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Objective: Previous research has established a connection between Type 2 
Diabetes Mellitus (T2DM), glycemic traits, dietary habits, and the risk of Pressure 
Ulcers (PUs). The aim of our study is to disentangle any potential causal 
relationship between T2DM, glycemic traits, and dietary factors, and the risk of 
PUs.

Methods: The exposure and outcome datasets were sourced from the IEU 
Open GWAS project, the Meta-Analyses of Glucose and Insulin-related traits 
Consortium (MAGIC), and the FinnGen biobank, respectively. The primary 
MR analysis method employed was the inverse variance-weighted method. 
Furthermore, we employed multivariable MR (MVMR) adjusting for BMI. Then, 
we investigated the possibility of a reverse association between glycemic traits 
and PUs through bidirectional MR. Finally, Heterogeneity and pleiotropic analysis 
were conducted to ensure the accuracy and robustness of the results.

Results: The findings revealed that T2DM (OR  =  1.282, 95% CI: 1.138–1.445, 
p  <  0.001) and Fasting Glucose (FG; OR  =  2.111, 95% CI: 1.080–4.129, p  =  0.029) 
were associated with an increased risk of PUs, while salad/raw vegetable intake 
(OR: 0.014; 95% CI: 0.001–0.278; p  =  0.005) was identified as a protective 
element. However, no other dietary elements demonstrated a statistically 
significant causality with PUs. In addition, in the reverse direction, there were 
positive correlation between genetic susceptibility to PUs and an increase in FG 
(OR: 1.007, 95% CI: 1.000–1.013, p  =  0.048) and Fasting Insulin (FI; OR: 1.012, 
95% CI: 1.003–1.022, p  =  0.011). MVMR results indicated that the causal effect 
of T2DM on PUs was independent of BMI (OR: 1.260, 95% CI: 1.112–1.427, 
p  <  0.001). These results remained robust when considering weak instrument 
bias, pleiotropy, and heterogeneity.

Conclusion: This study establishes a causal link between genetically predicted 
T2DM, FG and an increased risk of PUs. Conversely, Salad/raw vegetable intake 
is significantly inversely associated with PUs. Simultaneously, we identified two 
downstream effector factor (FG and FI) that were associated with PUs. These 
findings may have clinical implications for both prevention and treatment.
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1 Introduction

Pressure ulcers (PUs), also known as pressure sores, bed sores or 
decubitus ulcer, are localized injures to the skin and underlying tissue. 
They typically occur over bony prominences, and are classified into 
stages (Stage 1 to Stage 4) based on their severity (1, 2). These injuries 
develop when prolonged pressure is applied to the skin, often in 
combination with friction and shear forces. PUs are a significant 
concern in healthcare, particularly for individuals with limited mobility, 
such as those who are bedridden or use wheelchairs (3). PUs have 
substantial healthcare and economic implications and are present in all 
healthcare settings (4). Although most PUs are reasonably preventable 
(5), approximately 1 to 3 million individuals in the United States develop 
PUs each year (6), and 60,000 people die each year due to complications 
from PUs (7). The management costs of PU are a major problem, with 
a recent study estimated the annual cost in the United States to be in 
excess of $26.8 billion (8), and in the United Kingdom, it is estimated at 
£1.4–£2.1  billion per annum (9). Moreover, PUs can significantly 
diminish overall quality of life due to pain, the need for management 
procedures, extended hospital stays, and psychosocial burdens (2, 10, 
11). Therefore, identifying the risk and protective factors for PUs is 
crucial for its prevention and management.

In developing countries and low-income households in the 
United States, individuals face not only a financial burden but also a 
higher risk of negative effects because proper nutrition or caregiver 
support may be  deficient (12–14). Insufficient dietary habits or 
malnutrition may play an important role in this increase of PUs. The 
pathogenesis of PUs is multifactorial and may be related to genetic, 
environmental, and lifestyle factors. A number of studies have revealed 
that inadequate nutritional intake is associated with a higher risk of 
developing PUs (15–17). In particular, dietary patterns characterized by 
elevated fiber content, notably derived from whole grains, fruits, and 
vegetables, have demonstrated an association with enhanced glycemic 
control. The presence of fiber in these diets serves to decelerate the 
absorption of glucose, thereby mitigating spikes in blood sugar levels. 
Conversely, the consumption of a diet rich in added sugars and 
processed foods has been implicated in the elevation of blood glucose 
levels, potentially fostering insulin resistance. Individuals exhibiting 
heightened fasting blood sugar levels or impaired glucose tolerance face 
an augmented susceptibility to the onset of type 2 diabetes (T2DM) (18, 
19). T2DM, a persistent disorder marked by compromised regulation 
of blood glucose, holds the potential to manifest as enduring 
microvascular and macrovascular complications and accumulating 
evidence showed that patients with type 2 diabetes mellitus (T2DM) are 
1.5 to 2 times more likelihood to develop surgery-related PUs than 
patients with normal glucose tolerance (20, 21). The previous studies on 
potential risk factors for PUs are based on observational research, which 
may be susceptible to issues related to potential residual confounding 
and reverse causation (22). We now aim to assess the causal association 
between dietary habits, T2DM, and the likelihood of developing PUs 
using Mendelian randomization (MR).

Under certain assumptions, MR utilizes genetic variants as 
instrumental variables (IVs), offer the advantage of controlling for 
nonheritable confounders and reverse causation (23). To date, there 
has been no genetic study on the relationship between T2DM, 
glycemic traits, dietary habits, and PUs. Herein, we  performed a 
two-sample MR study to explore the causal relationship between 
dietary habits, T2DM and PU in this study.

2 Methods

The following basic assumptions constitute the premise of MR 
analysis. (1) IVs must be directly associated with the exposures; (2) 
IVs cannot be directly correlated to the outcome only via exposure but 
not through other pathways; (3) IVs were independent of any potential 
confounding factors (Figure 1). The GWAS summary-level data used 
in this study were issued by the IEU open GWAS project,1 MAGIC2 
and FinnGen biobank (FREEZE 9).3 This study was exempt from the 
approval of the Ethical Review Authority because the data used in this 
study was public, anonymized, and de-identified.

2.1 Data sources

We obtained genome-wide associations for 17 dietary habits, 
glycemic traits and a T2DM, derived from principal component (PC) 
analysis, by using UKBB GWAS summary statistics from Benjamin 
Neale’s lab,4 MAGIC and Xue et al. (24, 25), respectively. Glycemic 
traits and diet-associated exposure factors used in this study included 
fasting glucose (FG), 2 h-glucose post-challenge (2hGlu), glycated 
hemoglobin (HbA1c), and fasting insulin data (FI), Bread intake, 
Cheese intake, Drink (Alcoholic drinks per week, Alcohol intake 
frequency, Water intake, Coffee intake, and Tea intake), Fruit (Dried 
fruit intake and Fresh fruit intake), Cereal intake, Meat and Poultry 
(Beef intake, Pork intake, Processed meat intake, and Poultry intake), 
Seafood (Non-oily fish intake and Oily fish intake), and Vegetable 
(Salad / raw vegetable intake and Cooked vegetable intake). The 
GWAS summary-level data of PUs was extracted from FinnGen 
biobank. We  did not use proxy single nucleotide polymorphisms 
(SNPs) when finding SNPs from the outcome, mainly because the 
FinnGen biobank contained enough SNPs (16,380,176 SNPs in the 
dataset of PUs). More information about the exposure and outcome 
datasets is presented in Table 1.

2.2 The selection of IVs

In MR analysis, IVs were utilized as mediators between exposure 
factors and outcomes to explore the causal relationship between exposure 
and outcomes. IVs are generally genetic variations, among which SNPs 
are the most commonly used. SNPs associated with dietary factors were 
extracted from the IEU open GWAS project. we screened the SNPs 
intensely related with exposures at the genome-wide significance level 
(p < 5 × 10−8), clumping window >10,000 kb, and the linkage 
disequilibrium level (r2 < 0.001). The F statistic greater than 10 was 
generally considered to meet the requirements of strong association. 
we  searched the remaining SNPs for their associations with other 
phenotypes (such as body mass index and overweight (26, 27)) in 
PhenoScanner5 (28), a database of human genotype–phenotype 
associations and excluded those associated with potential confounding 

1 https://gwas.mrcieu.ac.uk/

2 http://magicinvestigators.org/downloads/

3 https://r9.finngen.fi/

4 http://www.nealelab.is/uk-biobank/

5 http://www.phenoscanner.medschl.cam.ac.uk
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traits. However, in the reverse MR analysis, since very few SNPs were 
identified for part of PUs when they were as the exposure, a higher cutoff 
(p < 5e–06) was condisered as the genome-wide significant threshold.

2.3 Statistical analysis

We employed the random-effects inverse variance-weighted 
(IVW) method as the primary approach for calculating the causal 
effect. The IVW model is recognized for its strong capability in 
detecting causation in the two-sample MR analysis (18). To 
enhance the robustness of our findings, we compared the results 
obtained from the three different IVW methods, random-effects, 
fixed-effects, and multiplicative random-effects model, with those 
from the Weighted median, Simple mode, Weighted mode, and 
MR-Egger methods. The Weighted median method allows no more 
than 50% of invalid IVs, Simple Mode selects IVs with the most 
frequent occurrence in MR analysis, Weighted Mode, akin to 
Simple Mode, considers the weight of IVs, with higher frequency 
IVs receiving greater weights to enhance their contribution to 
causal estimation, while the MR-Egger method allows all IVs to 
be  potentially invalidated (29). Thus, when all models yield 
consistent results, the evidence becomes more compelling.

We assessed heterogeneity in the IVW model using Cochran’s Q test, 
where a p-value of <0.05 indicates the presence of heterogeneity. It is 
important to note that the presence of heterogeneity does not necessarily 
invalidate the IVW model. Additionally, we  utilized the MR-Egger 
method, which accommodates non-zero intercepts, to detect directional 
pleiotropy. To ensure the robustness of our results, we conducted a leave-
one-out analysis to examine whether the removal of a SNP significantly 
influenced the outcomes. The MR-PRESSO method was employed to 
identify and address outliers. Upon detection of outliers, they were 
promptly removed, and the MR analysis was performed again.

Considering that BMI confound T2DM and glycemic traits in the 
pathogenesis of PUs, we used a multivariate MR approach to adjust 

for BMI, aiming to obtain an independent causal efect of T2DM and 
glycemic traits on the pathogenesis of PUs (30). The conditional F 
statistic for the BMI phenotype was calculated to evaluate the joint 
strength of instruments in the multivariable framework. All analyses 
were conducted using the TwoSampleMR package (version 0.5.7) (31), 
‘MR-PRESSO’ package (version 1.0), ‘MendelianRandomization’ 
package (version 0.8.0) and ‘MVMR’ package (version 0.4) based on 
R software (version 4.2.2).

3 Results

3.1 Genetic instruments for T2DM and 
glycemic traits

SNPs with low allele frequencies <0.01 or no meaningful genome-
wide association evidence (p < 5 × 10−8) were excluded. We identified 64, 
10, 40, and 9 SNPs as LD-independent IVs (after the clumping process) 
in T2DM, 2hGlu, FG, FI, and HbA1c. In our study, F statistics were all 
significantly >10, suggesting that our results were highly trustworthy 
and largely unaffected by weak IVs (Supplementary Table S1).

3.2 Genetic instruments for 17 dietary 
habits

Supplementary Table S1 provides comprehensive information 
about each of the participating GWAS study. The analyses encompassed 
a total of 17 different dietary habits as exposures. The number of SNPs 
considered for each dietary habit varied between 3 and 60. We evaluated 
the influence of various dietary exposures on the outcome, and, in all 
cases, the F statistics of the identified SNPs exceeded the empirical 
threshold of 10, with the sum of F values ranging from 74.427 to 
5216.822. This finding indicates that the results obtained are less 
susceptible to biases stemming from weak IVs.

FIGURE 1

Schematic showing how Mendelian randomization was used to evaluate a causal association between T2DM, glycemic traits, Dietary habits and 
pressure ulcers in this study. T2DM, Type 2 diabetes Mellitus; UVMR, Univriable mendelian randomization; MVMR, multivariable mendelian 
randomization.
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3.3 Causal effects of T2DM, glycemic traits, 
and dietary habits on PU

In our study, a total of 3 causal associations were identified 
(p < 0.05 by IVW method). We found that T2DM (OR = 1.273, 95% 
CI: 1.040–1.557, p = 0.019) and FG (OR = 2.111, 95% CI: 1.080–
4.129, p = 0.029) was related to an increased risk of PU, these 
discoveries were further verified by the consequences of the weighted 
median model (OR: 1.369; 95% CI: 1.045–1.793; p = 0.023) and (OR: 
3.334; 95% CI: 1.235–9.000; p = 0.017), respectively. In contrast, 

salad/raw vegetable intake (OR: 0.014; 95% CI: 0.001–0.278; 
p = 0.005) was discovered as protective factors, and there was a 
statistically significant result in weighted median model (OR: 0.011; 
95% CI: 0.000–0.498; p = 0.021). However, our study also indicated 
that Alcoholic drinks per week (OR = 1.765, 95% CI: 0.521–5.978, 
p = 0.361), Alcohol intake frequency (OR = 0.887, 95% CI: 0.533–
1.473, p = 0.642), Bread intake (OR = 1.029, 95% CI: 0.207–5.127, 
p = 0.972), Cheese intake (OR = 1.202, 95% CI: 0.532–2.713, 
p = 0.658), Water intake (OR = 3.150, 95% CI: 0.801–12.393, 
p = 0.101), Cereal intake (OR = 0.750, 95% CI: 0.175–3.203, 

TABLE 1 Summary of the genome-wide association studies (GWAS) included in this two-sample MR study.

ID or PMID Types Exposures/
outcomes

Sample 
size

Case 
control

SNPs 
(N)

Consortium 
(Author)

Population Year

ebi-a-GCST006867 T2DM Type 2 Diabetes 61,714 1,178 9,851,867 MRC-IEU European 2018

MAGIC1000G_2hGlu_EUR Giycemic traits 2 h glucose 452,236 NA 30,098,704 MAGIC European 2021

MAGIC1000G_FG_EUR Giycemic traits fasting glucose NA NA 34,064,006 MAGIC European 2021

MAGIC1000G_FI_EUR Giycemic traits fasting insulin NA NA 32,635,792 MAGIC European 2021

MAGIC1000G_HbA1c_EUR Giycemic traits hemoglobin A1c NA NA 33,811,879 MAGIC European 2021

ukb-b-11348 Bread Bread intake 452,236 NA 9,851,867 MRC-IEU European 2018

ukb-b-1489 Dairy Products Cheese intake 451,486 NA 9,851,867 MRC-IEU European 2018

ieu-b-73 Drink
Alcoholic drinks 

per week
335,394 NA 11,887,865 MRC-IEU European 2019

ukb-b-5779 Drink
Alcohol intake 

frequency
462,346 NA 9,851,867 MRC-IEU European 2018

ukb-b-14898 Drink Water intake 427,588 NA 9,851,867 MRC-IEU European 2018

ukb-b-5237 Drink Coffee intake 428,860 NA 9,851,867 MRC-IEU European 2018

ukb-b-6066 Drink Tea intake 447,485 NA 9,851,867 MRC-IEU European 2018

ukb-b-3881 Fruit
Fresh fruit 

intake
446,462 NA 9,851,867 MRC-IEU European 2018

ukb-b-15926
Grains, Nuts, 

and Seeds
Cereal intake 441,640 NA 9,851,867 MRC-IEU European 2018

ukb-b-2862
Meat and 

Poultry
Beef intake 461,053 NA 9,851,867 MRC-IEU European 2018

ukb-b-5640
Meat and 

Poultry
Pork intake 460,162 NA 9,851,867 MRC-IEU European 2018

ukb-b-6324
Meat and 

Poultry

Processed meat 

intake
461,981 NA 9,851,867 MRC-IEU European 2018

ukb-b-8006
Meat and 

Poultry
Poultry intake 461,900 NA 9,851,867 MRC-IEU European 2018

ukb-b-17627 Seafood
Non-oily fish 

intake
460,880 NA 9,851,867 MRC-IEU European 2018

ukb-b-2209 Seafood Oily fish intake 460,443 NA 9,851,867 MRC-IEU European 2018

ukb-b-1996 Vegetable
Salad / raw 

vegetable intake
435,435 NA 9,851,867 MRC-IEU European 2018

ukb-b-8089 Vegetable
Cooked 

vegetable intake
448,651 NA 9,851,867 MRC-IEU European 2018

Ieu-b-40
Body mass 

index
Body mass index 681,275 NA 2,336,260 MRC-IEU European 2018

finngen_R9_ L12_

DECUBITANSULCERANDPRESSURE
PUs Pressure ulcers 354,567 353,088 20,169,702 FinnGen European 2022

SNP, Single nucleotide polymorphisms.
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p = 0.697), Dried fruit intake (OR = 1.493, 95% CI:0.522–4.270, 
p = 0.455), Non-oily fish intake (OR = 10.987, 95% CI: 0.386–312.569, 
p = 0.161), Oily fish intake (OR = 1.427, 95% CI: 0.583–3.492, 
p = 0.436), Beef intake (OR = 1.092, 95% CI: 0.044–26.864, p = 0.957), 
Fresh fruit intake (OR = 2.750, 95% CI: 0.597–12.671, p = 0.194), 
Coffee intake (OR = 0.916, 95% CI:0.211–3.970, p = 0.907), Pork 
intake (OR = 2.745, 95% CI: 0.101–74.322, p = 0.548), Tea intake 
(OR = 0.666, 95% CI: 0.262–1.688, p = 0.391), Processed meat intake 
(OR = 0.363, 95% CI: 0.091–1.453, p = 0.152), Poultry intake 
(OR = 0.206, 95% CI: 0.003–14.110, p = 0.464), and Cooked vegetable 
intake (OR = 2.528, 95% CI: 0.166–38.386, p = 0.504) were not 
associated with PU in the IVW method (Figure  2; 
Supplementary Table S2). Albeit with there were no evidence for 
significant outliers, heterogeneity effect and potential pleiotropy 
(p > 0.05; Supplementary Tables S3, S4), we still used the fixed effect 
and multiplicative random effects IVW method as the major 
complementary approaches. The results of above two IVW methods 
remained the consistence with the random effect IVW. Moreover, 
scatter plots (Figures  3A–C) and funnel plots 
(Supplementary Figures S1A–C) confirmed the credibility of the 
results of our MR study. Based on the leave-one-out sensitively 
analysis (Figures  4A–C) and forest plot 
(Supplementary Figures S2A–C), it is suggested that the causal effect 
of T2DM and dietary habits on PUs was not driven by any single SNP.

3.4 Causal effects of PU on T2DM and 
glycemic traits

For the reverse MR analysis, a total of 10 SNPs implicated 
with PU were selected at a less stringent cut-off (p < 5 × 10−6), and 
all of which had F-statistics more than 10, demonstrating the 
positive association between genetically predicted PU patients 
and the levels of FG (OR: 1.007; 95% CI: 1.000–1.013; p = 0.048) 
and FI (OR: 1.012; 95% CI: 1.003–1.022; p = 0.011), the findings 
of other MR approaches were similar to the IVW method. In 
addition, no evidence showed the causal influence of PUs patients 
on T2DM (OR: 1.017; 95% CI: 0.983–1.052; p = 0.341), 2hGlu 
(OR: 1.024; 95% CI: 0.993–1.056; p = 0.124), and HbA1c (OR: 
1.002; 95% CI: 0.996–1.007; p = 0.544; Figure  5; 
Supplementary Table S5). MR-PRESSO determined no horizontal 
pleiotropy, and no heterogeneity was observed in estimating the 
effect of PU patients on T2DM and Glycemic 
(Supplementary Tables S6, S7). Furthermore, our MR study 
results were supported by scatter plots (Figures 3D,E) and funnel 
plots (Supplementary Figures S1D,E), indicating credibility. The 
leave-one-out sensitivity analysis (Figures 4D,E) and forest plot 
(Supplementary Figures S2D,E) suggest that the causal effect of 
T2DM and dietary habits on pressure ulcers is not influenced by 
any single SNP.

FIGURE 2

Associations of genetically predicted T2DM, glycemic traits, dietary habits with the risk of pressure ulcers. T2DM, Type 2 Diabetes Mellitus; FG, fasting 
Glucose; FI, Fasting Insulin; 2hGlu, 2  h-glucose post-challenge; HbA1c, glycated hemoglobin; and fasting insulin data (FI).
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3.5 Multivariate MR

To confirm whether the correlation of T2DM or FG on PUs is 
independent of BMI, the multivariate MR analysis was conducted. 
Specifically, we identified SNPs associated with T2DM or FG and 
BMI separately (p < 5 × 10−8) and combined all genetic variants. 
Following the exclusion of duplicate IVs, we observed a significant 
causal association between T2DM and BMI and PUs (p < 0.001; 
p = 0.026. respectively) but no causal association for FG (p = 0.432; 
Table 2).

4 Discussion

Based on summary level data from large GWAS, we implemented 
a two-sample univariable MR study to investigate the causal 
association between dietary habits and PUs. Employing a 
bidirectional analytical approach for T2DM, Glycemic traits, and the 
risk of PUs. We further applied Multivariable MR to eliminate the 
potential confounding factors, specifically BMI, revealing that 
T2DM is the independent effect factor on PUs, allowing us to 
differentiate between upstream and downstream factors in the 
disease pathway. Our results indicated that genetically predicted 
T2DM and FG are positively associated with the risk of PUs, while 
Salad / raw vegetable intake shows a negative association with PU 
risk. Additionally, we observed that PUs is associated with increased 
levels of FG and FI. These findings were generally robust in 

sensitivity analysis, ensuring the reliability of our MR analyses and 
mitigating potential pleiotropic effects. According to our knowledge, 
this represents the first MR study evaluating potential causative links 
between T2DM, glycemic traits, dietary habits, and PUs.These 
findings provide valuable insights for the prevention and 
treatment of PUs.

Our findings reveal that T2DM and the elevated levels of FG 
increase the risk of PUs, this conclusion aligns with the results of 
numerous studies. A meta-analysis of 15 observational studies, 
encompassing 19,724 intraoperative PUs in patients conducted in 
Asia, the Americas, Europe, and Australia from 1989 to 2019, 
indicated that the incidence of PUs in the T2DM population increased 
by 50% compared to non-T2DM individuals (OR = 1.52, 95% CI 
1.25–1.85) (20). Other research also confirms this finding, with a 
meta-analysis of six observational studies involving all 2,453 patients. 
Compared to patients without T2DM or normal glucose levels, 
individuals with T2DM were more than twice as likely to develop 
surgical PUs (OR = 2.15, 95% CI: 1.62–2.84) (21). One potential 
explanation is that T2DM induces peripheral neuropathy, impairs 
sensory perception, and leads to prolonged insensitivity to 
compression, tissue necrosis, and nonhealing of affected areas. 
Peripheral neuropathy, in turn, has also been associated with 
neuropathic ulcers and diabetic foot ulcers (32–34). Another 
mechanism is that T2DM and high FG levels have been shown to 
reduce blood flow to the skin and underlying tissues. Poor circulation 
can result in decreased oxygen and nutrient delivery to these tissues, 
making them more vulnerable to damage from pressure and friction. 

FIGURE 3

Scatter plot in the Mendelian randomization analysis of T2DM, salad/raw vegetable intake, glycemic traits and Pressure ulcers. Scatter plot of T2DM (A), 
Srvi (B), and FG (C) on PUs and PUs on FG (D) and FI (E). T2DM, Type 2 Diabetes Mellitus; Srvi, salad/raw vegetable intake; PUs, Pressure ulcers; FG, 
fasting Glucose; FI, Fasting Insulin.
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Impaired blood flow also slows down the healing process of PUs once 
they have formed (35). Additionally, T2DM can cause chronic 
inflammation and reduced angiogenesis, further hindering the 

healing processes of PUs. In mice models of T2DM, reducing 
inflammation by increasing levels of several pro-healing growth 
factors has been shown to improve wound healing (36–38). Lastly, 

FIGURE 4

Leave-one-out sensitively analysis Scatter plot in the Mendelian randomization analysis of T2DM, salad/raw vegetable intake, glycemic traits and 
Pressure ulcers. “Leave-one-out” plot of T2DM (A), Srvi (B), and FG (C) on PUs and PUs on FG (D) and FI (E). T2DM, Type 2 Diabetes Mellitus; Srvi, salad/
raw vegetable intake; PUs, Pressure ulcers; FG, fasting Glucose; FI, Fasting Insulin.
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T2DM can reduce the formation of collagen, a protein essential for 
skin strength and elasticity. This can affect the skin’s ability to 
withstand pressure and shear forces, making it more susceptible to 
injury and increasing the likelihood of developing PUs (39). 
Moreover, T2DM and a longer duration of hyperglycemia can lead to 
metabolic imbalances, including altered protein and nutrient 
metabolism (40). These potential mechanisms can affect the body’s 
ability to generate new tissue and repair damaged skin. Adequate 
nutrition is critical for the wound healing of PUs, and individuals 
with poorly controlled T2DM and FI levels may be at greater risk of 
malnutrition (41, 42). Our findings also suggest a reciprocal causation 
between FG and PUs, elevated FG is often associated with insulin 
resistance, a condition where the body’s cells become less responsive 
to the effects of insulin and tissue damage and inflammation caused 
by PUs may trigger a stress response in the body, potentially affecting 
insulin sensitivity and metabolism (43). Therefore, high levels of FI 
and FG are closely associated with the metabolic response and disease 
progression in PUs.

It is worth noting that our study revealed an inverse association 
between salad/raw vegetable intake and PUs. Consistent with 
previous studies, the beneficial impact could be  attribeted to 
components found in salad/raw vegetables, which are typically rich 
in vitamins, minerals, sufficient water, and antioxidants. These 
components play crucial roles in skin health, digestive health, regular 
bowel movements, and tissue repair (43–46). Recent evidence 
emphasizes that plant polyphenolic compounds, which are prevalent 
in the human diet and present in substances such as curcumin (47), 
apigenin (48), Ocimum basilicum, and Trifolium pratense extracts 
(49), confer various health benefits. These compounds are well-
recognized for their potent antioxidant, antimicrobial, and anti-
inflammatory properties. They neutralize free radicals by inhibiting 
key signaling pathways, including NF-κB, transforming growth 

factor-beta (TGF-β), and mitogen-activated protein kinase, while 
also enhancing the activity of antioxidant enzymes including 
superoxide dismutase (SOD), peroxidases, and catalase (50). 
Collectively, these effects support wound healing and skin barrier 
repair. Additionally, these polyphenolic compounds are crucial in 
recruiting specific cells to sites of inflammation and accelerating the 
overall healing process. Adequate nutrient supply can promote 
healthy skin and reduce the risk of PUs development. Diets with 
higher vegetable intake are generally more favorable for weight 
management. Maintaining an appropriate weight can alleviate the 
pressure on the skin, reducing the likelihood of skin damage. Certain 
components in vegetables have anti-inflammatory and immune-
supporting properties, potentially helping to lower skin inflammation 
levels and mitigate tissue damage caused by inflammation (51).

The relationship between alcohol intake and the risk of 
developing PUs is a matter of debate, with varying results from 
different studies. Several studies have linked alcohol consumption 
to an increased risk of developing PUs (52, 53). However, other 
research has found that the consumption of alcohol was not 
significantly linked to the incidence of PUs (54, 55). Despite 
applying MR analysis to investigate the potential association 
between alcohol consumption and PUs, no causal association was 
shown in the study. Vegetables, abundant in Vitamin C and 
Quercetin, are commonly recommended as dietary components 
for the prevention or treatment of PUs (44, 56, 57).

Our study has several strengths and limitations. Firstly, this is the 
first study to investigate the causal relationship between T2DM, 
glycemic traits, dietary habits and PUs through a Two-sample MR 
analysis, which is not affected by confounders and reverse causation 
compared with observational studies. Additionally, we  conducted 
multivariable MR analyses to disentangle the direct causal impacts of 
T2DM on PUs. Finally, multiple sensitivity analyses and IV strength 

FIGURE 5

Associations of genetically predicted pressure ulcers on T2DM and glycemic traits.T2DM, Type 2 Diabetes Mellitus; FG, fasting Glucose; FI, Fasting 
Insulin; 2hGlu, 2  h-glucose post-challenge; HbA1c, glycated hemoglobin; and fasting insulin data (FI).

TABLE 2 Multivariable MR results for T2DM or FG on PUs after adjusting for BMI.

Exposure Outcome SNP Conditional F-value p-value OR (95% CI)

T2DM + BMI

T2DM PUs 56 15.950 <0.001 1.260 (1.112–1.427)

BMI PUs 374 37.544 0.026 1.378 (1.039–1.829)

FG + BMI

FG PUs 461 5.651 0.432 1.427 (0.589–3.468)

BMI PUs 375 71.987 0.257 1.151 (0.903–1.467)

SNP, Single nucleotide polymorphisms; OR, Odd ratios; CI, Confidence interval; T2DM, Type 2 Diabetes Mellitus; BMI, Body mass index; FG, fasting Glucose; PUs, Pressure ulcers.
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evaluations were conducted to ensure the robustness and reliability of 
the results. However, there are also some limitations. Firstly, MR analysis 
is based on specific assumptions that cannot be verified. Secondly, the 
present study primarily involved individuals of European ancestry, 
which may limit the generalizability of our findings to other populations. 
Thirdly, while we explored the association between T2DM, salad/raw 
vegetable intake, FI, FG and PUs from a genetic perspective, the 
underlying mechanisms remain unclear and warrant 
further investigation.

5 Conclusion

This study found that salad/raw vegetabke intake associated with 
a reduced risk of PUs, while T2DM and FG were associated with an 
increased risk of PUs. Furthermore, FI and FG may play pivotal roles 
as downstream factors in PUs. This study also found that various 
dietary habits including alcoholic drinks per week, alcohol intake 
frequency, bread intake, cheese intake, water intake, cereal intake, 
non-oily fish intake, oily fish intake, beef intake, fresh fruit intake, 
coffee intake, pork intake, tea intake, processed meat intake, poultry 
intake, and cooked vegetable intake were not associated with PUs, 
which were robust to different analyses and rigorous 
pleiotropy testing.
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SUPPLEMENTARY FIGURE 1

Funnel plot in the Mendelian randomization analysis of T2DM, salad/raw 
vegetable intake, glycemic traits and Pressure ulcers. Funnel plot of T2DM 
(A), Srvi (B), and FG (C) on PUs and PUs on FG (D) and FI (E). T2DM, Type 2 
Diabetes Mellitus; Srvi, salad/raw vegetable intake; PUs, Pressure ulcers; FG, 
fasting Glucose; FI, Fasting Insulin.

SUPPLEMENTARY FIGURE 2

Forest plot in the Mendelian randomization analysis of T2DM, salad/raw 
vegetable intake, glycemic traits and Pressure ulcers. Forest plot of T2DM (A), 
Srvi (B), and FG (C) on PUs and PUs on FG (D) and FI (E). T2DM, Type 2 
Diabetes Mellitus; Srvi, salad/raw vegetable intake; PUs, Pressure ulcers; FG, 
fasting Glucose; FI, Fasting Insulin.
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