, and in 
severe cases, kidney failure (50). On the other hand, Zn deficiency can 
result in growth retardation, hypogonadism, immune dysfunction, 
and cognitive impairment (51).

Zn plays a crucial role in the absorption of certain vitamins. It 
facilitates the absorption of vitamin A, vitamin E, and folate1 (52). Zn 
is a component of the retinol-binding protein, which is necessary for 
transporting vitamin A in the blood (53). Additionally, Zn is required 
for the enzyme that converts retinol (vitamin A) to retina (54). The 
exact mechanism by which a deficiency in Zn affects the absorption 
of vitamin E and folate is not entirely clear. However, it is known to 
involve the loss of Zn enzyme function. Special attention should 
be  given to the balance of intracellular and extracellular Zn 
concentrations. Cellular Zn homeostasis is primarily maintained by 
the Zn importers family, ZnT (SLC30), which allows Zn to accumulate 
in the cytosol, and by the Zn exporters’ family, ZIP (SLC39) (55). The 
main controllers of intracellular Zn concentration are the ZnT 
importers, ZIP exporters, and intracellular binding proteins known as 
metallothioneins (55).

2.3 Zn uptake in human

The recommended daily intake of Zn varies across countries. The 
World Health Organization (WHO) recommends a dietary Zn intake 
of 9.8 mg/day for women and 14 mg/day for men, both aged between 
19 and 65 years (56). In the U.S., the current recommended daily value 
(DV) for Zn is 8 mg for women and 11 mg for adult men (57). The 
requirements increase slightly during pregnancy and lactation. In the 
UK, the reference nutrient intake is 4–7 mg/d for females and 
5.5–9.5 mg/d for males (Food Standards Agency) (58). In Australia, 
the current Recommended Dietary Intake (RDI) for Zn is 14 mg/day 
for men and 8 mg/day for women (19+ years), with an upper limit of 
40 mg/day (59). In Germany, the recommended intake values for Zn 
range from 7 mg/day to 16 mg/day for adults, including pregnant and 
lactating women, depending on sex and dietary phytate intake (60). 
The Ministry of Health, Labor and Welfare in Japan recommends a 
standard Zn intake of 10 mg per day for men and 8 mg per day for 
women (61). According to the Chinese dietary guidelines, the 
recommended daily Zn intake for adults over 18 years old is 7.5 mg for 
women and 12.5 mg for men, with tolerable upper intake levels of 
40 mg (62).

A Zn deficiency can lead to small stature, mild anemia, and 
impaired wound healing. Good sources of Zn are meats, whole grains, 
and legumes. The Recommended Dietary Allowance (RDA) is 8 mg/d 
for women and 11 mg/d for adult men (63). The amount of Zn 
provided by the U.S. food supply has varied between 11 and 13 mg/
day/person since the beginning of the 20 century. Currently, it is 
estimated that the U.S. food supply provides 12.3 mg Zn per person 
per day (64). While red meat is a particularly good source, all kinds of 
meat, including beef, lamb, and pork, contain Zn (65). According to 
the information provided by U.S. Department of Agriculture,1 a 
100-gram (3.5-ounce) serving of raw ground beef contains 4.79 mg of 

1 https://fdc.nal.usda.gov/index.html
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Zn. This is approximately 44% of the DV for males and 60% of the DV 
for females. Shellfish are healthy, low-calorie sources of Zn. Oysters, 
in particular, contain high amounts, with six medium oysters 
providing 33 mg, or 300% of the DV for males and 413% of the DV for 
females. Legumes, such as chickpeas, lentils, and beans, contain 
substantial amounts of Zn. Table 1 lists the 10 foods with the highest 
Zn content.

3 Zn and immunity

3.1 Zn play a central role in the immune 
system

Zn is a member of the transition metals family, characterized by 
low ionization energies and a broad spectrum of oxidation states, or 
positively charged forms (66). It plays a significant role in regulating 
cytokine expression and suppressing inflammation. Zn is necessary 
for the activation of antioxidant enzymes that scavenge reactive 
oxygen species (ROS), thereby reducing oxidative stress (67). 
Dysregulated Zn homeostasis can impair overall immune function, 
leading to increased susceptibility to infection (68). Zn has several 
mechanisms for combating pathogens. In the body, Zn generally exists 
as positively charged ions. These Zn ions act as chemo-attractants, 
drawing in pathogens for phagocytosis and killing them through the 
production of ROS (69). One such mechanism involves Zn oxide 
nanoparticles, which induce the generation of abundant ROS, 
including singlet oxygen species (1O2), within cells. An elevated level 
of ROS triggers an antioxidant cellular response and mitochondrial 
dysfunctions (70). Interestingly, researchers have discovered that Zn 
can ‘starve’ Streptococcus pneumoniae by inhibiting their uptake of 
manganese, a metal essential for the protein transporter that 
Streptococcus pneumoniae requires to invade and cause disease in 
humans (71).

Zn plays a vital role in many immune processes as a catalyst, 
structural element, and regulatory ion (72). The immune system, 
being highly proliferative, is particularly susceptible to Zn deficiency 
(73). Here’s a summary of how Zn impacts the immune system: (1) Zn 
helps control infections by moderating the immune response, thus 
preventing inflammation that can be damaging and even deadly (74); 
(2) Zn is essential for the development of a specialized type of immune 

cell and stimulates a critical immune organ to regenerate after damage 
(75); (3) Zn is necessary for immune cell function and cell signaling. 
A deficiency can lead to a weakened immune response (76). For 
instance, Zn is crucial for the normal development and function of 
cells mediating innate immunity, such as neutrophils and natural killer 
cells (77). Zn is also required for DNA synthesis, RNA transcription, 
cell division, and cell activation (78). In the absence of adequate levels 
of Zn, programmed cell death (apoptosis) is potentiated (79).

3.2 Zn is necessary for the normal function 
of the immune cells

Zn boosts the immune system and combats viruses by enhancing 
the actions of immune cells such as Neutrophils, B cells, NK cells, and 
T cells (80). Neutrophils, a type of white blood cell, aid the body in 
fighting off infections by engulfing and destroying invading pathogens 
(81). Zn plays a pivotal role in the development and activation of 
neutrophils (82). A study has shown that Zn deficiency leads to 
increased neutrophil transmigration and impairs the ability of 
neutrophils to phagocytose and produce ROS (83). Research also 
indicates that Zn supplementation can help reduce neutrophil 
recruitment and activity, thereby helping to prevent lung injury (84). 
B cells are antigen-presenting cells that produce antibodies and 
cytokines, represent immunological memory, and even appear to have 
regulatory and suppressing functions in inflammation (85). 
Significantly elevated Zn levels have been observed in activated B cells 
(86). Existing research confirms that Zn deficiency leads to a reduction 
in B cells, affecting the development of immature and pre-mature B 
cells and impacting antibody production (87). Low levels of 
cytoplasmic Zn in deficient B cells were associated with reduced cell 
signaling during crucial stages in B cell development (88). Zn also 
modulates the response of NK cells, with a decreased recognition and 
stimulation of their MHC-class I expression (89). Furthermore, Zn 
supplementation increases the differentiation of CD34+ cells toward 
NK cells as well as their cytotoxicity (Figure 2) (90).

T cells, a crucial type of white blood cells, play a central role in the 
adaptive immune response (91). The impact of Zn on T cells has been 
confirmed experimentally. Individuals with low Zn levels have few, if 
any, T cells to fight infections. This may be because Zn deficiency leads 
to thymic atrophy and subsequent T-cell lymphopenia (92). Moreover, 

TABLE 1 The top 10 foods with the highest zinc content.

Description Serving size Zn per size (mg) Zn per 100  g (mg)

Egg, yolk, dried 1 oz 2.02 7.11

Seeds, pumpkin seeds (pepitas), raw 100 g 6.34 6.34

Nuts, pine nuts, raw 100 g 5.71 5.71

Beef, flank, steak, boneless, choice, raw 100 g 5.56 5.56

Egg, whole, dried 5 g 0.25 5.02

Flaxseed, ground 100 g 4.74 4.74

Cheese, parmesan, grated, refrigerated 100 g 4.62 4.62

Flour, soy, defatted 100 g 4.44 4.44

Lentils, dry 100 g 3.86 3.86

Beans, dry, medium red (0% moisture) 100 g 3.82 3.82
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Zn deficiency negatively affects the growth and function of T cells and 
various aspects of innate and adaptive immunity, including T cell 
lymphopoiesis and antibody-mediated immune defense (93). Animal 
studies have also corroborated this conclusion. It has been 
demonstrated that Zn enhances the regeneration of the thymus in 
mice, the organ where T cells develop, and aids in immune-cell 
recovery post bone marrow transplant (94). According to a study, a 
lack of Zn during T cell maturation results in a 50% reduction in the 
transition from “potential” pre-T-cells to “effective” T cells. This is 
associated with an increased apoptosis of pre-T-cells (Figure 2) (95). 
Some researchers hypothesize that Zn interacts with protein kinase C 
and the lymphocyte protein tyrosine kinase. The dysfunction of these 
two kinases, which are involved in mature T-cell activation, is a reason 
that Zn deficiency leads to a reduced T cell count (96). Similarly, Zn 
deficiency results in a decreased ratio of type 1 to type 2 T-helper cells, 
with reduced production of T-helper type 1 cytokines like interferon-
gamma (IFNG), and compromised T-cell mediated immune defense 
(97). Zn supplementation has been shown to enhance immunity and 
effectively downregulate chronic inflammatory responses (98).

3.3 Zn is involved in the regulation of 
immune reaction

3.3.1 The impact of Zn on immune responses in 
cell lines

One of the important functions of Zn ions is to serve as second 
messengers. They act as intracellular signaling molecules, capable of 
communicating between cells, converting extracellular signals to 
intracellular ones, and regulating the activation of interleukins (99). 
Zn can induce monocytes to produce pro-inflammatory cytokines 
such as interleukin-1 (IL-1), interleukin-6 (IL-6), and interleukin-8 

(IL-8) (100). The IL-1 family, a group of 11 cytokines, plays a central 
role in the regulation of immune and inflammatory responses to 
infections (101). Zn has been found to reduce IL-1 dependent T cell 
stimulation by inhibiting the IL-1 receptor-associated kinase-1 (102). 
IL-1β is a major cytokine involved in monocyte activation and the 
activation of proinflammatory signaling pathways (103). Cytoplasmic 
Zn promotes IL-1β production and subsequently inhibits 
inflammation, depending on the transcription factor NF-κB, an 
inflammatory activating factor (104). However, a previous study has 
shown that Zn depletion in macrophages induces the activation of 
proteases that cleave pro-IL-1β, leading to an increased release of 
active IL-1β (105). These studies suggest a complex correlation 
between Zn and IL-1.

Interleukin-2 (IL-2), which is produced by T cells during an 
immune response, is essential for the growth, proliferation, and 
differentiation of naive T cells into effector T cells (106). The level of 
Zn has a positive correlation with IL-2. Zn enhances the proliferation 
of T cells in response to IL-2, as well as the production of IL-2 by T 
cells (107). A previous study evaluated the circulating cytokines and 
Zn status, showing that reduced circulating Zn correlates with 
increased levels of IL-6 and IL-8 (108). The proliferative response of T 
and B lymphocytes following IL-6 and IL-8 stimulation increases in 
Zn deficiency, while it adversely influences IL-4 signaling, leading to 
an impairment of the immune system (109). Research has found that 
Zn deficiency decreases the production of TH1 cytokines (IFN-γ, 
IL-2, and TNF-α), whereas the TH2 response (IL-4, IL-6, and IL-10) 
is less affected. This results in an imbalance between TH1 and TH2 
subsets, which is restored when Zn reaches physiological levels (110). 
The proinflammatory TH17 cells are also negatively affected by Zn 
deficiency. The development of TH17 cells is critically controlled by 
IL-6-induced STAT3 activation during chronic inflammation (111). 
Zn suppresses TH17 development by attenuating this activation (112).

FIGURE 2

The effect of zinc on immune cells.
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3.3.2 Impact of Zn on immune responses in 
animal and human studies

The effects of Zn on animals are diverse and significant. One study 
conducted on swine discovered that dietary supplementation of Zn in 
an organic form influenced the expression of inflammatory molecules 
within the intestine. This organic form of Zn resulted in a reduced 
level of the pro-inflammatory cytokine IL-18. This finding suggests 
that organic Zn sources could enhance the health and immune 
response of animals under stress by altering gene expression in the 
intestine (113). Another study explored the impact of Zn deficiency 
in rats. The researchers found that a lack of Zn exacerbated the 
inflammatory response, leading to hemolytic anemia and 
splenomegaly. Notably, the administration of IL-4 and Zn 
supplementation were found to reverse the hemolytic anemia and 
splenomegaly induced by Zn deficiency (114). In a separate study 
using a mouse model of allergic inflammation, it was found that Zn 
exhibited anti-inflammatory effects (115).

Zn deficiency has a broad impact on human health, leading to 
dysfunctions in both innate and adaptive immunity. This can result in 
diminished lytic activity, impaired signaling, altered cytokine 
production, and reduced proliferation. Consequently, individuals 
deficient in Zn are more susceptible to infectious diseases (72). Zn 
supplementation in the elderly has been found to decrease the 
incidence of infections, reduce oxidative stress, and lower the 
generation of inflammatory cytokines (116). A sensitivity analysis 
revealed that Zn supplementation decreases IL-6 levels and increases 
IL-2 levels (117). In an experimental model of human Zn deficiency, 
there was a reported decrease in thymulin activity in Th1 cells, a 
reduction in IL-2 and IFN-gamma genes, and diminished activity of 
natural killer cells (NK) and T cytotoxic T cells (118). These findings 
underscore the vital role of Zn in regulating interleukin expression 
and immune function. However, the exact mechanisms and pathways 
involved are complex and may vary depending on the specific context 
and conditions.

4 The potential role of Zn in 
preventing COVID-19

4.1 Clinical study of Zn in the treatment of 
COVID-19

Clinically, COVID-19 patients have shown an imbalance in Zn 
levels. Low Zn levels appear to be common in these patients (119). In 
a previous study, all COVID-19 patients (33 out of 33) were found to 
be Zn deficient, with a mean serum level of 6.9 ± 1.1 μmoL/L, which is 
well below the Zn deficiency cutoff value of 10.7 μmoL/L (120). This 
Zn deficiency observed in COVID-19 patients may be an acute phase 
reaction to SARS-CoV-2 infection (121). Compared to other 
interventions, those who received a combination of Zn and vitamin C 
were found to mount a greater antibody response. This suggests that 
oral Zn and vitamin C treatment could stimulate antibody production 
following SARS-CoV-2 infection (122). Zn therapy is considered 
logical in COVID-19 due to the inhibitory effect of Zn on viral 
replication (123). A study found that the combination of doxycycline 
and Zn has a protective effect in COVID-19 patients (124). 
Interestingly, Zn therapy plays a significant role in shortening the 
duration of smell recovery in these patients (125). It’s important to 

note that administering high-dose Zn appears to be safe, feasible, and 
associated with minimal peripheral infusion site irritation in 
COVID-19 patients (126).

Although case studies may not hold the same universal 
significance as group studies, they offer specific parameters, treatment 
plans, and treatment outcomes, which make them quite intriguing. 
Elanjian et al. reported three cases of COVID-19 patients who received 
Zn supplementation, with experiencing hypoglycemia (127). 
Rosenberg et  al. reported a case of copper deficiency, which was 
caused by Zn supplementation in the context of COVID-19. This 
deficiency presented very similarly to myelodysplastic syndrome 
(128). Farolfi et  al. reported a case of a 98-year-old patient who 
received vitamin D and adjuvant dietary supplements (quercetin, 
vitamin C, Zn, and vitamin K2) at home. The patient fully recovered, 
suggesting that careful home assistance under strict medical 
supervision can be  successful, even in very old subjects with 
comorbidities (129). Ahmed et al. reported a case of a 48-year-old 
Hispanic female patient with COVID-19, who presented with severe 
isolated thrombocytopenia. She was treated with intravenous 
immunoglobulin, prednisone, rituximab, vitamin C, and Zn, and 
achieving hemodynamic stability (130).

4.2 Mechanism of Zn treatment for 
COVID-19

Multiple pieces of evidence indicate that Zn plays a significant role 
in the treatment of patients with COVID-19 and a deficiency in Zn is 
associated with increased severity of COVID-19. However, the exact 
mechanism by which Zn inhibits the virus, particularly SARS-CoV-2, 
remains unclear. We propose the following mechanisms: (1) Zn is 
known to impair the replication of several RNA viruses including 
poliovirus, influenza virus, and SARS-CoV-2, by inhibiting the main 
protease, which is crucial for the virus’s replication (131); (2) Zn is an 
essential trace element with potent immunoregulatory and antiviral 
properties (132). This suggests that Zn could inhibit inflammation and 
alleviate oxidative stress by inducing the aforementioned interleukin. 
(3) Zn is used by SARS-CoV-2 as an essential step in preparation for 
entering and invading cells. It latches onto the exterior of potential 
host cells. During this process, Zn is strongly implicated in inhibiting 
the virus’s binding to angiotensin-converting enzyme-2 (ACE2) 
receptors on the cell membrane, thus mitigating the attack by those 
virus particles that do manage to enter host cells (133). Supplemental 
Zn could replenish Zn in ACE2, stabilize the ACE2 axis, and prevent 
disruption of the renin-angiotensin system (134). Moreover, Zn 
minimizes the activity of Sirtuin-1 (SIRT-1), which regulates ACE-2 
expression and could potentially block virus entry (135).

5 Conclusion

This review article explores the multifaceted roles of Zn in 
immune system functions. The dynamic equilibrium of Zn in the 
human body is crucial for maintaining normal immune cell function 
and response by inducing monocytes to produce pro-inflammatory 
cytokines. Given its significant role in the immune system, Zn has 
demonstrated positive effects and potential therapeutic benefits in the 
treatment of COVID-19. However, current research on the function 
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of Zn in the immune system and its therapeutic impact on viral 
infections remains somewhat superficial. These research primary 
focus on the changes in Zn concentration in virus-infected patients, 
the correlation between Zn and pro-inflammatory cytokines, or the 
role of Zn in inhibiting virus replication or preventing virus entry into 
cells. Zn, serving as a structural or catalytic cofactor, fulfills various 
biological functions through Zn enzymes or Zn finger proteins. For 
instance, our recent research discovered that the Zn finger protein 
ZBTB34 can bind to telomere DNA, regulate telomere length, and is 
associated with the onset of liver cancer (136, 137). The biological 
functions of Zn in the immune system, such as stimulating the 
expression of pro-inflammatory cytokine genes, are achieved through 
these Zn enzymes and finger proteins. Regrettably, the functions of 
over 300 Zn enzymes and hundreds of Zn finger proteins are not well-
understood at present. Future research should prioritize the study of 
Zn enzymes and Zn finger proteins, which will undoubtedly unveil 
more biological functions of Zn in the immune system.
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