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Introduction: Collagen peptide supplementation in conjunction with exercise 
has been shown to improve structural and functional adaptations of both 
muscles and the extracellular matrix. This study aimed to explore whether 
specific collagen peptide (SCP) supplementation combined with a concurrent 
training intervention can improve muscular stress after exercise-induced muscle 
damage, verified by reliable blood markers.

Methods: 55 sedentary to moderately active males participating in a concurrent 
training (CT) intervention (3x/week) for 12  weeks were administered either 15  g 
of SCP or placebo (PLA) daily. Before (T1) and after the intervention (T2), 150 
muscle-damaging drop jumps were performed. Blood samples were collected 
to measure creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin 
(MYO) and high-sensitivity C-reactive protein (hsCRP) before, after, and at 2  h, 
24  h and 48  h post exercise.

Results: A combination of concurrent training and SCP administration showed 
statistically significant interaction effects, implying a lower increase in the area 
under the curve (AUC) of MYO (p  =  0.004, ηp2  =  0.184), CK (p  =  0.01, ηp2  =  0.145) 
and LDH (p  =  0.016, ηp2  =  0.133) in the SCP group. On closer examination, the 
absolute mean differences (ΔAUCs) showed statistical significance in MYO 
(p  =  0.017, d  =  0.771), CK (p  =  0.039, d  =  0.633) and LDH (p  =  0.016, d  =  0.764) by 
SCP supplementation.

Conclusion: In conclusion, 12 weeks of 15 g SCP supplementation combined with 
CT intervention reduced acute markers of exercise-induced muscle damage and 
improved post-exercise regenerative capacity, as evidenced by the altered post-
exercise time course. The current findings indicate that SCP supplementation had 
a positive effect on the early phase of muscular recovery by either improving the 
structural integrity of the muscle and extracellular matrix during the training period 
or by accelerating membrane and cytoskeletal protein repair.

OPEN ACCESS

EDITED BY

Guanghua Xia,  
Hainan University, China

REVIEWED BY

Haohao Shi,  
Hainan University, China
Duan Zhou Wei,  
Hainan Academy of Agricultural Sciences, 
China
Qiping Zhan,  
Nanjing Agricultural University, China

*CORRESPONDENCE

Kevin Bischof  
 kevin.bischof@univie.ac.at

RECEIVED 08 February 2024
ACCEPTED 15 March 2024
PUBLISHED 25 March 2024

CITATION

Bischof K, Stafilidis S, Bundschuh L, Oesser S, 
Baca A and König D (2024) Reduction in 
systemic muscle stress markers after 
exercise-induced muscle damage following 
concurrent training and supplementation with 
specific collagen peptides – a randomized 
controlled trial.
Front. Nutr. 11:1384112.
doi: 10.3389/fnut.2024.1384112

COPYRIGHT

© 2024 Bischof, Stafilidis, Bundschuh, Oesser, 
Baca and König. This is an open-access 
article distributed under the terms of the 
Creative Commons Attribution License 
(CC BY). The use, distribution or reproduction 
in other forums is permitted, provided the 
original author(s) and the copyright owner(s) 
are credited and that the original publication 
in this journal is cited, in accordance with 
accepted academic practice. No use, 
distribution or reproduction is permitted 
which does not comply with these terms.

TYPE Clinical Trial
PUBLISHED 25 March 2024
DOI 10.3389/fnut.2024.1384112

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2024.1384112&domain=pdf&date_stamp=2024-03-25
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
https://www.frontiersin.org/articles/10.3389/fnut.2024.1384112/full
mailto:kevin.bischof@univie.ac.at
https://doi.org/10.3389/fnut.2024.1384112
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2024.1384112


Bischof et al. 10.3389/fnut.2024.1384112

Frontiers in Nutrition 02 frontiersin.org

Clinical trial registration: https://www.clinicaltrials.gov/study/NCT05220371?c
ond=NCT05220371&rank=1, NCT05220371.

KEYWORDS

collagen peptides, muscle damage, concurrent training, recovery, regeneration, 
creatine kinase, repeated bout effect

1 Introduction

Tissues responsible for proper movement execution (e.g., 
muscles, tendons) underlie a perpetual process of adaptation in 
response to specific environmental stimuli. In particular, 
unaccustomed eccentric exercise is known to induce high mechanical 
stress, leading to myofibril damage and extracellular matrix (ECM) 
disruption (1). Many studies have focused on nutritional 
interventions aimed at improving recovery from locomotor 
impairments, which are often observed as reductions in functional 
movement abilities (2–8). In this context, interest in collagen peptide 
(CP) administration has increased in recent years since regular CP 
intake has been shown to possibly alleviate joint discomfort, enhance 
ankle and knee functionality and improve recovery from Achilles 
tendinopathy, therefore acting as a potential and safe nutritional 
supplement in sports related injuries (9). Moreover, several short-
term studies have reported that CP ingestion is superior to placebo 
after exercise-induced muscle damage (10–13). Faster restoration of 
biomechanical parameters such as improved countermovement jump 
height at 24 h (12) and 48 h (10), improved post-exercise muscle 
strength at 48 h, and reduced muscle soreness immediately after a 
muscle-damaging exercise bout (13) have been demonstrated 
following CP intake in conjunction with exercise. A proteomic 
analysis illustrated a significantly higher degree of upregulated 
proteins associated with skeletal muscle fibers, mainly contraction-
related changes and structural adaptations to training. This suggests 
greater changes in collagen-specific proteins after 12 weeks of CP 
supplementation combined with resistance training (RT) (14). A 
recent study investigating gene expression patterns following 
strenuous bouts of knee extensions prior to a single dose of CP 
showed significant upregulation of the PI3K/Akt and MAPK 
pathways, both known to be  essential for (myofibrillar) protein 
synthesis (15). The PI3K/Akt pathway may also play a role in 
connective tissue protein synthesis by mediating TGF-β2 signaling 
and inducing mRNA expression of COL1A1 & COL1A2 (collagen 
type 1 genes) in human pigment cells (16). Whether CP 
supplementation also stimulates connective tissue protein synthesis 
rates in vivo is currently unknown (17), but seems plausible, as 
increased collagen concentration was measured in human in vitro-
engineered ligament after a single dose of 15 g CP (18).

Recovery from severe lengthening contractions (e.g., squats or 
drop jumps) also causes biomarkers in serum blood to peak within the 
following days. Proteins and metabolic-related enzymes such as 
creatine kinase (CK), lactate dehydrogenase (LDH), myoglobin 
(MYO), alanine transaminase (ALT), c-reactive protein (CRP) and 
interleukin-6 (IL-6) have been considered metabolic indicators of 
muscle damage and concomitant inflammation, both of which occur 
after strenuous, mainly eccentric exercise (19). However, there are 

only two studies without exercise intervention that examined 
recovery-related blood markers after CP supplementation. Neither 
found differences between CP and placebo after nine and 42 days of 
supplementation (10, 11). Therefore, the importance of regular, long-
term, and at least moderately intense physical activity in combination 
with CP ingestion may be of interest for proteomic outcomes related 
to recovery. Furthermore, the CP administered in this study have only 
been utilized in two long-term investigations without examining 
blood related recovery parameters so far (20, 21). Thus, the impact of 
these particular CPs is also noteworthy.

Based on this assumption, the present study aimed to investigate 
whether 12 weeks of CP supplementation together with a concurrent 
training intervention would significantly influence exercise-induced 
muscular stress. In addition, recovery should be confirmed by specific 
blood parameters. This could indicate either a reduced acute stress 
response due to improved functional or structural integrity of the 
muscles. Or, on the other hand, an optimized muscular regenerative 
capacity that alleviates both myofibrillar damage and inflammation 
after exercise-induced muscle damage, or both. Therefore, 
we  hypothesized that the increase of biomarkers in blood after a 
second bout of muscle-damaging exercise would be lower in subjects 
taking specific collagen peptides (SCP).

2 Methods

2.1 Study design

The study was a randomized, double-blind, placebo-controlled 
trial conducted at the University of Vienna, Austria. The study was 
approved by the Ethics Committee of the University of Vienna 
(reference no. 00765) and registered at ClinicalTrials.gov (ID: 
NCT05220371). 75 healthy male participants aged 18–40 years who 
had not exercised more than 3 hours per week in the preceding 
months were randomized to the treatment or placebo group after 
signing a written informed consent. The IPAQ questionnaire 
quantified individual physical activity levels. Exclusion criteria were 
a body mass index (BMI) below 18.5 kg/m2 or above 25 kg/m2, 
unstable weight or dietary behavior, physical complaints related to 
physical activity, and intake of protein supplements within the 
6 months before the start of the study. In addition, subjects with 
renal, cardiovascular or metabolic diseases were excluded in 
accordance with American College of Sports Medicine (ACSM) 
guidelines (22).

The study design (Figure 1) comprised pre-tests (T1) before the 
training intervention, 12 weeks with daily intake of SCP or PLA with 
concurrent training (3x/week), and study completion with subsequent 
post-tests (T2) corresponding to the pre-tests. Subjects were screened 
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2 weeks before T1. Using a research randomizer1, participants were 
assigned to the SCP or PLA group after randomization. At baseline, 
study participants were given a standardized meal (SM) after overnight 
fasting (7 to 9 a.m.). 1 hour after the SM (“pre”), the first blood samples 
were collected, followed by the performance of 150 drop jumps. 
Immediately and 2 hours later, blood samples were collected again 
(“post,” “2 h”). On the second and third days, subjects arrived at the 
same time as on day 1, received their SM and waited 1 hour until blood 
was drawn two more times (“24 h,” “48 h”). Subjects were required to 
refrain from physically demanding or unaccustomed exercise and 
alcohol consumption for 48 h before the trials. Only water was allowed 
during the test procedures except for the SM.

2.2 Blood samples

Each blood sample was collected venously via venipuncture and 
filled into 10 mL serum vacutainers. These were centrifuged at 
2500 rpm for 15 min, and the resulting supernatant was pipetted into 
2 mL Eppendorf tubes and immediately stored in a refrigerator at 
-32°C. For analysis purposes, the frozen tubes were transported to a 
local laboratory and analyzed separately. The Beckman Coulter 
AU5822 (23) was used for detecting creatine kinase (CK), lactate 
dehydrogenase (LDH) and myoglobin (MYO). High-sensitivity 
C-reactive protein (hsCRP) was detected “pre” & “24 h” by 
immunoturbidimetry (Alinity c CRP Vario Reagent Kit, Abbott 
Laboratories) with a coefficient of variance (CV) of 12.5%. The “24 h” 
measurement was chosen due to the high likelihood of CRP levels 
peaking 1 day after intense exercise (24, 25). As some participants were 
unable to provide blood at the given times, they were excluded from 
the data analysis.

2.3 Muscle damage-inducing exercise 
(MDIE)

The MDIE employed consisted of 150 drop jumps from a 60 cm 
box. Six sets of 25 jumps were prescribed, with a two-minute rest after 
each set. Participants had to perform the drop jumps slowly and 
achieve a knee angle of at least 90° to produce sufficient muscle 
damage, which has been documented elsewhere (26).

1 https://www.randomizer.org

2.4 Supplementation

15 g of either a placebo (Silicea) or the test product (a mixture of 
specific collagen peptides [10 g PeptENDURE® + 5 g TENDOFORTE®], 
Gelita AG, Eberbach, Germany, Table 1) were administered orally daily 
for 12 weeks in powder form. Both products were mixed with 500 mL 
of water and drunk. One half of the SCP and PLA packs had to be taken 
1 hour before and the second half instantly after the training session. 
This administration schedule would result in high blood levels of 
collagen peptides during and after exercise (27–29). On non-training 
days, the participants consumed 15 g as a whole at the same time as on 
exercise days.

2.5 Exercise protocol

A concurrent training (CT) intervention was conducted three times 
weekly for 12 weeks. The first half of the exercise program consisted of 

FIGURE 1

Study design in chronological order. Blood, blood collection; MDIE, muscle damage inducing exercise; DJ, drop jump; CT, concurrent training; SM, 
standardized meal.

TABLE 1 Amino acids of the specific collagen peptides.

Amino acid Weight (%)

Glycine 22.1

Proline 12.3

Hydroxyproline 11.3

Glutamic acid 10.1

Alanine 8.5

Arginine 7.8

Aspartic acid 5.8

Lysine 3.8

Serine 3.2

Leucine 2.7

Valine 2.4

Phenylalanine 2.1

Threonine 1.8

Hydroxylysine 1.7

Isoleucine 1.3

Histidine 1.2

Tyrosine 0.9

Methionine 0.9
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lower body weight exercises (squats, lunges and calf raises in 
chronological order). Starting with three sets of 20 repetitions for each 
exercise, five repetitions were added after 4 and 8 weeks. For the last 
30 min of the CT, subjects ran at a heart rate determined individually 
according to the Karvonen formula (30) (training intensity factor 
between 0.7–0.8; HRmax = 220 – age). Pulse watches were provided for 
each training session to maintain the pace. After 4 and 8 weeks, the 
individual training intensity factor was increased by 5%. Recovery was 
ensured by a rest day between two training sessions. Training sessions 
were conducted outdoors every Monday, Wednesday and Friday at 7 a.m. 
and 6 p.m. under the supervision of sport scientists at the Institute of 
Sport Science in Vienna. Participants were encouraged to exercise 
regularly, either in the morning or afternoon session. Subjects completing 
fewer than 26 exercise sessions were eliminated from the study.

2.6 Standardized meal (SM)

The SM (oats and an oat drink) was provided at T1 & T2 on every 
test day, which participants consumed 2 hours before blood collection. 
The SM contained 1 g of carbohydrate per kg of body weight. In 
addition, participants were required to ingest 15 g of PLA or SCP with 
their meal at T2.

2.7 Dietary intake

Using household measurements, participants were required to 
quantify all the beverages and foods they consumed on two weekdays 
and one weekend day in weeks 1 and 12. Nut.s (nutritional.software, 
dato Denkwerkzeuge, Vienna) analyzed the amount of total energy 
intake, carbohydrates, fats and proteins.

2.8 Statistical analysis

IBM SPSS Statistics 23 (IBM SPSS Statistics for Windows, 
Armonk, NY: IBM Corp.) was used to perform all statistical analyses. 

Figures were generated by GraphPad Prism 9. The α-level was set to 
5%. Blood marker analysis was based on the data listed in Table 2. 
These data were used to calculate the area under the curve (AUC) with 
the linear trapezoidal rule for each blood biomarker (31) and the 
deltas of these AUCs. Normal distribution was demonstrated with the 
Kolmogorov–Smirnov test. Dependent t-tests elaborated changes over 
time. Variance of homogeneity was tested with Levene’s test as a 
prerequisite for the independent t-test. A mixed design ANOVA 
(generalized linear model with repeated measures) was used for 
interaction effects, with group (SCP, PLA) as a between-subjects factor 
and study time (T1, T2) as a within-subjects factor. Partial eta-square 
(ηp2) was given as effect size (small effect: ηp2 > 0.01, medium effect: 
ηp2 > 0.06, large effect: ηp2 > 0.14). The effect size in pairwise t-tests was 
expressed as Cohen’s d (small effect: >0.2, medium effect: >0.5, large 
effect: >0.8) (32). In the case of a significant Mann–Whitney U test, 
the effect size was also reported as Cohen’s d/ηp2 [Wolfgang Lenhard 
& Alexandra (33)]. All tests were two-sided. Due to increased 
variability in the data sets, outliers were eliminated if they were above 
the 3rd standard deviation.

3 Results

After meeting the inclusion criteria and a positive medical 
examination, 75 participants (initially 76, but one subject declined 
further participation before day 1) were randomized and assigned to 
the SCP (n = 37) or PLA group (n = 38) (Figure 2). Participants lost to 
follow-up were excluded for non-compliance (missing more than 10 
sessions) with the training protocol. No adverse events or side effects 
related to SCP or PLA supplementation were observed. 55 subjects 
successfully completed the study.

3.1 Anthropometrics and dietary intake

Regarding anthropometric parameters (Table 3), no significant 
differences were observed for age (p = 0.44), mass (p = 0.35), height 
(p = 0.51) and BMI (p = 0.7). No significant time effect was calculated 

TABLE 2 Concentrations/activity of recovery-related blood biomarkers represented as mean  ±  SD.

Group Time

T1 T2

pre post 2  h 24  h 48  h pre post 2  h 24  h 48  h

CK (U/L)

PLA (n = 23) 135 ± 64 159 ± 69 182 ± 66 346 ± 197 246 ± 123 142 ± 64 161 ± 66 171 ± 64 214 ± 108 207 ± 140

CP (n = 22) 136 ± 65 174 ± 77 204 ± 88 422 ± 225 506 ± 782 125 ± 66 146 ± 74 156 ± 71 192 ± 133 162 ± 103

LDH (U/L)

PLA (n = 21) 165 ± 21 181 ± 24 180 ± 24 174 ± 31 175 ± 35 161 ± 30 176 ± 29 176 ± 29 173 ± 27 178 ± 31

CP (n = 22) 181 ± 20 208 ± 21 204 ± 22 195 ± 24 190 ± 22 175 ± 24 185 ± 24 185 ± 24 182 ± 23 188 ± 26

MYO (ng/ml)

PLA (n = 23) 51 ± 8 89 ± 43 141 ± 108 55 ± 21 49 ± 14 46 ± 9 59 ± 32 77 ± 45 45 ± 13 47 ± 16

CP (n = 21) 48 ± 13 94 ± 50 165 ± 93 62 ± 29 96 ± 120 40 ± 13 46 ± 13 51 ± 14 36 ± 12 35 ± 10

hsCRP (mg/l)

PLA (n = 21) 0.67 ± 0.4 - - 1.04 ± 1 - 0.61 ± 0.3 - - 0.55 ± 0.2 -

CP (n = 19) 1.46 ± 1.4 - - 2.2 ± 1.8 - 1.21 ± 0.9 - - 1.23 ± 1 -
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for PLA [energy (p = 0.77), protein (p = 0.54), fat (p = 0.44), 
carbohydrate (p = 0.26)] and SCP [energy (p = 0.09), protein (p = 0.47), 
fat (p = 0.74), carbohydrate (p = 0.06)] in relation to dietary intake. 
Similarly, no differences were evident between groups in T1 [energy 
(p = 0.71), protein (p = 0.72), fat (p = 0.55), carbohydrate (p = 0.89)] as 
well as in T2 [energy (p = 0.08), protein (p = 0.09), fat (p = 0.08), 
carbohydrate (p = 0.52)]. In addition, no interaction effect was 
observed for energy (p = 0.24), protein (p = 0.32), fat (p = 0.36) and 
carbohydrate intake (p = 0.59).

3.2 Blood biomarkers

Descriptive statistics for CK, LDH, MYO and hsCRP are 
shown in Table  2, which delineates the data used for further 
analyses. As some blood samples could not be obtained (entirely) 
from all subjects who completed the study due to malaise and 
nausea during the process of blood collection, the number of 
participants differed slightly between each marker. Individuals 
who failed to furnish blood at a particular time regarding one 

FIGURE 2

CONSORT flow chart.

TABLE 3 Subject characteristics and dietary intake without supplement represented as mean  ±  SD.

Variable SCP (n  =  26) PLA (n  =  29) Mixed ANOVA 
(p value)

T1 T2 T1 T2

Age (years) 26.1 ± 5.1 - 27.2 ± 5.2 - -

Body mass (kg) 75 ± 10 - 77.1 ± 6.3 - -

Height (m) 1.81 ± 0.1 - 1.82 ± 0.1 - -

BMI (kg/m2) 22.8 ± 2 - 23.3 ± 1.8 - -

Energy (kcal) 2276 ± 663 2104 ± 429 2360 ± 640 2404 ± 513 0.24

Protein (g) 91 ± 31 85 ± 20 93 ± 33 98 ± 23 0.32

Fat (g) 83 ± 25 81 ± 20 89 ± 38 96 ± 30 0.36

Carbohydrate (g) 261 ± 91 234 ± 77 265 ± 58 250 ± 52 0.59
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specific parameter were excluded whereas an exclusion was not 
obligatory for other parameters, if the amount of collected blood 
was sufficient for their analysis. Therefore, the following numbers 
of participants have been analyzed: 45 (CK), 43 (LDH), 44 (MYO) 
and 40 (hsCRP).

3.3 Area under the curve (AUC)

The CK, MYO and hsCRP data were log-transformed due to an 
initial violation of normal distribution. Significant interaction 
effects implying a greater reduction in the SCP group were observed 
in the AUCs of MYO (p = 0.004, ηp2 = 0.184), CK (p = 0.01, 
ηp2 = 0.145), LDH (p = 0.016 ηp2 = 0.133) but not hsCRP (p = 0.54), 
as shown in Figure  3. Figures  3, 4 demonstrate the data 
without transformations.

3.4 Delta AUCs

SCP intake resulted in a significantly higher reduction, visualized 
by ΔAUCs, in MYO (p = 0.017, d = 0.771/ ηp2 = 0.129), CK (p = 0.039, 
d = 0.633), LDH (p = 0.016, d = 0.764) but not in hsCRP (p = 0.915) 
(Figure 4). For MYO and hsCRP, the Mann–Whitney U Test was 
applied as a non-parametric alternative.

4 Discussion

To the best of our knowledge, this is the first study to examine the 
longer-term impact of a daily intake of specific collagen peptides 
(SCP) in combination with a 12-week concurrent training (CT) 
program on muscle stress and recovery-related blood biomarkers. 15 g 
of SCP significantly decreased the area under the curve (AUC) as well 
as the ΔAUCs of myoglobin (MYO), creatine kinase (CK) and lactate 
dehydrogenase (LDH) activity, suggesting improved regenerative 
capacity within 48 h after muscle damage-inducing bouts of 
drop jumps.

The results showed better adaptation after eccentric exercise, 
suggesting a more pronounced repeated bout effect (RBE) after 
prolonged SCP ingestion. The RBE, a not yet fully understood 
mechanism that protects tissues involved in muscle lengthening 
exercise execution from subsequent damage, is thought to be due 
to neural adaptations, extracellular matrix remodeling, 
adaptations at the muscle-tendon junction, and inflammation (34).

Severe myofibrillar damage, particularly as it occurs after 
unaccustomed eccentric exercise bouts, usually results in 
significant increases in CK, LDH and MYO, which have been 
extensively used as indirect biomarkers to monitor the extent of 
acute stress as well as recovery (35). The activity of both cytosolic 
enzymes (CK, LDH) during a nine (10) and 33-day (13) CP 
supplementation period was not lower compared to a placebo 

FIGURE 3

Area under the curve of MYO, CK, LDH, and hsCRP. *  =  significant interaction effect.
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after muscle-damaging exercise, which could have indicated 
either reduced acute muscle stress or accelerated reconstruction 
of damaged tissue. These two studies are the only ones to date 
that have examined recovery after CP intake by analyzing CK & 
LDH, albeit in a more short-term manner without prolonged 
exercise intervention. Therefore, the three-month training 
intervention in the present study may have improved the 
remodeling of the force-producing and transmitting tissues 
(ECM, muscle) with regular SCP administration, reducing the 
increase in CK & LDH. This hypothesis is supported by the 
results of a proteomic approach following a 12-week intake of 
15 g CP and resistance training (14). The authors identified a 
14-fold change in hypoxia-inducible factor alpha 1 (HIF-1α), the 
alpha subunit of the transcription factor HIF-1, which has shown 
its contribution to skeletal muscle regeneration in mice (36). 
HIF-1 exhibits upregulated expression in hypoxic situations, such 
as exercise, and has been found to play a role in collagen 
production in rodent tubular epithelial cells (37). Specifically, 
HIF-1 induces the expression of prolyl and lysyl hydroxylase, two 
enzymes essential for fiber formation, and promotes proper 
collagen biogenesis, ECM organization, stiffness, cell adhesion, 
and motility in human fibroblasts (38). Heat shock protein 90 

(HSP90), also upregulated 14-fold in CP in (14), is an HSP 
chaperone group protein. HSPs are usually overexpressed when 
exposed to infection, heat-induced stress, hypoxia and thus heat 
treatment (used as a therapeutic approach), and exercise. 
Previous studies in mice indicated increased protein levels and 
markers of muscle hypertrophy/recovery (MHCneo) associated 
with higher HSP72 levels following downhill running (39). Data 
from healthy human subjects running downhill for 45 min have 
shown a negative correlation of ΔMYO and ΔCK along with 
increasing concentrations of ΔHSP90 (1 h minus baseline) 1 hour 
after the eccentric endurance bout (40). In addition, Heat shock 
factor 1 (HSF1), a major transcription factor of HSPs, was also 
upregulated in CP influenced by HIF-1α in (14), indicating a 
close interdependence of these proteins (41). It appears that HSPs 
are involved in protecting cells from damage (42). Still, caution 
is also warranted when persistently elevated levels are observed, 
as they indicate chronic inflammation (43). Finally, five and four-
fold changes in MAPK and PI3K-Akt pathways have been 
observed after CP ingestion (14), which are important initiators 
of signaling cascades leading to protein synthesis. There is little 
evidence from in-vitro experiments that PI3K-Akt & MAPK may 
also trigger collagen type I gene expression via TGF-β2 activation 

FIGURE 4

Delta AUCs of MYO, CK, LDH, and hsCRP. *  =  significant group difference.
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(16, 44, 45). TGF-β cytokines generally induce intracellular 
signaling via specific Smad proteins (Smad2, 3 forming Smad 4 
etc.) (46), the latter being responsible for the expression of 
COL1A2 and COL3A1 (47) which give rise to collagen types I & 
III, both of which are most abundant in intramuscular connective 
tissue (48, 49). Given that Smad2, 4 and COL1A1 & COL3A1 
mRNA were significantly upregulated 27 (COL1A1) and 30 days 
after two muscle-damaging bouts of eccentric contractions 
separated by 27 days (50), the remodeling of muscle ECM, 
particularly force-bearing proteins such as COL I & III, represents 
a longer-term process (51). This functional recovery and 
adaptation process appears to be enhanced by CP supplementation 
induced by the mechanisms described above.

Based on the CK, LDH & MYO results, the findings suggest 
increased regenerative capacity throughout ongoing myocellular 
remodeling. While LDH typically peaks within hours, MYO 
concentrations and CK activity are highest on the first to third 
day or, in some cases, even on the fourth day after strenuous 
exercise, depending on the type of load, muscles used, and 
individual training history (52–57). Each biomarker leaves its 
original intracellular location due to cell damage-induced 
permeability and subsequently enters the bloodstream, where it 
can be  measured in serum/plasma in chronological order 
(LDH > MYO > CK) (35, 58). In the present study, prolonged SCP 
intake was shown to ameliorate several cell damage markers and 
have a beneficial effect on muscle stress response, early-phase 
muscle recovery, and enhanced RBE. Whether adaptions occurred 
in surrounding structures such as intramuscular connective 
tissue and/or muscle fibers per se remains unknown.

Regarding inflammatory parameters, the acute-phase protein 
C-reactive protein (CRP) is a commonly used marker of local and 
systemic inflammation. In this trial, there was no significant 
difference between both groups in terms of hsCRP. Considering 
the measurement time points (baseline and after 24 h), significant 
CRP changes were already detected after a marathon race (59), a 
one-hour strenuous endurance run (52), a 90-min eccentric 
exercise protocol (60) and 100 drop jumps (61). SCP intake had 
no apparent significant effect on post-exercise inflammatory 
status in this study; among other factors, the high CV of 12.5% 
for hsCRP might be responsible for this.

The choice of concurrent training (CT) as the type of training 
intervention in the present study was based on the following 
considerations. In general, CT combines the benefits of both RT 
and ET, at least in untrained to recreational athletes. CT improves 
physical fitness, does not impair maximal strength and muscle 
hypertrophy, and is thus consistent with public health guidelines 
(62). In contrast, CT limits explosive strength gains compared to 
resistance-only training, offset in the current study by performing 
RT before ET (63). In agreement with (64), moderate to high ET 
intensity was prescribed to benefit cardiorespiratory fitness and 
muscle strength (64). As a recent systematic review mentioned, 
protein intake (whey, casein, soy, milk) after an acute CT bout 
increases myofibrillar protein synthesis to a similar extent as after 
RT (65). Moreover, phosphorylation of the signaling proteins 
Akt–mTOR-S6K increased significantly immediately after CT 
and protein intake compared with placebo, indicating enhanced 
translation of myofibrillar mRNAs (66). CT plus protein also 

resulted in an immediate post-exercise increase in specific micro 
RNAs, suggesting a more myogenic rather than oxidative 
adaptation, and an effect on longer-term CT responses (65, 67). 
Whether SCP supplementation in combination with CT also 
leads to the above results remains unknown but may be of interest 
for future studies.

4.1 Limitations

The present study also has some limitations. Selecting an exercise 
that also stressed upper limb muscles (e.g., elbow flexors) would have 
led to more insightful information about the recovery-related setting 
of blood markers, as upper and lower body muscles have been shown 
to elicit a slightly different response to MYO & CK (57, 68). In 
addition, it has recently been suggested that a 30 g dose of milk protein 
taken immediately after endurance training efficiently repairs and 
resynthesizes body proteins (65, 69). Whether the same amount of 
SCP supplementation over a longer period would result in improved 
recovery of tissues subjected to exercise-induced muscle damage 
requires future investigation. To date, there is no clinical evidence or 
recommendations for effective CP dosing to optimize regenerative 
capacity. In addition, the effects of SCP supplemented in the present 
study cannot be generalized to other CP products.

4.2 Conclusion

In conclusion, 12 weeks of daily supplementation of 15 g of 
specific collagen peptides (SCP) in combination with a concurrent 
training intervention resulted in reduced acute muscle stress 
response and improvements in early phase recovery, as represented 
by significantly lower levels of myoglobin (MYO), creatine kinase 
(CK), and lactate dehydrogenase (LDH) after a second bout of 
muscle damage-inducing exercise. As this also indicates an 
enhanced repeated bout effect (RBE), SCPs, together with 
training, may accelerate repair and reduce cellular damage to the 
force-producing and transmitting tissues in the first 48 h after 
eccentric exercise. Future studies should therefore investigate the 
underlying molecular pathways of myocellular and ECM 
adaptation after intense muscle-damaging exercises. This may 
reveal specific target mechanisms affected by SCP intake that 
could be  of significant practical importance in reducing 
rehabilitation and recovery time and improving RBE.
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