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Background: Obesity is reaching epidemic proportions with 51% of the 
population expected to be  obese by 2030. Recently, polyphenols have been 
highlighted as an effective approach to managing obesity and associated risks. 
Polyphenols are a large class of bioactive plant compounds classified into two 
major categories: flavonoids which are distinguished by the fundamental C6-
C3-C6 skeleton and non-flavonoids.

Objective: This systematic review evaluated the effect of different polyphenol 
sources in overweight and obese people with and without type 2 diabetes. The 
primary outcome was lipid profile and the secondary outcomes were blood 
glucose, HbA1c (%), HOMA-IR, weight, and body mass index.

Method: A search was undertaken in PubMed, Web of Science, Medline, and 
Wiley for randomized control trials that assessed different sources of polyphenols 
in overweight and obese people with or without type 2 diabetes. The quality of 
the included studies was assessed using the National Heart, Lung, and Blood 
Institute Quality Assessment Tool.

Result: The search yielded 935 studies, of which six randomized control trials 
met the inclusion criteria. Five studies found no significant difference in lipid 
profile between the control and intervention groups in triglycerides, total 
cholesterol, LDL cholesterol, and HDL cholesterol. However, one study showed 
significant differences in triglycerides (p  =  0.04) and HDL cholesterol (p  =  0.05) 
between the two groups with no significant difference in total cholesterol and 
LDL cholesterol. There were no significant changes in blood glucose observed 
in the included studies, with only two studies reporting a significant difference 
in A1c between the groups. Four studies found no difference in HOMA-IR, while 
one study showed a significant decrease in HOMA-IR in the intervention group 
compared to the control group. Three studies reported no difference in BMI or 
weight between the two groups.

Conclusion: The data associated with the specific health benefits of polyphenols 
and their sources in people with overweight, obese, and type 2 diabetes are 
still limited, so further research is required to support their use and prove their 
benefits.
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Introduction

Obesity has reached epidemic proportions, with the World Health 
Organization (WHO) estimating that there are more than 1.9 billion 
overweight adults worldwide, of which 650 million are obese (1). In 
addition, there are more than 340 million overweight or obese children 
and adolescents between the ages of 5 and 19 (1). By 2030, 51% of the 
population is expected to be obese (2). Excess weight is associated with 
a range of metabolic complications such as hypertension, insulin 
resistance, dyslipidaemia, and type 2 diabetes (3–5), as well as a 
significant economic burden. The direct costs include healthcare costs 
for treating related diseases, while indirect costs include lost productivity 
due to disability or premature death (2, 6). Altering lifestyles to reduce 
calorie consumption and increase physical activity are difficult to 
preserve in the long term, therefore, it is necessary to find methods to 
lower the prevalence of obesity and its associated diseases.

Recently, polyphenols have been highlighted as a practical 
approach to managing obesity and associated risks. Polyphenols are 
an enormous class of bioactive plant compounds classified into two 
major categories: flavonoids which are distinguished by the 
fundamental C6-C3-C6 skeleton, and non-flavonoids (particularly 
phenolic acids, stilbenes, and lignans) (7) as shown in Table  1. 
Flavones, flavonols, isoflavones, flavanones, anthocyanins, and 
flavanols, commonly known as catechins, are the subclasses that 
result from the heterocyclic ring connecting the two aromatic rings 
(7), the primary forms are either conjugated with acid-alcohol or with 
glycosides in plant food items (7, 8). In addition, polyphenols exist as 
monomers and oligomers, which are typically referred to as tannins 
(8). Condensed tannins and hydrolysable tannins are derived from 
catechin and are usually called procyanidins (8). Phenolic compounds 
are challenging to quantify because of their diversity and complexity 
(7, 8). As Polyphenols represent a diverse group of phytochemicals 
found abundantly in plant-based foods as shown in Table 1.

Flavonoids

This subgroup constitutes the largest and most studied class of 
polyphenols. Flavonoids are further categorized into subclasses such 
as flavonols, flavones, flavanones, flavan-3-ols (including catechins), 
anthocyanins, and isoflavones. They are found in fruits, vegetables, 
tea, wine, and various herbal remedies (9, 10).

Phenolic acids

These are aromatic compounds found in various plant foods, 
particularly in fruits (e.g., berries), vegetables, whole grains, and 
beverages like coffee. Major subclasses include hydroxybenzoic acids 
(e.g., gallic acid) and hydroxycinnamic acids (e.g., caffeic acid, ferulic 
acid) (9, 11).

Lignans

Lignans are polyphenolic compounds abundant in seeds, whole 
grains, fruits, and vegetables. They are converted by intestinal bacteria 
into enterolignans, which have been associated with various health 

benefits, including hormone regulation and antioxidant activity 
(9, 11).

Stilbenes

This subgroup includes compounds such as resveratrol, primarily 
found in grapes, red wine, peanuts, and berries. Resveratrol has 
gained attention for its potential health-promoting effects, including 
anti-inflammatory and cardioprotective properties (9, 11).

Others

This category encompasses a wide range of polyphenolic 
compounds, including tannins, stilbenoids, and curcuminoids. 
Tannins are commonly found in tea, wine, and certain fruits, and 
they contribute to the astringent taste of these foods. Stilbenoids, 
besides resveratrol, include pterostilbene, found in blueberries and 
grapes (9, 11). Curcuminoids are derived from turmeric and exhibit 
various biological activities, including antioxidant and anti-
inflammatory properties.

There are several possible mechanisms for the positive effect of 
polyphenols in obesity and associated risks as shown in Figure 1 
including the inhibition of fat absorption from the gastrointestinal 
tract, glucose uptake by skeletal muscles, the regulation of fat 
production, appetite suppression, the modulation of the gut 
microbiota, and reduced chronic inflammation associated with 
obesity (12, 13).

Numerous epidemiological and clinical studies have 
investigated the effect of different polyphenols on obesity and 
associated risks. For example, Shrime et  al. (14), revealed that 
consuming cocoa, which is high in flavanol, reduced insulin 
resistance. Also, insulin resistance was improved in healthy 
individuals who consumed pure-epicatechin for a month by 
alterations in fasting insulin levels without affecting fasting glucose 
levels (15). In a systematic analysis of six studies, the green coffee 
extract reduced fasting blood glucose, while only larger dosages 
helped enhance insulin resistance (16). Following a 12-week olive 
leaf polyphenols supplementation in middle-aged, overweight men 
had increased insulin action and secretion (17). A systematic review 
and meta-analysis of six studies reported that pistachio nut 
consumption enhanced insulin resistance (18). Pecan and almond 
eating appear to improve insulin resistance (19, 20). However, a 
systematic review of walnuts found no impact on fasting blood 
glucose or other measures of insulin resistance (21).

Habitual consumption of tea was linked to lower body fat in a 
cross-sectional human study in Taiwan (22). In addition, a 
longitudinal investigation from the Netherlands showed a lower body 
mass index among women with higher dietary flavone, flavonol, and 
catechin consumption (23). Furthermore, clinical trials have shown 
a positive effect of high doses of catechins in tea drinks, effectively 
reducing body fat and body weight, especially when combined with 
an exercise regimen (24, 25). Moreover, a recent meta-analysis 
showed that consuming resveratrol significantly reduces weight, body 
mass index, and fat mass (26). However, a systematic review and 
meta-analysis of 19 RCTs focusing on the effect of anthocyanin on 
cardiometabolic biomarkers showed that there is no significant effect 
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of anthocyanin supplementation on body mass index, body weight, 
waist circumference, and blood pressure (27).

Inconsistencies in the findings and methodological limitations of 
individual studies, as well as inconsistencies in the results of previous 
systematic reviews and meta-analyses, justify the need for a 
comprehensive systematic review to assess the impact of polyphenols 
on obesity and its associated risks. In contrast to previous systematic 

reviews, different types of polyphenols were included and compared. 
In addition to the increasing volume of new studies, an updated 
systematic review is needed. Therefore, this systematic review 
compared different sources of polyphenols in overweight and obese 
individuals with or without type 2 diabetes. The primary outcome was 
lipid profile and the secondary outcomes were blood glucose, HbA1c 
(%), HOMA-IR, weight, and body mass index.

TABLE 1 Classes of polyphenols and the principal dietary constituents.

Class Sub-class Dietary sources

Flavonoids Flavones Plants and spices like thyme, rosemary, oregano, and parsley

Fruits: celery and olives

Vegetables: hot peppers and celery hearts

Isoflavones Grape seed/skin

Soybean, soy nuts, soy flour/bread, tofu, miso, soy milk, and tofu yoghurt are among the products made from legumes

Anthocyanidins Elderberries, strawberries, cherries, plums, cranberries, blackberries, black currants, blueberries, black grapes, blackberries, 

blackberries, and pomegranate juice

Flavanones Lemon, lime orange, orange, grapefruit, tangerine, peppermint

Flavanols Apples, apricots, grapes, peaches, nectarines, pears, plums, raisins, raspberries, cherries, blackberries, blues, and cranberries

White wine, black tea, dark chocolate, green tea, and cacao

Non-

flavonoids

Stilbenes Grapes, rhubarb and peanuts

Lignans Nuts, seeds, rye, wheat, oats, barley, soybean, apricots and strawberries, broccoli, cabbage

Hydroxybenzoic acids Strawberries, raspberries, grape juice (black/green) pomegranate juice

Hydroxycinnamic acids Tea, coffee, spinach, potato, lettuce, orange, grapefruit, cherry juice, apple juice, lemon, peach, cranberry, pear, cherry (sweet), 

apple, orange, grapefruit, pear juice, and cider

FIGURE 1

Polyphenols mechanisms.
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Methodology

This systematic review was conducted according to The Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses 
(PRISMA) checklist (28).

Search strategy

A systematic search of the PubMed, Web of Science, Medline and 
Wiley databases was performed from 13th May 2023 to Jane 2023 
using the following terms: “(“resveratrol (3,5,4’trihydroxystilbene)” 
OR “epigallocatechin 3 gallate” OR “epigallocatechin gallate (ECG)” 
OR “epigallocatechin” OR “quercetin” OR “flavonoids” OR 
“Polyphenols” OR “tannins” OR “lignans” OR “stilbenes” OR “green 
tea catechins” OR “catechins” OR “epicatechin” OR “procyanidin” OR 
“genistein” OR “provinols” OR “phenolic acids” OR “apigenin” OR 
“blackberry polyphenols” OR “curcumin” OR “grape polyphenols” OR 
“cranberry polyphenols” OR “strawberry polyphenols”) AND 
(“insulin resistant” OR “insulin receptor substrate” OR “insulin 
receptor pathway” OR “GLUT” OR“insulin sensitivity”) AND (“Lipid” 
OR “HDL” OR “LDL” OR “Total cholesterol” OR “Triglycerides”) 
AND (“fat accumulation” OR “obesity” OR “overweight” OR 
“hyperlipidemia” AND “glucose” OR “blood sugar”) AND (“clinical 
trial”). In addition to manual search in references list. All identified 
studies were saved in EndNote and duplicates were removed.

The criterion for selecting the types of foods presented in the 
search terms was based on their known richness in polyphenols, as 
documented in scientific literature. We considered foods that are 
commonly recognized for their high polyphenol content and 
relevance to human consumption. Additionally, we aimed to include 
a diverse range of food sources to provide a comprehensive overview 
of polyphenol intake. However, there are many other sources of 
polyphenol not included in our search terms, including olives oil and 
that should be considered in future research.

Eligibility criteria

The current systematic review examined study eligibility using a 
population comparison and outcome as shown in Table 2:

 ▪ Study design: randomized control trial to address the 
research question

 ▪ Population: Overweight and obese adults with or without type 
2 diabetes

 ▪ Intervention: different sources of polyphenols
 ▪ Outcomes: The primary outcome is lipid profile and secondary 

outcomes are blood glucose, HbA1c (%), weight and body 
mass index.

Exclusion criteria

 ▪ Review studies
 ▪ Case reports
 ▪ Observation study
 ▪ Non-English studies
 ▪ The full text of the study was not available.

Data extraction and synthesis

The following data were extracted from the studies: the author’s 
name, the year of publication, the study location, the study design, 
the target population, the sample size, the baseline characteristics of 
participants, and the primary outcome lipid profile. The secondary 
outcomes were blood glucose, weight, and body mass index. A meta-
analysis was not performed due to the heterogeneity of the data.

Quality assessment

The study quality was evaluated using the National Heart, Lung, and 
Blood Institute (NHLBI) Quality Assessment Tool for randomized 
controlled trials (29). The tool comprises 14 questions answered using 
the following options: yes, no, not reported, or not applicable.

Results

Eligibility of studies

The literature search retrieved 935 studies, of which 97 were 
duplicate studies. Further screening of the title and abstract led to the 
exclusion of 811 studies, leaving 27 studies to be assessed against the 
inclusion/exclusion criteria and finally, six studies were included in 
this review (Figure 2).

TABLE 2 Population–intervention–comparison–outcome (PICOS) criteria for study inclusion and exclusion.

Criteria category Inclusion Exclusion

Population Overweight and obese adults with or without type 2 diabetes Normal weight adults

Children/animals

Intervention Polyphenols The intervention is not polyphenols

Comparators Overweight and obese adults with or without type 2 diabetes not treated 

with polyphenols

Normal weight adults

Children/animals

Outcome measure Primary outcome is lipid profile and secondary outcomes are blood 

glucose, HbA1c (%), HOMA-IR, weight and body mass index

Lipid profile not assessed

Study design Randomised control trials Observational studies, review studies, case reports, pilot studies
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Quality assessment

The quality of each study was evaluated using the NHLBI 
Quality Assessment Tool for randomized controlled trials (Table 3). 
Overall, the studies reported on the effect of different sources of 
polyphenols in overweight and obese people with and without type 
2 diabetes seem convergent and reliable to indicate the effect 
of polyphenols.

Study characteristics

The six included studies, which involved a total of 301 adults, were 
published between 2010 and 2019. Four studies were conducted on 
people who were obese or overweight (30–33), and two studies were 
conducted on people with type 2 diabetes (34, 35).

Different sources of polyphenols were assessed including 
epicatechin (30), strawberry and cranberry (31), green tea (32), red 
wine (33), green cardamom (34), and Melissa officinalis (35). The 
study characteristics and results are shown in Tables 4, 5.

Primary outcomes

Polyphenols and lipid profile
Six studies evaluated the lipid profile, five of which found no 

significant difference in triglycerides, total cholesterol, LDL cholesterol 
and HDL cholesterol between the control and the intervention groups 
(30–34). However, Asadi et al. (35) showed significant differences in 
TG (p = 0.04) and HDL-c (p = 0.05) between the two groups at the end 
of the study.

Secondary outcomes

Polyphenols and glucose level
There were no significant changes in glucose levels between the 

groups (30–35).

Polyphenols and A1c
Only two studies assessed cumulative glucose and found 

significant differences between groups (34, 35).

database searching
(n =935) 

Sc
re
en
in
g

In
cl
ud
ed

El
ig
ib
ili
ty

Id
en
tif
ic
at
io
n

through other sources
(n = 0)

Records 
(n =838)

Records screened
(n =838)

Records excluded
(n =811)

Full-text 
for eligibility

(n =27)

Studies included in 

(n = 6)

Full text not available 
(n=1).

Not met inclusion criteria 
(n=21).

FIGURE 2

Stages of selecting studies.
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TABLE 3 NHLBI tool for quality assessment of included studies.

Criteria Kirch 
et al. (30)

Paquette 
et al. (31)

Stendell-Hollis 
et al. (32)

Woerdeman 
et al. (33)

Aghasi 
et al. (34)

Asadi 
et al. (35)

1. Was the study described as 

randomised, a randomised trial, a 

randomised clinical trial, or an RCT?

2. Was the method of randomization 

adequate (i.e., use of randomly 

generated assignment)?

3. Was the treatment allocation 

concealed (so that assignments could 

not be predicted)?

4. Were study participants and providers 

blinded to treatment group 

assignment?

5. Were the people assessing the 

outcomes blinded to the participants’ 

group assignments?

6. Were the groups similar at baseline on 

important characteristics that could 

affect outcomes (e.g., demographics, 

risk factors, co-morbid conditions)?

7. Was the overall drop-out rate from the 

study at endpoint 20% or lower of the 

number allocated to treatment?

8. Was the differential drop-out rate 

(between treatment groups) at 

endpoint 15 percentage points or 

lower?

9. 9. Was there high adherence to the 

intervention protocols for each 

treatment group?

10. Were other interventions avoided or 

similar in the groups (e.g., similar 

background treatments)?

11. Were outcomes assessed using valid 

and reliable measures, implemented 

consistently across all study 

participants?

12. Did the authors report that the sample 

size was sufficiently large to be able to 

detect a difference in the main 

outcome between groups with at least 

80% power?

13. Were outcomes reported or subgroups 

analyzed prespecified (i.e., identified 

before analyses were conducted)?

14. Were all randomszed participants 

analysed in the group to which they 

were originally assigned, i.e., did they 

use an intention-to-treat analysis?

+, yes; −, no; ?, cannot determine; a, not applicable; r, not reported.
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Polyphenols and HOMA-IR
Five studies evaluated HOMA-IR, four of which found no 

difference between the two groups (30, 32, 33, 35) while Aghasi et al. 
(34) showed that there is a significant decrease in HOMA-IR (−1.7) 
in the intervention group compared to the control group.

Polyphenols and BMI
Three studies assessed BMI and found no difference between the 

two groups (30, 32, 34).

Polyphenols and weight
Three studies measured weight and showed that there is no 

difference between the two groups (30, 32, 33).

Discussion

This systematic review compared the effects of different sources of 
polyphenols in overweight and obese people with or without type 2 
diabetes. The primary outcome was lipid profile and the secondary 
outcomes were blood glucose, HbA1c (%), HOMA-IR, weight, and 
body mass index. However, the effects of different sources of 
polyphenols for obese or overweight adults with or without type 2 
diabetes remain unclear.

Epicatechin

Epicatechin is a polyphenol found in various plant-based foods and 
beverages such as cocoa, grapes, apples, berries, hazelnuts, walnuts, and 
tea. Kirch et al. (30) investigated whether regular consumption of 25 mg 
of pure epicatechin can affect glucose, HOMA-IR, LDL, HDL, total 
cholesterol, and triglycerides in overweight or obese people, showing that 
2 weeks of epicatechin supplementation did not reduce cardiometabolic 
risk factors with no significant changes in glucose metabolism (glucose, 
HOMA-IR). Similarly, both Dower et al. (15) and Gutiérrez-Salmeán 
et al. (36) showed that regular intake of pure epicatechin (25–100 mg/
day) was not effective or less effective on cardiovascular disease risk 
factors than comparative cocoa intake. Meta-analyses of randomized 
controlled trials found positive effects of cocoa consumption on glucose 
and lipid metabolism (14, 37) that could be predicted by epicatechin 
intake from cocoa (38). However, the results are inconsistent due to 
different dosing duration and may be due to adherence.

Strawberry and cranberry

There are several different types of phenolic compounds in 
strawberries and cranberries including phenolic acids, flavonoids, and 
polymerized molecules (39). Several vitro and animal studies have 
suggested that polyphenols may enhance peripheral glucose absorption 
in insulin-sensitive areas by enhancing GLUT4 translocation and 
activity and lowering oxidative stress and inflammation (40, 41). For 
example, Paquette et al. (31) evaluated the effectiveness of berries and 
strawberries on insulin sensitivity and lipid profile in overweight, obese, 
and non-diabetic subjects showing that a six-week intervention with 
333 mg of polyphenols from strawberries and cranberries improved 
insulin sensitivity but was ineffective in improving cardiac risk factors. 

However, other studies have shown that eating freeze-dried strawberry 
powder or cranberry extract has a positive influence on lowering total 
cholesterol and LDL cholesterol (42, 43). This discrepancy may be due 
to the delivery of strawberries and cranberries in different forms (juice, 
dried strawberries, and powder) and the different quantities consumed, 
which makes it difficult to determine their effect.

Green tea

Epidemiologic and animal research supports the positive effect 
of regular green tea consumption in decreasing the risk of 
cardiovascular disease (44) and obesity (45). There are several 
hypothesized methods by which green tea and its naturally occurring 
polyphenolic catechins may modify body weight. For instance, green 
tea and its derivatives cause glucose malabsorption and downregulate 
fatty acid synthase (46, 47). Individuals with visceral obesity who 
consumed 583 mg of catechins daily for 12 weeks saw significant 
reductions in body weight and LDL cholesterol compared to the 
control group (48). However, Stendell-Hollis et al. (32) evaluated the 
effect of green tea consumption on weight, body mass index, 
triglycerides, total cholesterol, HDL and LDL cholesterol, glucose, 
and HOMA-IR in weight gain showing no significant differences 
between the participants who consumed 960 mL of decaffeinated 
green tea or placebo daily for 6 months.

Red wine

It has been reported that a moderate wine intake might inhibit 
metabolic syndrome and related medical consequences (49). 
According to preclinical research, red wine polyphenols are beneficial 
and improve insulin sensitivity in obese animal models. However, the 
effect of red wine on humans is minimal. Only one randomized 
control trial was conducted by Woerdeman et al. (33) to assess the 
effection of red wine consumption on total cholesterol, HDL and LDL 
cholesterol, glucose, and HOMA-IR. The participants were 
randomized to 600 mg/day of red wine polyphenols or placebo daily 
for 8 weeks and there were no significant changes in either total, LDL 
or HDL cholesterol or triglyceride levels, glucose, and HOMA-IR after 
red wine supplementation between groups (p > 0.5).

Green cardamom

Green cardamom is a good source of polyphenols with antioxidant 
properties (50). Cardamom supplementation enhanced insulin 
sensitivity and reduced total cholesterol and LDL-cholesterol in 
prediabetic women (51). However, these outcomes did not differ 
significantly from the placebo group. According to Azimi et al. (52), 
the lipid profiles of type 2 diabetes people who consumed three glasses 
of black tea along with 3 g of cardamom were improved when 
compared to the control group which only consumed three glasses of 
black tea. Furthermore, it has been shown that 3 g of cardamom 
significantly decreased serum HbA1C (−0.4%), HOMA-IR (−1.7), and 
TG (−39.9 mg dL − 1) in the cardamom group compared to placebo 
(34). However, there were no significant changes in serum glucose TC, 
HDL-c, and LDL-c levels between the two groups after 10 weeks (34).
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TABLE 4 Obesity and polyphenols.

Obesity and polyphenols

Authors, 
year

Study 
design

Location Interventions 
vs. control

Baseline 
characteristics of 
the participants

Post treatment 
characteristics of 
the participants

Results
p-value

Kirch et al. (30) RCT Germany Intervention (n) = 23

25 mg-epicatechin

for 2 weeks

Wt = 103.0 ± 3.8

BMI = 32.8 ± 0.8

Triglycerides = 2.22 ± 0.19

Total cholesterol = 5.92 ± 0.14

LDL cholesterol = 3.80 ± 0.12

HDL cholesterol = 1.35 ± 0.06

HOMA-IR = 2.83 (2.00, 4.27)

Glucose = 5.72 (5.38, 6.00)

Wt = 102.8 ± 3.8

BMI = 32.7 ± 0.8

Triglycerides = 2.231 ± 0.27

Total cholesterol = 5.73 ± 0.15

LDL cholesterol = 3.76 ± 0.13

HDL cholesterol = 1.28 ± 0.06

HOMA-IR = 2.88 (1.90, 4.39)

Glucose = 5.61 (5.22, 6.11)

Daily intake of 25 mg of 

pure (−)-epicatechin for 

2 wk. does not reduce 

cardiometabolic risk 

factors in overweight-to-

obese adults (p > 0.5). 

There were no 

significant changes in 

the parameters of 

glucose metabolism 

(glucose, HOMA-IR).

Control (n) = 24

Placebo for 2 weeks

Wt = 103.2 ± 3.8

BMI = 32.8 ± 0.8

Triglycerides = 2.11 ± 0.17

Total cholesterol = 5.94 ± 0.14

LDL cholesterol = 3.86 ± 0.11

HDL cholesterol = 1.33 ± 0.06

HOMA-IR = 2.86 (1.93, 4.15)

Glucose = 5.66 (5.33, 6.11)

Wt = 102.9 ± 3.7

BMI = 32.8 ± 0.8

Triglycerides = 2.24 ± 0.19

Total cholesterol = 5.71 ± 0.16

LDL cholesterol = 3.68 ± 0.12

HDL cholesterol = 1.30 ± 0.06

HOMA-IR = 2.94 (1.82, 4.08)

Glucose = 5.55 (5.27, 6.11)

Paquette et al. 

(31)

RCT Canada Intervention (n) = 20

333 mg strawberry and 

cranberry polyphenols 

beverage /day for 

6 weeks

Wt = 85 ± 3

BMI = 31 ± 1

Triglycerides = 2.03 ± 0.24

Total cholesterol = 5.70 ± 0.17

LDL cholesterol = 3.52 ± 0.17

HDL cholesterol = 1.25 ± 0.05

Wt = −
BMI = −
Triglycerides = 1.82 ± 0.21

Total cholesterol = 5.60 ± 0.19

LDL cholesterol = 3.51 ± 0.17

HDL cholesterol = 1.26 ± 0.06

No differences in 

changes from baseline 

(Post v. Pre) for total, 

LDL- and HDL-

cholesterol or TAG were 

observed within each 

group or between the 

two groups
Control (n) = 21

Placebo for 6 weeks

Wt = 85 ± 3

BMI = 31 ± 1

Triglycerides = 1.73 ± 0.26

Total cholesterol = 5.37 ± 0.22

LDL cholesterol = 3.20 ± 0.15

HDL cholesterol = 1.33 ± 0.05

Wt = −
BMI = −
Triglycerides = 1.56 ± 0.18

Total cholesterol = 5.45 ± 0.20

LDL cholesterol = 3.37 ± 0.17

HDL cholesterol = 1.37 ± 0.06

Stendell-Hollis 

et al. (32)

RCT USA Intervention (n) = 23

240 mL green tea four 

times daily for 6 months

Wt = 81.9 ± 15.3

BMI = 31.0 ± 4.3

Triglycerides = 1.8 ± 1.0

Total cholesterol = 5.9 ± 1.0

LDL cholesterol = 3.8 ± 0.9

HDL cholesterol = 1.3 ± 0.39

HOMA-IR = 6.9 (7.4)

Glucose = 6.5 (1.3)

Wt = 80.7 ± 14.9

BMI = 30.5 ± 4.2

Triglycerides = 1.6 ± 2.1

Total cholesterol = 5.6 ± 1.0

LDL cholesterol = 3.4 ± 1.1

HDL cholesterol = 1.4 ± 0.4

HOMA-IR = 5.8 (3.4)

Glucose = 5.6 (1.0)

After 6 months, there 

were no significant 

changes in weight, BMI, 

triglycerides, total 

cholesterol, HDL and 

LDL cholesterol, glucose 

and HOMA-IR between 

the two groups (p > 0.5)

Control (n) = 16

Placebo tea for 

6 months

Wt = 77.8 ± 9.8

BMI = 28.7 ± 3.8

Triglycerides = 1.7 ± 0.9

Total cholesterol = 6.9 ± 1.3

LDL cholesterol = 4.7 ± 1.1

HDL cholesterol = 1.4 ± 0.4

HOMA-IR = 4.1 (1.6)

Glucose = 7.0 (1.2)

Wt = 78.0 ± 9.1

BMI = 28.8 ± 3.7

Triglycerides = 1.5 ± 0.8

Total cholesterol = 6.3 ± 1.6

LDL cholesterol = 3.9 ± 1.3

HDL cholesterol = 1.6 ± 0.4

HOMA-IR = 7.4 (7.4)

Glucose = 7.0 (1.0)

Woerdeman 

et al.

(33)

RCT Netherlands Intervention (n) = 14

600 mg/day of red wine 

polyphenols for 8 weeks

Wt = 108 ± 15.2

BMI = 33.5

Triglycerides = 1.2 ± 1.0

Total cholesterol = 4.8 ± 1.2

LDL cholesterol = 2.9 ± 1.1

HDL cholesterol = 1.2 ± 0.4

HOMA-IR = 3.2 (2.0; 4.5)

Glucose = 5.3 ± 0.5

Wt = 109.0 ± 15.8

BMI = −
Triglycerides = 1.4 ± 1.1

Total cholesterol = 4.8 ± 1.1

LDL cholesterol = 3.0 ± 1.1

HDL cholesterol = 1.2 ± 0.4

HOMA-IR = 2.9 (2.1; 3.8)

Glucose =5.3 ± 0.7

There were no 

significant changes in 

either total, LDL or HDL 

cholesterol or 

triglyceride levels, 

glucose, or HOMA-IR 

after red wine 

supplementation 

between group

(Continued)
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Melissa officinalis (also known as lemon 
balm)

Melissa officinalis is a plant that can lower blood sugar and fat levels 
due to its abundance of flavonoids (53). Studies have shown the lipid-
lowering and anti-inflammatory properties of M. officinalis (53, 54). 
Furthermore, Asadi et al. (35) assessed the effect of M. officinalis intake 
(700 mg/d) versus placebo on HbA1c, triglycerides, total cholesterol, 
HDL and LDL cholesterol, glucose, and HOMA-IR in individuals with 
type 2 diabetes, observing significant differences in HbA1c (p = 0.002), 
triglycerides (p = 0.04), and HDL-c (p = 0.05) between the two groups 
after 12 weeks. In vitro and animal experiments also demonstrated that 
M. officinalis reduced blood glucose and lipids (55, 56).

Potential mechanisms

Polyphenols are subject to a series of enzymatic reactions and 
microbial transformations upon ingestion, culminating in their 
absorption, distribution, metabolism, and excretion throughout 
various tissues and organs.

First, the chemical structure of polyphenolic compounds greatly 
influences their metabolic fate. For example, flavonoids, phenolic 
acids, and other subclasses exhibit distinct metabolic pathways, leading 
to the formation of diverse metabolites with different bioactivities (57). 
Phase I and II metabolic reactions, which are mainly facilitated by 
hepatic enzymes, modify the structure of the polyphenols, making 
them more water-soluble and leading to their elimination (58, 59).

Moreover, consuming food components together can significantly 
affect polyphenol metabolism. Interactions with macronutrients, such 
as lipids and proteins, may affect the absorption kinetics and 
bioavailability of polyphenols (60). In addition, the presence of other 
bioactive compounds within food matrices can modify polyphenol 
metabolism, which may enhance or inhibit their bioactivity through 
synergistic or antagonistic effects (61).

Furthermore, individual differences in the composition of the gut 
microbiota contribute to interindividual differences in polyphenol 
metabolism. Some microbial species possess the enzymatic machinery 
necessary for the degradation and biotransformation of polyphenolic 
compounds, resulting in metabolites that may exhibit distinct 
physiological effects compared to their parent compounds (62).

Understanding the metabolism of polyphenolic compounds is 
crucial to elucidating their health effects and therapeutic potential. By 
revealing the complex interplay between nutritional factors, host 
physiology, and gut microbiota, future research endeavors can pave 
the way for personalized nutritional interventions aimed at improving 
the bioavailability of polyphenols and harnessing their beneficial 
properties for human health and well-being.

Strength and limitation

The quality assessment of the included studies was conducted to 
evaluate the methodological rigor and reliability of the evidence 
presented. We  utilized the NHLBI Quality Assessment for 
Randomized Control Trials (RCTs) which assesses various aspects of 
study design, conduct, and reporting.

Overall, the quality of the included polyphenol studies varied. 
Several studies demonstrated a high level of methodological rigor, 
including randomized controlled trials (RCTs) with appropriate 
randomization and blinding procedures. However, certain limitations 
were observed across the studies. Common issues included small sample 
sizes, lack of blinding, incomplete outcome data, and potential biases.

Despite these limitations, many studies provided valuable insights 
into the potential health effects of polyphenols.

It is important to interpret the findings of polyphenol studies with 
caution, considering the methodological limitations identified. Future 
research should prioritize high-quality study designs, including well-
powered RCTs with long-term follow-up, and systematic reviews with 
rigorous methodology.

Conclusion

The current systematic review discussed the effect of different 
sources of polyphenols in overweight and obese people with or without 
type 2 diabetes, showing that cardamom significantly decreased serum 
HbA1C, HOMA-IR, and triglyceride and M. officinalis reduced blood 
sugar fat levels and lipids. However, the data associated with the specific 
health benefits of polyphenols and their sources in people who are 
overweight, obese, or have type 2 diabetes are still unclear and further 
research is required to support their use and prove their benefits.

Obesity and polyphenols

Authors, 
year

Study 
design

Location Interventions 
vs. control

Baseline 
characteristics of 
the participants

Post treatment 
characteristics of 
the participants

Results
p-value

Control (n) = 15

Placebo for 8 weeks

Wt = 106.4 ± 16.1

BMI = 33.1

Triglycerides = 1.1 ± 0.7

Total cholesterol = 4.5 ± 1.1

LDL cholesterol = 2.8 ± 1.0

HDL cholesterol = 1.2 ± 0.3

HOMA-IR = 2.3 (1.4; 2.7)

Glucose = 5.0 ± 0.7

Wt = 106.6 ± 16.8

BMI = –

Triglycerides = 1.0 ± 0.8

Total cholesterol = 4.4 ± 1.0

LDL cholesterol = 2.7 ± 1.0

HDL cholesterol = 1.3 ± 0.3

HOMA-IR = 2.2 (1.5; 2.8)

Glucose = 5.2 ± 0.5

Values are presented as mean ± standard deviation. Wt = weight; BMI = body mass index; HOMA-IR, homeostasis model assessment-insulin resistance; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein; (−) not available.

TABLE 4 (Continued)
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TABLE 5 Type 2 diabetes mellitus and polyphenol.

Type 2 diabetes mellitus and polyphenol

Author, 
years

Study 
design

Location Intervention vs. 
control

Baseline 
characteristics of the 
participants

Posttreatment 
characteristics of the 
participants

Results
p-value

Aghasi et al. 

(34)

RCT Iran Intervention (n = 41)

3 g of green cardamom 

supplement for 

10 weeks

BMI = 29.06 ± 3.21

HbA1c (%) = 8.19 (0.68)

HOMA-IR = 5.01 (1.90)

Triglycerides = 158.4 (1.62)

Total cholesterol = 155.7 (33.2)

LDL cholesterol = 80.2 (20.3)

HDL cholesterol = 41.6 (1.2)

Glucose = 159.5 (38.7)

BMI = 28.8 ± 3.1

HbA1c (%) = 7.71 (0.67)

HOMA-IR = 3.80 (1.65)

Triglycerides = 125.8 (1.5)

Total cholesterol = 153.43 (34.7)

LDL cholesterol = 77.9 (20.4)

HDL cholesterol = 41.6 (1.2)

Glucose = 146.8 (27.07)

After 10 weeks,

There were no 

significant changes in 

serum glucose TC, 

HDL-c and LDL-c 

levels between the two 

groups. A significant 

decrease in serum 

HbA1C (−0.4%), 

HOMA-IR (−1.7) and 

TG (−39.9 mg dL − 1) 

was observed in the 

cardamom group

Control group 

(n = 42).

Placebo

BMI = 28.66 ± 4.34

HbA1c (%) = 7.27 ± 0.60

HOMA-IR = 1.50 ± 0.51

Triglycerides = 135.54 ± 51.55

Total cholesterol = 142.48 ± 33.55

LDL cholesterol = 70.53 ± 26.19

HDL cholesterol = 44.83 ± 10.87

Glucose = 143.09 ± 37.39

BMI = 29.2 ± 3.5

HbA1c (%) = 7.72 (0.58)

HOMA-IR = 4.46 (1.65)

Triglycerides = 138.03 (1.44)

Total cholesterol = 160.5 (30.27)

LDL cholesterol = 87.4 (22.8)

HDL cholesterol = 41.6 (1.23)

Glucose = 145.8 (23.2)

Asadi et al. (35) RCT Iran Melissa. officinalis 

capsules (700 mg/d; 

n = 31) twice

BMI = 28.66 ± 4.34

HbA1c (%) = 7.27 ± 0.60

HOMA-IR = 1.50 ± 0.51

Triglycerides = 135.54 ± 51.55

Total cholesterol = 142.48 ± 33.55

LDL cholesterol = 70.53 ± 26.19

HDL cholesterol = 44.83 ± 10.87

Glucose = 143.09 ± 37.39

BMI = −

HbA1c (%) = 6.99 ± 0.68

HOMA-IR = 1.30 ± 0.52

Triglycerides = 122.03 ± 42.74

Total cholesterol = 145.38 ± 31.15

LDL cholesterol = 72.46 ± 28.85

HDL cholesterol = 48.51 ± 10.55

Glucose = 143.29 ± 33.59

After 12 weeks, there 

were significant 

differences in HbA1c 

(p = 0.002), TG

(p = 0.04), HDL-c 

(p = 0.05) between the 

two group

Control group 

(n = 31).

Placebo

BMI = 28.37 ± 3.71

HbA1c (%) = 7.36 ± 0.49

HOMA-IR = 1.56 ± 0.62

Triglycerides = 143.19 ± 62.19

Total cholesterol = 147.09 ± 31.85

LDL cholesterol = 70.53 ± 26.19

HDL cholesterol = 44.64 ± 9.23

Glucose = 138.87 ± 34.59

BMI = −

HbA1c (%) = 7.47 ± 0.74

HOMA-IR = 1.42 ± 0.67

Triglycerides = 138.67 ± 38.52

Total cholesterol = 153.09 ± 26.97

LDL cholesterol = 70.53 ± 26.19

HDL cholesterol = 44.61 ± 9.29

Glucose = 151.80 ± 35.34

Values are presented as mean ± standard deviation. Wt = weight; BMI = body mass index; HOMA-IR, homeostasis model assessment-insulin resistance; HDL, high-density lipoprotein; LDL, 
low-density lipoprotein; (−) not available.
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