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Background: We investigated the associations of micronutrients and lipids with 
prediabetes, glycemic parameters, and glycemic indices among the adolescent 
girls of the DERVAN (aDolescent and prEconception health peRspectiVe of Adult 
Non-communicable diseases) cohort study from rural India.

Methods: We recruited 1,520 adolescent girls aged 16–18  years. We measured 
glycemic parameters (glucose, insulin and HbA1C), lipids (total cholesterol, 
high-density lipoprotein [HDL], low-density lipoprotein [LDL], and triglycerides), 
and micronutrients (vitamin B12, folate, and vitamin D). Prediabetes was defined 
using American Diabetes Association criteria (fasting glucose ≥100  mg/dL or 
HbA1C ≥5.7%). Glycemic indices (insulin resistance, insulin sensitivity, and β 
cell function) were calculated using the homeostasis model. Associations of 
prediabetes, glycemic parameters and glycemic indices with micronutrients and 
lipids were analyzed by multiple logistic regressions.

Results: The median age and Body Mass Index (BMI) were 16.6 years and 17.6 kg/
m2, respectively. Overall, 58% of girls had a low BMI. Median vitamin B12, folate, and 
vitamin D concentrations were 249.0 pg/mL, 6.1 ng/mL, and 14.2 ng/mL, respectively. 
The deficiencies observed were 32.1% for vitamin B12, 11.8% for folate, and 33.0% for 
vitamin D. Median total cholesterol, LDL, HDL, and triglyceride concentrations were 
148.0 mg/dL, 81.5 mg/dL, 50.8 mg/dL, and 61.5 mg/dL, respectively. Elevated total 
cholesterol, LDL, and triglycerides were observed in 4.8, 4.0, and 3.8%, respectively, 
while low HDL was observed in 12.8%. Prediabetes was observed in 39.7% of the 
girls. Among lipids, total cholesterol and LDL were higher in girls with prediabetes 
(p < 0.01 for both). In a multivariate model containing cholesterol and vitamin B12/
folate/vitamin D, prediabetes was associated with high cholesterol. Prediabetes was 
also associated with high LDL, independent of folate and vitamin D. Poor insulin 
secretion was high in those with low vitamin B12. Elevated insulin resistance was 
associated with low HDL. The likelihood of high insulin sensitivity was reduced 
in those with high triglycerides. The likelihood of poor β cell function was high in 
those with high LDL. Statistical interactions between micronutrients and lipids for 
prediabetes and glycemic outcomes were not significant.

Conclusion: There was a substantial deficiency of micronutrients and an absence 
of dyslipidemia. Our results indicate the need for lipid and micronutrient-based 
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interventions in adolescence to improve glycemic outcomes. Maintaining 
adequate storage of not only micronutrients but also lipids in adolescent girls is 
likely to reduce diabetes risk in adulthood.
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Introduction

Non-communicable diseases (NCDs) like diabetes and 
hypertension are on the rise in India (1). At the same time, the burden 
of cardiovascular diseases (CVD) is also increasing (2). An unhealthy 
diet, sedentary lifestyle, and substance abuse (smoking, tobacco 
chewing, and alcohol consumption) have been identified as major 
contributing factors. The rise in NCDs is very evident in urban India. 
Over the last few years, many rural communities have also started 
witnessing a rise, not only in CVD and coronary heart disease (CHD) 
(3, 4) but also in NCDs (5, 6). South Asians develop CHD earlier than 
white Caucasians (7). Lipid abnormalities have been identified as 
major risk factors for CVD as well as CHD (8, 9). The INTERHEART 
study (10) identified elevated levels of total cholesterol (CHOL) and 
low-density lipoprotein cholesterol (LDL) as risk factors for CHD in 
South Asians. Studies from India have shown increased CHOL levels 
not only in urban subjects but also in rural subjects (4, 11). According 
to the Developmental Origins of Health and Disease (DOHaD) 
hypothesis, seeds of CHD, CVD, and NCDs are sown in early life, 
covering the intrauterine period as well as early childhood and 
adolescence (12–14). There are reports from Europe and China on 
early life undernutrition leading to dyslipidemia (15–17) as well as 
diabetes (18, 19) in adult life. Though dyslipidemia has been 
interconnected to the pathophysiology of CVD, it is also a modifiable 
dominant risk factor if detected early in life (20). Dyslipidemia is 
uncommon in adolescence, but if it exists then it is expected to 
intensify the risk of CVD in adulthood (21). Lipid levels in adolescence 
are known to strongly correlate with those in later life (22, 23). High 
levels of LDL and low levels of high-density lipoprotein cholesterol 
(HDL) in adolescence are precursors for atherosclerosis in adulthood 
(24). There are very few studies regarding undernutrition and 
dyslipidemia in Indian adolescents (25–27). Between the years 
2016–18, the Indian government carried out a Comprehensive 
National Nutrition Survey (CNNS) of adolescents aged 10–19 years, 
covering the entire nation with a sample size of >35,000 (28). It found 
increased lipid burden (21) as well as prediabetes (29). Over the last 
decade, the role of undernutrition in the development of diabetes has 
also been under investigation (30–33). Also, there are many reports 
investigating the role of micronutrients, which are biomarkers of 
nutrition, in the development of NCDs, especially diabetes (34–36).

BKL Walawalkar Hospital was established in the year 1996 in 
the village of DERVAN situated in the coastal region of Konkan in 
the western Indian state of Maharashtra. Since its inception, 
women’s health has been a prime area of interest. The hospital runs 
various holistic programs encompassing newborns, children, 
adolescent girls, newly married girls, and pregnant women. 
Comprehensive health education is provided, and various 
investigations are carried out. Counseling, holistic education, and 

medical treatment, if needed, are provided free of charge. Various 
hospital- and community-based cross-sectional, as well as 
observational, studies have demonstrated the presence of 
undernutrition across the entire life cycle (37–39). In addition, this 
region has also observed a rising prevalence of NCDs (diabetes and 
hypertension) (40). We have also demonstrated a high incidence of 
gestational diabetes among undernourished women in our region 
(41). This suggests an intergenerational link between an 
undernourished mother and her offspring.

The DERVAN cohort, a prospective longitudinal study of 
adolescent girls from the region, was set up in 2019 (42). Its objective 
was to test the hypothesis that poor physical growth and poor 
nutrition in adolescent girls increase the risk of NCDs, in particular 
the risk of diabetes in adulthood and in their offspring. Adolescent 
girls (16–18 years of age) were recruited between June 2019 and 
February 2023. The study is expected to continue for the next 20 years 
with an annual follow-up of adolescent girls.

Our recent report on this cohort showed a high prevalence of 
prediabetes (PD) among adolescent girls (43). Prediabetes precedes 
type 2 diabetes (T2D) and is marked by glucose levels above normal 
but below the diabetic threshold.

Baseline measurements of micronutrients, which are biomarkers 
of nutrition, as well as those of lipids, provided us the opportunity to 
investigate the role any of them may have in the development of PD 
in adolescence and diabetes in later life.

Methods

The detailed protocol of the study is already reported (42). In 
short, 16–18-year-old adolescent girls born in Konkan, staying with 
parents with no history of any major illness (e.g., heart, kidney, liver 
disease, cancer, and psychiatric disorders), as well as with no history 
of mental, intellectual, or physical disability, were recruited. 
We recruited 1,520 girls at baseline. They were brought to the institute 
in groups of 5–7. They had an overnight stay at the hostel to ensure 
their fasting status. The detailed protocol for blood collection has 
already been reported (44).

Anthropometric measurements of height, weight, waist 
circumference, and hip circumference were made using a standardized 
protocol. Body fat was measured using a bioimpedance analyzer 
(MC-780, TANITA Corporation, Japan).

Laboratory methods

A fasting blood sample was drawn from adolescent girls and 
further processed to measure micronutrients, lipids, and glycemic 
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parameters. Blood samples were centrifuged (4°C, 3,000 rpm, 15 min) 
within 1 h of collection and stored at −80°C for further investigations.

Blood glucose was measured on the ERBA 200, Trans Asia, 
Mumbai, India. The intra- and inter-batch coefficients of variation 
(CVs) were < 5%. HbA1c was measured using high performance 
liquid chromatography (Bio-Rad D10; Bio-Rad Laboratories, 
Hercules, CA, USA) calibrated against the National Glycosylated 
Standardization Program with a CV of 2.8%. Fasting insulin was 
measured on an Abbott Architect i1000SR with a CV of 2.0%. Vitamin 
B12 (VitB12), folate, and vitamin D (VitD) were measured on the 
Abbott Architect i1000SR. The intra- and inter-batch CVs were 7.1% 
for VitB12, 7.7% for folate, and 5.3% for VitD. Total cholesterol, HDL, 
and triglycerides (TG) were measured on Trans Asia ERBA 200. The 
intra- and inter-batch CVs were 3.7% for CHOL, 5.2% for HDL, and 
4.0% for TG.

Calculations and classifications

Stunting and underweight (low Body Mass Index, BMI) were 
defined using World Health Organization (WHO) criteria (45) and 
thinness using International Obesity Task Force (IOTF) criteria (46), 
respectively. The Friedewald formula was used to calculate LDL (47). 
Prediabetes was defined using American Diabetic Association (ADA) 
criteria, i.e., fasting glucose ≥100 mg/dL or HbA1C ≥5.7% (48). 
Glycemic indices of insulin resistance (HOMa-IR), insulin sensitivity 
(HOMA-S) and beta cell function (HOMA-β) were estimated using 
the homeostasis model (49).

Elevated CHOL, LDL, and TG concentrations were defined as 
≥ 200 mg/dL, ≥ 130 mg/dL, and ≥ 130 mg/dL, respectively, and low 
HDL was defined as < 40 mg/dL (28). Deficiency of vitB12 and folate 
was defined as <203 pg/mL and < 4.0 ng/mL (50), respectively. 
Deficiency of VitD was defined as <12 ng/mL (28).

Statistical methods

Data has been represented by median and 25th–75th quartiles as 
well as by mean and standard deviation for continuous variables and 
by percentages for categorical variables. All the micronutrients 
(VitB12, folate, and VitD), lipids (CHOL, HDL, LDL, and TG), and all 
the glycemic variables (fasting glucose, fasting insulin, HOMA-IR, 
HOMA-S, and HOMA-β) were tested for normality. Except for fasting 
glucose, all the variables were skewed and appropriately transformed 
for normality. The transformation function to normalize was a natural 
logarithm for CHOL, HDL, TG, VitB12, HOMA-IR, and 
HOMA-S. The cube root function was used to normalize LDL and 
VitD. Folate and fasting insulin were normalized using hyperbolic 
arcsin functions. HOMA-β was normalized by subtracting the 
reciprocal of its square root from 1. Prediabetes, fasting insulin, and 
glycemic indices (HOMA-IR, HOMA-S, and HOMA-β) were treated 
as glycemic outcomes. Exposures refer to micronutrients (VitB12, 
VitD, and folate) and lipids (CHOL, LDL, HDL, and TG). Univariate 
associations between continuous glycemic outcomes and continuous 
exposures, as well as those between various continuous exposures 
(micronutrients and lipids), are shown by partial correlation. 
Comparison of exposures between normoglycemic and prediabetic 
girls was done by the analysis of variance for continuous and normally 

distributed exposures, by Mann–Whitney test for those not normally 
distributed and by chi-square test for those categorical. Prediabetes 
was a categorical outcome. Other categorical outcomes were defined 
using the presence of individuals in risk quartiles for each outcome. 
The risk quartiles for outcomes were the 1st quartile for fasting insulin 
and HOMA-β representing a group with poor insulin secretion and 
poor β cell function, respectively, and the 4th quartile for HOMA-IR 
and HOMA-S representing the most insulin resistant and most 
insulin-sensitive groups, respectively. We  also categorized the 
exposures (micronutrients as well as lipids) by creating the quartiles 
of each exposure. The 4th quartile was used as a reference for VitB12, 
folate, and VitD, which represent high vitamin concentrations. Except 
for HDL, the 1st quartile was used as a reference for lipids (CHOL, 
LDL, and TG), representing low lipid levels. For HDL, the 4th quartile 
was used as a reference, indicating high or better HDL. Univariate as 
well as multivariate associations of the categorical outcomes with the 
categorical exposures were analyzed using logistic regression. Odds 
ratios (ORs) relative to the reference quartile for each exposure and 
95% confidence intervals (CIs) for the outcomes were calculated. 
We  also tested the interaction of various micronutrient and lipid 
exposures for various outcomes by including relevant product terms 
as appropriate. BMI representing the anthropometric markers of 
undernutrition and age of adolescent girls, was divided into quartiles 
and used as covariates. In the case of BMI, the 4th quartile was further 
divided into two groups: non-obese and overweight/obese, thus 
creating five groups. The overweight/obese group was treated as the 
reference. We  also carried out the analysis for prediabetes using 
micronutrients and lipids as scale variables. Two-tailed significance 
was calculated at a 5% level. Analysis was performed using Statistical 
Package for the Social Sciences (SPSS) 25.0 and STATA 11.0 (STATA, 
College Station, TX, USA).

Ethics

The study was approved by the Institute Ethics Committee of BKL 
Walawalkar Rural Medical College and Hospital. The committee is 
registered with the Department of Health Research (DHR), 
Government of India, with registration number EC/NEW/INST/2023/
MH/0361. Appropriate written informed consent was obtained from 
those who were 18 years old at the time of the recruitment. For those 
below 18 years of age, written informed consent was obtained from the 
parents of the adolescent girl, and written informed ascent was 
obtained from the adolescent girl.

Results

We recruited 1,520 adolescent girls in the cohort. Body 
composition measurements were done on 1,400 girls. Of this, five girls 
were diagnosed with diabetes. Out of the remaining normoglycemic 
(n = 1,395) cases, lipid and micronutrient measurements were available 
on 1,387 girls. Our final sample number for the data analysis is 1,387.

Anthropometry, body composition, micronutrients, lipids, and 
glycemia (Table 1).

The median age of the subjects was 16.6 years. Median height, 
weight, BMI, waist circumference, hip circumference, and waist 
circumference to hip circumference ratio were 151.7 cm, 40.7 kg, 
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17.6 kg/m2, 62.2 cm, 83.2 cm, and 0.75, respectively. Using the WHO 
standard, 30.4% of girls were found to be stunted, and 28.8% were 
underweight. Using the IOTF standard, 58% were thin. Median body 
fat% was 22.5 and 36.3% girls had body fat% > 25. Median 
concentrations of VitB12, folate, and VitD were 249.0 pg/mL, 6.1 ng/
mL, and 14.2 ng/mL, respectively. Deficiencies of VitB12, folate, and 
VitD were observed in 32.1, 11.8, and 33.3%, respectively. Median 
levels of CHOL, LDL, HDL, and TG were 148.0 mg/dL, 81.5 mg/dL, 
50.8 mg/dL, and 61.5 mg/dL, respectively. Elevated levels were 
observed in 4.8% of CHOL, 4.0% of LDL, and 3.8% of TG. Low HDL 
was observed in 12.8%. Median concentrations of fasting glucose and 
fasting insulin were 95.4 mg/dL and 8.6 μIU/ml, respectively. Median 
values for glycemic indices were 1.2, 86.0, and 94.5 for HOMA-IR, 
HOMA-S, and HOMA-β, respectively. Prediabetes was observed in 
39.7% of girls.

Micronutrients, lipids, and prediabetes (Table 2).
We compared micronutrient concentrations and lipids between 

prediabetic and normoglycemic girls. Among lipids, CHOL and LDL 
were higher in girls with PD (p < 0.01) for CHOL and (p < 0.001) 
for LDL.

Univariate and continuous associations of micronutrients and 
lipids with glycemic outcomes and BMI (Supplementary Table 1).

Folate was inversely associated with fasting insulin, HOMA-IR 
(p < 0.05 for both), and HOMA-β (p < 0.001). Total cholesterol and 
LDL were positively associated with fasting glucose (p < 0.05 for both). 
Total cholesterol, LDL, and TG were positively associated with fasting 
insulin and HOMA-IR and inversely with HOMA-S (p < 0.01 for all). 
HDL was inversely associated with fasting insulin and HOMA-IR and 
positively with HOMA-S (p < 0.001) for all. Triglyceride was positively 
associated with HOMA-β and HDL was inversely associated (p < 0.001 
for both). All three micronutrients and HDL were inversely associated 
with BMI, and CHOL, LDL and TG were positively associated.

Univariate and continuous associations between micronutrients 
and lipids (Supplementary Table 2).

Vitamin B12 was positively associated with CHOL, LDL, and HDL 
but inversely with TG (p < 0.001 for all). Folate was inversely associated 
with LDL (p < 0.001) and positively with HDL (p < 0.05). Vitamin D 
was inversely associated with both CHOL and LDL (p < 0.01 for both).

Univariate analysis of micronutrients, lipids, BMI, and age as 
predictors of glycemic outcomes (Table 3).

We carried out univariate logistic regressions using quartiles of 
each micronutrient and each lipid parameter, as well as 5 groups of 
increasing BMI and quartiles of age with PD and risk quartiles of 
fasting insulin and glycemic indices as outcomes.

Prediabetes: The OR for the 2nd quartile of VitB12 and the 3rd 
quartile of VitD were significantly reduced (<1) to the upper quartile, 
representing relatively high levels of respective vitamins. Among 
lipids, PD was predicted by high CHOL (4th quartile) and high LDL 
(2nd and 3rd quartiles) to the 1st quartile, representing low levels of 
respective lipids. There was no association of PD with HDL and TG.

Poor insulin secretion (1st quartile of fasting insulin): Having 
poor insulin secretion was associated inversely with high CHOL (4th 
quartile), low HDL (1st quartile), and high TG (3rd and 4th quartiles), 
with the 1st quartile representing low levels of CHOL, TG, and the 4th 
quartile representing high HDL. The OR for poor insulin secretion 
increased with decreasing BMI. Those who were the oldest (4th 
quartile) had a higher likelihood of poor insulin secretion than those 
who were the youngest.

TABLE 1 Anthropometry, body composition, micronutrients, lipids, and 
glycemia in adolescent girls (n  =  1,387).

Parameters Median (25th – 75th 
percentile) or n (%)

Mean 
(SD)

Body composition

Age (yrs) 16.6 (15.8–17.3) 16.6 (0.9)

Height (cm) 151.7 (148.2–155.6) 151.8 (5.5)

Stunted$ 421 (30.4)

Weight (kg) 40.7 (36.7–46.0) 42.1 (8.1)

Underweight$ 400 (28.8)

BMI (kg/m2) 17.6 (16.0–19.8) 18.2 (3.3)

Thinness@(< − 1 SD) 805 (58.0)

Overweight/obese@(> + 1 SD) 60 (4.3)

Waist circumference (cm) 62.2 (58.5–67.2) 63.5 (7.3)

Hip circumference (cm) 83.2 (79.6–87.9) 84.2 (7.1)

WHR 0.75 (0.72–0.78) 0.75 (0.05)

Fat mass (kg) 8.9 (6.7–12.3) 10.2 (5.3)

Body fat % 22.5 (18.6–27.7) 23.4 (6.9)

Body fat % > 25 504 (36.3)

Lean mass (kg) 29.5 (27.4–31.6) 29.6 (3.2)

Vitamins

VitB12 (pg/mL) 249.0 (182.5–340.1) 287.3 (155.9)

VitB12 < 203 pg/mL 445 (32.1)

Folate (ng/mL) 6.1 (4.7–7.8) 6.5 (2.6)

Folate < 4 ng/mL 164 (11.8)

VitD (ng/mL) 14.2 (10.8–17.4) 14.6 (5.3)

VitD ≤ 12 ng/mL 462 (33.3)

Lipids

CHOL (mg/dL) 148.0 (131.0–165.0) 149.9 (27.3)

CHOL ≥ 200 mg/dL 66 (4.8)

LDL (mg/dL) 81.5 (68.5–98.6) 84.5 (23.6)

LDL ≥ 130 mg/dL 55 (4.0)

HDL (mg/dL) 50.8 (43.9–58.5) 51.7 (10.9)

HDL < 40 mg/dL 177 (12.8)

TG (mg/dL) 61.5 (47.0–82.7) 68.5 (29.6)

TG ≥ 130 mg/dL 53 (3.8)

Glycemia

Fasting glucose (mg/dL) 95.4 (88.9–101.6) 95.1 (9.8)

IFG 433 (31.2)

HbA1C (%) 5.3 (5.0–5.5) 5.2 (0.4)

Elevated HbA1C 191 (13.8)

Prediabetes 551 (39.7)

Fasting insulin (μIU/mL) 8.6 (6.9–11.1) 9.3 (3.8)

HOMA-IR 1.2 (0.9–1.5) 1.2 (0.5)

HOMA-S 86.0 (66.5–108.5) 90.8 (36.3)

HOMA-β 94.5 (79.4–113.6) 100.4 (33.3)

$As per WHO (36); @As per IOTF (International Obesity Task Force) (37); WHR, waist 
circumference to hip circumference ratio; SD, Standard Deviation; IFG, Impaired Fasting 
Glucose (fasting glucose ≥ 100 mg/dL); elevated HbA1C (>5.7%).
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Most insulin resistant (4th quartile of HOMA-IR): Among 
micronutrients, being most insulin resistant was inversely associated 
with folate (3rd quartile) and directly with VitD (2nd quartile). 
Among lipids, being most insulin resistant was associated with high 
CHOL (4th quartile), high LDL (2nd, 3rd, and 4th quartiles) low 
HDL (1st quartile), and high TG (3rd and 4th quartiles). The OR for 
being most insulin resistant decreased with decreasing BMI. Those 
who were oldest (4th quartile) had less likelihood of having most 
insulin resistance than those who were younger.

Most insulin sensitive (4th Quartile of HOMA-S): Protective 
associations were observed for high CHOL (4th quartile), low HDL (1st 
quartile), and high TG (3rd and 4th quartiles). The decreasing BMI 
increased the OR for being highly insulin sensitive. Those who were the 
oldest (4th quartile) had a high likelihood of being most insulin sensitive.

Poor β cell function (1st Quartile of HOMA-β): Poor β cell 
function was associated protectively with low folate (2nd and 1st 
quartile), low HDL (2nd and 1st quartile), and high TG (4th quartile). 
The OR for poor β cell function increased with decreasing BMI. Those 
who were the oldest (4th quartile) had a high likelihood of poor β 
cell function.

Multivariate analysis of micronutrients and lipids as predictors of 
glycemic outcomes.

We ran logistic regression models for each glycaemic outcome, 
containing a single micronutrient (VitB12/folate/VitD) and a single 
lipid (CHOL/LDL/HDL/TG) as independent variables and BMI and 
age as covariates. Thus, for each of the 3 micronutrients, 4 lipids, and 
5 glycaemic outcomes, we ran 4 models for each of the 5 glycaemic 
outcomes. We  also included relevant micronutrient and lipid 
interaction terms in the analysis.

Vitamin B12 and lipids as predictors of PD (Table 4).
In Model-M1 containing CHOL, PD was independently 

associated only with relatively high CHOL (4th quartile). In the 
remaining 3 models (M2, M3, and M4) containing each of the 
remaining lipids, PD was associated with only VitB12 (2nd quartile) 
and that too with protective effects (ORs < 1).

Folate and lipids as predictors of PD (Table 5).
In Model-1 containing CHOL, PD was independently associated 

only with relatively high cholesterol (4th quartile). In the remaining 
models, there was an independent association of PD only with 
relatively high LDL (3rd and 4th quartiles) in Model-2.

Vitamin D and lipids as predictors of PD (Table 6).
In all 4 models, PD was independently associated with VitD (3rd 

quartile) and protective OR. PD was also independently associated 
with high cholesterol (4th quartile) in Model-1 and with high LDL 
(3rd and 4th quartiles) in Model-2.

We repeated the analysis described in Tables 4–6 for the remaining 
glycemic outcomes, i.e., poor insulin secretion, being most insulin 
resistant, being most insulin sensitive, and having poor β cell function. 
We have summarized these in Supplementary Tables 3–5 containing 
vitamin B12, folate, and vitamin D, respectively.

Vitamin B12 and lipids as predictors of poor insulin secretion 
(Supplementary Table 3).

Having poor insulin secretion was independently associated 
with poor VitB12 status (1st quartile) in all 4 models. The ORs 
were significant and >1 in all. Additionally, in Model-4 containing 
TG, there was also an independent association with elevated TG 
(4th quartile), but the effect was protective as OR was 
significant and <1.

Folate and lipids as predictors of poor insulin secretion 
(Supplementary Table 4).

Only in Model-4 containing TG was there an independent 
association with elevated TG (4th quartile), but the effect was 
protective as OR was significant and <1.

Vitamin D and lipids as predictors of poor insulin secretion 
(Supplementary Table 5).

Only in Model-4 containing TG was there an independent 
association with elevated TG (4th quartile), but the effect was 
protective as OR was significant and <1.

Vitamin B12 and lipids as predictors of being most insulin resistant 
(Supplementary Table 3).

The only association observed was in Model-3 with low HDL (1st 
quartile), and the OR was significant and >1.

Folate and lipids as predictors of being most insulin resistant 
(Supplementary Table 4).

There was a protective effect of low folate (3rd quartile) in all 4 
models, as ORs were significant and <1. Additionally, there was a 
positive effect of low HDL (1st quartile) in Model-3.

Vitamin D and lipids as predictors of being most insulin resistant 
(Supplementary Table 5).

The only significant positive effect observed was that of low HDL 
(1st quartile) in Model-3.

Vitamin B12 and lipids as predictors of being most insulin sensitive 
(Supplementary Table 3).

Only in Model-4, a significant but protective effect of high TG 
(4th quartile) was observed.

Folate and lipids as predictors of being most insulin sensitive 
(Supplementary Table 4).

TABLE 2 Micronutrients and lipids between girls with PD and 
normoglycemia (n  =  1,387).

Parameters PD 
(n  =  551)

Normal 
(n  =  836)

p value

Micronutrients

VitB12 (pg/mL)
256.0 (183.0–

362.0)

244.9 (182.0–

333.0)
0.118

<203 pg/mL 170 (30.9) 275 (32.9) 0.425

Folate (ng/mL) 6.0 (4.7–7.8) 6.1 (4.7–7.7) 0.877

<4 ng/mL 63 (11.4) 101 (12.1) 0.715

VitD (ng/mL) 14.0 (10.6–17.8) 14.2 (10.9–17.0) 0.952

≤12 ng/mL 189 (34.3) 273 (32.7) 0.525

Lipids

CHOL (mg/dL)
150.0 (132.0–

169.0)

146.8 (130.0–

164.0)
0.013*

≥200 mg/dL 30 (5.4) 36 (4.3) 0.330

LDL (mg/dL) 85.1 (70.1–100.6) 79.8 (67.5–96.9) 0.004*

≥130 mg/dL 26 (4.7) 29 (3.5) 0.243

HDL (mg/dL) 51.2 (43.3–58.5) 50.6 (44.1–58.4) 0.855

<40 mg/dL 74 (13.4) 103 (12.3) 0.545

TG (mg/dL) 63.7 (47.7–84.3) 60.7 (46.3–82.3) 0.199

≥130 mg/dL 26 (4.7) 27 (3.2) 0.157

Median (25th – 75th percentile) or n (%); *statistically significant (p < 0.05) by Man–
Whitney Test for non-normal variables and chi-square test for categorical variables.
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TABLE 3 Association of PD and other glycemic outcomes with micronutrients, lipids, BMI, and age (univariate logistic regressions).

Exposures ↓ Prediabetes Poor insulin 
secretion (Q1 of 
fasting insulin)

High HOMA-IR 
(Q4 of insulin 

resistance)

High HOMA-S 
(Q4 of insulin 

sensitivity)

Poor HOMA-β 
(Q1 of β cell 

function)

VitB12 Q1 NS NS NS NS NS

Q2

0.708

(0.522–0.960) 

0.026

NS NS NS NS

Q3 NS NS NS NS NS

Q4 (ref) 1 1 1 1 1

Folate Q1 NS NS NS NS

0.705

(0.499–0.997) 

0.048

Q2 NS NS NS NS

0.710

(0.506–0.996) 

0.047

Q3 NS NS

0.602

(0.410–0.884) 

0.010

NS NS

Q4 (ref) 1 1 1 1 1

VitD Q1 NS NS NS NS NS

Q2 NS NS

1.494

(1.050–2.127) 

0.026

NS NS

Q3

0.687

(0.506–0.933) 

0.016

NS NS NS NS

Q4 (ref) 1 1 1 1 1

CHOL Q4

1.513

(1.117–2.049) 

0.008

0.626
(0.438–0.895) 

0.010

1.661
(1.163–2.373) 

0.005

0.564
(0.396–0.805) 

0.002

NS

Q3 NS NS NS NS NS

Q2 NS NS NS NS NS

Q1 (ref) 1 1 1 1 1

LDL Q4 NS NS

1.915

(1.329–2.735) 

0.000

NS NS

Q3

1.379

(1.016–1.872) 

0.039

NS
1.554

(1.070–2.255) 

0.020

NS NS

Q2

1.412

(1.041–1.916) 

0.027

NS
1.251

(0.853–1.835) 

0.251

NS NS

Q1 (ref) 1 1 1 1 1

HDL Q1 NS
0.640

(0.452–0.906) 

0.012

1.902

(1.320–2.740) 

0.001

0.684
(0.484–0.966) 

0.031

0.668
(0.475–0.941) 

0.029

Q2 NS NS NS NS

0.706

(0.502–0.993) 

0.045

Q3 NS NS NS NS NS

(Continued)
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The protective effect of high CHOL (4th quartile) in Model-1 was 
observed. A significant but protective effect of high TG (4th quartile) 
was also observed in Model-4.

Vitamin D and lipids as predictors of being most insulin sensitive 
(Supplementary Table 5).

The protective effect of high CHOL (4th quartile) and high TG 
(4th quartile) was observed in Model-1 and Model-4, respectively.

Vitamin B12 and lipids as predictors of poor β cell function 
(Supplementary Table 3).

There was a positive effect of high LDL (4th quartile) in Model-2 
and a protective effect of low HDL (2nd quartile) in Model-3.

Folate and lipids as predictors of poor β cell function 
(Supplementary Table 4).

Folate (2nd quartile) had a protective effect on poor β cell function 
in all models. There was a positive effect of high LDL (4th quartile) in 
Model-2 and a protective effect of low HDL (2nd quartile) in Model-3.

Vitamin D and lipids as predictors of poor β cell in Model-3 
function (Supplementary Table 5).

The likelihood of poor β cell function was not associated with any 
of the lipids.

Interactions of micronutrients and lipids with prediabetes, poor 
insulin secretion, and glycemic indices.

None of the interactions between each micronutrient and each 
lipid were found to be  statistically significant for PD and other 
glycemic outcomes.

We also carried out multivariate logistic regression of PD, including 
independent variables such as lipids and micronutrients as scale variables 
(Supplementary Tables 6–8) without using quartiles. The results were very 
similar. Prediabetes was associated with CHOL and LDL.

Discussion

We have reported micronutrients (VitB12, folate, and VitD) and 
lipid levels (CHOL, LDL, HDL, and TG) in 16–18 year-old adolescent 
girls of the DERVAN cohort. Among micronutrients, more than 

TABLE 3 (Continued)

Exposures ↓ Prediabetes Poor insulin 
secretion (Q1 of 
fasting insulin)

High HOMA-IR 
(Q4 of insulin 

resistance)

High HOMA-S 
(Q4 of insulin 

sensitivity)

Poor HOMA-β 
(Q1 of β cell 

function)

Q4 (ref) 1 1 1 1 1

TG Q4 NS

0.370

(0.254–0.537) 

0.000

1.934
(1.351–2.767) 

0.000

0.380
(0.263–0.549) 

0.000

0.612
(0.428–0.874) 

0.007

Q3 NS

0.645

(0.461–0.904) 

0.011

1.539
(1.066–2.220) 

0.021

0.580
(0.413–0.815) 

0.002

NS

Q2 NS NS NS NS NS

Q1 (ref) 1 1 1 1 1

BMI Q1 NS

36.393

(4.983–265.798) 

0.000

0.047
(0.025–0.091) 

0.000

36.840
(5.044–269.059) 

0.000

33.791
(4.626–246.852) 

0.001

Q2 NS

27.021

(3.696–197.566) 

0.001

0.078
(0.041–0.146) 

0.000

27.384
(3.746–200.208) 

0.001

24.224
(3.311–177.214) 

0.002

Q3 NS

15.719

(2.142–115.372) 

0.007

0.096
(0.052–0.179) 

0.000

16.268
(2.217–119.365) 

0.006

18.844
(2.572–138.091) 

0.004

Q4 – Normal NS NS

0.235

(0.128–0.433) 

0.000

NS
8.462

(1.137–62.975) 

0.037

Q4 – ovwt/obese (ref) 1 1 1 1 1

Age Q4 NS
1.686

(1.193–2.383) 

0.003

0.638

(0.458–946) 

0.024

1.709
(1.210–2.414) 

0.002

1.550 (1.108–2.169) 

0.010

Q3 NS NS NS NS NS

Q2 NS NS NS NS NS

Q1 (ref) 1 1 1 1 1

Values represent OR with 95% CI and an exact p value (<0.05); NS: Statistically not significant; Q1, Q2, Q3, and Q4 are quartiles of respective exposures; ovwt: Overweight; BMI Q4 is further 
divided into two groups: those with a normal BMI and those who are overweight/obese; ref: reference.

: represents the odds ratio < 1.

: represents the odds ratio > 1.
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TABLE 4 Multivariate association of PD with vitamin B12 and lipids with 
BMI and age as covariates (logistic regression).

Outcomes 
→

Prediabetes

Exposures 
↓

M1 M2 M3 M4

VitB12 Q1 NS NS NS NS

Q2 NS

0.732

(0.538–0.996) 

0.047

0.708

(0.521–0.962) 

0.027

0.697

(0.514–0.947) 

0.021

Q3 NS NS NS NS

Q4 (ref) 1 1 1 1

CHOL Q4

1.45  

(1.06–1.98) 

0.020

Q3 NS

Q2 NS

Q1 (ref) 1 1 1 1

LDL Q4 NS

Q3 NS

Q2 NS

Q1 (ref) 1 1 1 1

HDL Q1 NS

Q2 NS

Q3 NS

Q4 (ref) 1 1 1 1

TG Q4 NS

Q3 NS

Q2 NS

Q1 (ref) 1 1 1 1

BMI Q1 NS NS NS NS

Q2 NS NS NS NS

Q3 NS NS NS NS

Q4 – Normal NS NS NS NS

Q4 – ovwt/obese 

(ref)
1 1 1 1

age Q4 NS NS NS NS

Q3 NS NS NS NS

Q2 NS NS NS NS

Q1 (ref) 1 1 1 1

Values represent OR with 95% CI and an exact p value (<0.05); NS: Statistically not 
significant; Q1, Q2, Q3, and Q4 are quartiles of respective exposures; ovwt: Overweight; BMI 
Q4 is further divided into two groups: those with a normal BMI and those who are 
overweight/obese; ref: reference.
M1: Model-1 (VitB12, CHOL, BMI and age).
M2: Model-2 (VitB12, LDL, BMI and age).
M3: Model-3 (VitB12, HDL, BMI and age).
M4: Model-4 (VitaB12, TG, BMI and age).

: represents the odds ratio < 1.

: represents the odds ratio > 1.

: variable not in the model.

TABLE 5 Multivariate association of PD with folate and lipids with BMI 
and age as covariates (logistic regression).

Outcomes 
→

Prediabetes

Exposures 
↓

M1 M2 M3 M4

Folate Q1 NS NS NS NS

Q2 NS NS NS NS

Q3 NS NS NS NS

Q4 (ref) 1 1 1 1

CHOL Q4

1.507

(1.106–2.052) 

0.009

Q3 NS

Q2 NS

Q1 (ref) 1

LDL Q4

1.140

(1.026–1.911) 

0.034

Q3

1.382

(1.015–1.881) 

0.040

Q2 NS

Q1 (ref) 1

HDL Q1 NS

Q2 NS

Q3 NS

Q4 (ref) 1

TG Q4 NS

Q3 NS

Q2 NS

Q1 (ref) 1

BMI Q1 NS NS NS NS

Q2 NS NS NS NS

Q3 NS NS NS NS

Q4 – Normal NS NS NS NS

Q4 – ovwt/obese 

(ref)
1 1 1 1

Age Q4 NS NS NS NS

Q3 NS NS NS NS

Q2 NS NS NS NS

Q1 (ref) 1 1 1 1

Values represent OR with 95% CI and an exact p value (<0.05); NS: Statistically not 
significant; Q1, Q2, Q3, and Q4 are quartiles of respective exposures; ovwt: Overweight; BMI 
Q4 is further divided into two groups: those with a normal BMI and those who are 
overweight/obese; ref: reference.
M1: Model-1 (Folate, CHOL, BMI, and age).
M2: Model-2 (Folate, LDL, BMI, and age).
M3: Model-3 (Folate, HDL, BMI, and age).
M4: Model-4 (Folate, TG, BMI, and age).

: represents the odds ratio < 1.

: represents the odds ratio > 1.

: variable not in the model.
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1/3rd of girls were deficient in VitB12 and VitD. This was very similar 
to those reported in a national survey of adolescents (28). Folate 
deficiency was very low. Elevated CHOL, LDL, and TG were observed 
in <5%, but low HDL was observed in 12.8%. This was despite 
household chores and walking long distances to school (51). The 
prevalence of PD was close to 40%. Abnormality in lipids using the 
conventional cutoffs was itself very low. Prediabetes was not 
associated with micronutrient deficiencies when we  used 
conventional cutoffs. Unlike other reports from India (21), the 
proportion of lipid abnormalities between prediabetics and normal 
was similar and very low. Cutoffs for micronutrient deficiencies are 
also facing challenges in Indian settings (52). Hence, we decided to 
use a quartile approach for both sets of exposures to test the 
associations of glycemic outcomes with micronutrients as well as 
lipid exposures. Other than PD, there are no specific cutoffs for 
insulin and various glycemic indices; hence, we also categorized all 
the outcomes other than PD as belonging to either the lowest or 
highest quartiles.

In the multivariate analysis using a quartile approach, relatively 
low VitB12 and VitD status were protective against PD. Among lipids, 
the likelihood of PD was high in those with relatively high CHOL, 
and it was much stronger in those with relatively high LDL. The 
likelihood of poor insulin secretion increased in those with relatively 
low VitB12, while it decreased in those with relatively high 
TG. Relatively low folate status was protective against high insulin 
resistance, while a high likelihood of insulin resistance was observed 
in those with relatively low HDL. Those with relatively high TG were 
less likely to have high insulin sensitivity, and those with relatively 
high LDL and low HDL were more likely to have poor β cell function. 
It is noteworthy that despite the very low prevalence of those with 
abnormal CHOL and LDL, there was still a graded association of PD 
with those having relatively high CHOL and LDL, independent of all 
three micronutrients.

Interactions between micronutrients and lipids have been 
reported for PD in another report from India on school-going 
young children of 5–9 years of age (53). It found significant 
interaction probabilities for PD among those with VitB12 deficiency 
with high CHOL, Sufficient VitD with high CHOL, and high VitD 
with high LDL. We used the odds ratio approach and found high 
likelihood of PD among those with relatively high CHOL, and 
relatively low VitD with high CHOL. The interesting thing in our 
data was the absence of statistical interactions between 
micronutrients and lipids for various glycemic outcomes. Beyond 
PD, the measurement of insulin and glycemic indices provided the 
opportunity to explore their associations with micronutrients and 
lipids. We  could not find any reports that investigated such 
associations and interactions.

There are few studies reporting data on micronutrients, lipids, 
prediabetes, and diabetes in adolescent populations. A study from 
Italy (54) found an association between poor vitamin B12 and high 
insulin resistance. A study from Saudi Arabia (55) found a significant 
association of vitamin D deficiency with T2D. The prevalence of 
overweight/obesity in these studies was 34 and 68%, respectively. The 
proportion of those overweight/obese in our study was miniscule 
(only 4.3%). Both studies have measured lipids, but none of them have 
reported the associations of diabetes or prediabetes with 
micronutrients and lipids together. Unlike our study, these studies 
have measured only a single micronutrient.

TABLE 6 Multivariate association of PD with vitamin D and lipids with BMI 
and age as covariates (logistic regression).

Outcomes → Prediabetes

Exposures ↓ M1 M2 M3 M4

VitD Q1 NS NS NS NS

Q2 NS NS NS NS

Q3

0.669

(0.491–0.911) 

0.011

0.667

(0.493–0.909) 

0.010

0.671

(0.493–0.913) 

0.011

0.664

(0.487–0.904) 

0.009

Q4 (ref) 1 1 1 1

CHOL Q4

1.523

(1.117–2.017) 

0.008

Q3 NS

Q2 NS

Q1 (ref) 1

LDL Q4

1.405

(1.028–1.920) 

0.033

Q3

1.403

(1.029–1.910) 

0.032

Q2 NS

Q1 (ref) 1

HDL Q1 NS

Q2 NS

Q3 NS

Q4 (ref) 1

TG Q4 NS

Q3 NS

Q2 NS

Q1 (ref) 1

BMI Q1 NS NS NS NS

Q2 NS NS NS NS

Q3 NS NS NS NS

Q4: Normal NS NS NS NS

Q4: ovwt/obese 

(ref)
1 1 1 1

age Q4 NS NS NS NS

Q3 NS NS NS NS

Q2 NS NS NS NS

Q1 (ref) 1 1 1 1

Values represent OR with 95% CI and an exact p value (<0.05); NS: Statistically not 
significant; Q1, Q2, Q3, and Q4 are quartiles of respective exposures; ovwt: Overweight; BMI 
Q4 is further divided into two groups: those with a normal BMI and those who are 
overweight/obese; ref: reference.
M1: Model-1 (VitD, CHOL, BMI, and age).
M2: Model-2 (VitD, LDL, BMI, and age).
M3: Model-3 (VitD, HDL, BMI, and age).
M4: Model-4 (VitD, TG, BMI, and age).

: represents the odds ratio < 1.

: represents the odds ratio > 1.

: variable not in the model.
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The prevalence of various lipid abnormalities that contribute to 
dyslipidemia was very low in our cohort. Lipids in non-pregnant adult 
populations always receive much attention due to their known 
associations with CVD as well as NCDs, but they are also known to play 
an important role as fuels in pregnancy (56). Our cohort consists of 
adolescent girls. Lipid levels in adolescence are known to track with 
those in later life (22, 23). Thus, our girls are likely to begin the 
pregnancy with inadequate levels of fuel/lipids. In 1980, Freinkel 
introduced the concept of ‘Fuel-mediated teratogenesis,’ (56) where the 
mixture of maternal nutrients/fuels (glucose and lipids) affects not only 
fetal growth but also the risk of future obesity and diabetes. Maternal 
lipids (CHOL and TG) are essential for fetal development (57, 58) and 
their low levels during pregnancy have been associated with delayed 
prenatal growth (59, 60). Low birthweight and stunting continue to 
be high in our region (61, 62). Studies from the US (63) and Europe 
(64–66) have shown associations between maternal lipids in pregnancy 
and birth weight. A study among undernourished rural pregnant Indian 
women has also shown a strong association between maternal glucose 
and lipids and fetal growth (67). The high prevalence of PD in our 
cohort (43) has already put our girls at risk of developing gestational 
diabetes. Thus, our adolescent girls are likely to enter pregnancy with 
risks of hyperglycemia, micronutrient deficiencies, and poor fuel 
storage. Prediabetes in our girls is driven by poor insulin secretion and 
poor β cell function. Based on our findings, improving vitB12, 
maintaining adequate TG, and reducing LDL in adolescence may help 
improve insulin secretion as well as β-cell function, leading to a 
reduction in PD. This indicates the need for lipid and micronutrient-
based interventions in adolescents to improve glycemic outcomes. 
Maintaining adequate storage of micronutrients as well as fuels 
preconceptionally could reduce NCD risks. However, caution is 
warranted, as excess lipids may contribute to future obesity and diabetes-
related insulin resistance.

The strengths of our study are the large sample size and 
measurements of detailed glycemic parameters beyond glucose. 
We measured micronutrients as well as lipids in a region known for 
widespread undernutrition across the life course. The prevalence of 
overweight/obesity in our sample was extremely low. There are some 
limitations, too. Our cohort consists only of girls. We did not measure 
other vitamins, like B2 and B6.

There are many lipid-based nutrient supplementation (LNS) studies 
in young malnourished children (68–70), but LNS studies among 
undernourished women with a life-course approach spanning from 
adolescence to pregnancy and adulthood are needed to assess their 
impact on diabetes risks in individuals as well as in the next generation.

To summarize, our report on adolescent girls has attempted to 
shed some light on the possible role of not only micronutrients but 
also lipids in undernourished adolescent girls on the development of 
NCDs in adulthood as well as in the next generation.

Conclusion

In short, we  have shown the existence of micronutrient 
deficiencies and poor lipid stores among rural Indian adolescent 
girls. We have also demonstrated their link to prediabetes. A link 
between micronutrient undernutrition in early life and diabetes in 
adulthood is well studied. Lipids play an important role as fuel in 
pregnancy. The persistence of poor lipid stores in adolescent girls, 

together with prediabetes, is likely to result in poor birth outcomes, 
like low birth weight. Lipid-based supplementation in adolescence 
together, with micronutrients, may offer a window of opportunity to 
reduce the subsequent risks of poor birth outcomes and diabetes in 
later life.
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