
Frontiers in Nutrition 01 frontiersin.org

Protective effect of short-chain 
fructo-oligosaccharides from 
chicory on alcohol-induced injury 
in GES-1 cells via Keap1/Nrf2 and 
NLRP3 inflammasome signaling 
pathways
Yan Chen 1†, Yanan Zhao 1†, Hao Lu 2, Weichen Zhang 2, 
Yanan Gai 1, Guanting Niu 1, Xiuhua Meng 1, Han Lv 1, 
Xiaoguo Qian 3, Xiaoqin Ding 1* and Jian Chen 1,2*
1 Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, 
Jiangsu Province and Chinese Academy of Sciences, Nanjing, China, 2 School of Pharmacy, Nanjing 
University of Chinese Medicine, Nanjing, China, 3 Fengning PingAn High-Tech Industrial Co., Ltd, 
Chengde, China

Numerous studies have demonstrated that polysaccharides derived from chicory 
possess the ability to regulate host signaling and modify mucosal damage. Yet, 
the effect and mechanism of short-chain fructo-oligosaccharides (scFOS) on 
gastric mucosa remain unclear. Hence, the protective effect of three scFOS 
(1-Kestose, Nystose, and 1F-Fructofuranosylnystose) against ethanol-induced 
injury in gastric epithelial (GES-1) cells, and the underlying molecular mechanism 
involved was investigated in this study. Treatment with 7% ethanol decreased 
the cell viability of GES-1 cells, resulting in oxidative stress and inflammation. 
However, pretreatment with scFOS exhibited significant improvements in cell 
viability, and mitigated oxidative stress and inflammation. scFOS markedly 
elevated the protein expression of Nrf2, HO-1, SOD1 and SOD2, while 
suppressing the expression of Keap1. scFOS pretreatment could also maintain 
mitochondrial membrane potential balance and reduce apoptosis. In addition, 
scFOS was observed to reduce the protein level of NLRP3, Caspase-1 and ASC. 
In conclusion, scFOS served a preventive function in mitigating oxidative stress 
and inflammation in ethanol-exposed GES-1 cells through modulation of the 
Keap1/Nrf2 and NLRP3 inflammasome signaling pathways. Collectively, the 
results indicated that scFOS could significantly mitigate ethanol-induced gastric 
cell damage, suggesting its potential for safeguarding gastrointestinal health.
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Introduction

Alcohol ranks seventh among the global risk factors for death, causing a large number of 
deaths each year (1). Statistics as of 2020 showed that there were more than 740,000 cases of 
cancer-related to alcohol consumption globally, 76.7% of which were in men (2). Long-term 
excessive alcohol consumption results in harm to the gastric mucosa, which can develop a 
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range of gastrointestinal tract diseases, including gastritis, peptic 
ulcers and gastric cancer (3). The mucosa serves as the primary barrier 
against pathogens and ensures the stability of the internal 
environment. The gastrointestinal mucosa plays a crucial physiological 
role as the biggest mucosal barrier organ in the body. Elevated ethanol 
concentrations directly erode the tissue of the gastric mucosa (4), 
causing gastric mucosal cell detachment, bleeding, and decreased 
mucus levels (5), resulting in gastric mucosal damage and consequent 
onset of disease. The pathophysiology of ethanol-mediated stomach 
damage involves inflammatory mediators and reactive oxygen species 
(ROS) generated by ethanol, which further promotes lipid 
peroxidation of cell membranes which in turn causes cell death and 
epithelial damage (6). Studies on gastric mucosal cells have shown that 
exposure to ethanol causes an increase in malondialdehyde (MDA) 
and nitric oxide (NO) production, while simultaneously reducing the 
production of important antioxidants such as superoxide dismutase 
(SOD), glutathione (GSH), and other enzymes (7, 8). This interplay 
causes an amplified state of oxidative damage, ultimately culminating 
in gastric mucosal lesions, accompanied by an acute inflammatory 
response and accelerates the release of pro-inflammatory 
inflammatory factors including tumor necrosis factor-alpha (TNF-α), 
interleukin-1 beta (IL-1β) and interleukin 6 (IL-6) (9–11).

Nuclear factor erythroid-2 related factor 2 (Nrf2) is a crucial 
transcription factor that regulates intracellular redox balance and 
cellular oxidative stress (12). Previous studies have confirmed that 
alcohol treatment increased ROS content and induced oxidative stress 
in GES-1 cells, which might activate the Nrf2 pathway and cause cell 
damage (13). Kelch-like ECH associated protein 1 (Keap1) controls Nrf2 
activation negatively affecting the nuclear translocation of Nrf2 under 
unstressed conditions. Nrf2 increases the expression of downstream 
antioxidants via modulating the transcript and protein expression levels 
of heme oxygenase 1 (HO-1). Moreover, NOD-like receptor thermal 
protein domain associated protein 3 (NLRP3) inflammasome 
participates in the inflammatory injury of gastric mucosal (14).

Numerous studies have shown that many plant-derived 
polysaccharides exhibit excellent gastroprotective activity in vivo and 
in vitro (15, 16). Inulin is a linear fructan that consists of fructose 
molecules linked by β-2,1 glycosidic bonds, usually terminated by a 
glucose molecule (17), and its structural general formula is written as 
GFn. Inulin is naturally present in various eatable plants, among 
which chicory root has a high content and is considered to be the 
main natural raw material (18). The degree of polymerization (DP) of 
fructose molecules in inulin is usually between 2 and 60 (19). Due to 
its special glycosidic bond structure cannot be digested and broken 
down by human enzymes (20), almost 90% of inulin will enter the 
colon and be  digested by the intestinal flora (21). Fructan with a 
degree of polymerization between 2 and10 is called fructo-
oligosaccharides (FOS) (22). It has been demonstrated that the 
addition of inulin to the diet prevented lipid peroxidation in the 
stomach (23). The dietary addition of inulin or FOS contributes to the 
suppression of oxidative stress, which may prevent the onset of 
oxidative stress-related inflammatory responses (24, 25). Since 
oxidative stress and inflammation are important factors in the 
development of disorders affecting the digestive system, inulin and 
FOS with antioxidant and anti-inflammatory activities may contribute 
to the prevention and treatment of gastrointestinal (GI) diseases (26). 
It has also been noted that the antioxidant capacity of linear fructose 
seems to be correlated with its DP (27). The present study aimed to 

evaluate the protective ability and mechanism of three short-chain 
fructo-oligosaccharides (scFOS, DP3-5) in FOS, namely 1-Kestose, 
Nystose and 1F-Fructofuranosylnystose, against ethanol-induced 
gastric epithelial (GES-1) cells injury model.

Materials and methods

Chemical reagents

scFOS including 1-Kestose, Nystose and 1F-Fructofuranosylnystose 
were obtained from FUJIFLM Wako Pure Chemical Corporation 
(Osaka, Japan). The purity of scFOS measured by high performance 
liquid chromatography (Wakoosil 5NH2, Shimadzu LC-20, Japan) 
was ≥99%.

Cell culture and treatment

GES-1 cell was obtained from the American Type Culture 
Collection (ATCC). Cells were cultured in HyClone RPMI medium 
with 10% fetal bovine serum (FBS, PAN-Seratech, Heilbronn, 
Germany) and 0.5% penicillin/streptomycin solution (Gibco, NY, 
United States) in a humidified incubator (Thermo Fisher Scientific, 
Langenselbold, Germany) at 37°C, 5% CO2. GES-1 cells were seeded 
in 6-well plates, 96-well plates or confocal microplates at a density of 
1.5 × 105 cells/mL for the subsequent treatment. After being treated, 
GES-1 cells were lysed with RIPA Lysis Buffer (Beyotime, Beijing, 
China) to collect cell lysates for subsequent experimental assays.

To explore the method of establishing ethanol-induced GES-1 cell 
damage model, cells were exposed to ethanol at various concentrations: 
5, 6, 7, 8, and 9% for 2 h to determine cell viability. The ethanol 
concentration corresponding to a cell viability of approximately 60% was 
selected as the optimal modeling concentration. To determine the 
administration concentration of scFOS on GES-1 cells, cells were exposed 
to 1-Kestose, Nystose and 1F-Fructofuranosylnystose (dissolved in PBS) 
at various concentrations: 25, 50, 100 and 200 μg/mL for 24 h, following 
cell viability measurement. GES-1 cells were pretreated with scFOS at the 
selected concertation for 24 h, following ethanol exposure at the selected 
concertation for 2 h. The ameliorative effects of scFOS on cell viability, 
oxidative stress and inflammation were subsequently evaluated.

Cell viability assay

Cell counting kit-8 assay kit (CCK-8, Beyotime, Beijing, China) 
was used to determine cell viability. GES-1 cells after treatment were 
incubated with100 μL of CCK-8 working solution (fresh medium and 
CCK-8 reagent were mixed in a 10:1 ratio) at 37°C and 5% CO2 for 
60 min in the dark, the absorbance of each well was determined at 
450 nm by a microplate reader (Spectra Max plus384; Molecular 
Devices, United States).

Sod and MDA determination

The MDA content and SOD activity were determined separately 
using commercial kits according to the instructions (Beyotime, 
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Beijing, China). The protein level of GES-1 cells was determined using 
KeyBio BCA Protein Assay Kit (KeyBionet, Nanjing, China) to 
normalize the MDA and SOD activity levels.

Intracellular ROS generation assay

The intracellular ROS levels and superoxide anion (O2−) 
production were detected by using dichloro-fluorescein (DCFH-DA) 
and dihydroethidium (DHE) probes, respectively, (Beyotime, 
Beijing, China).

After being treated with scFOS and ethanol, GES-1 cells were 
exposed to 10 μM DCFH-DA or 5 μM DHE, and then incubated at 
37°C under light protection for 30 min. The ROS levels were measured 
using a fluorescent enzyme labeling instrument and DHE fluorescent 
images were taken under a confocal microscope (Zeiss LSM 700, Carl 
Zeiss AG, Germany).

Inflammatory cytokines assay

ELISA kits (Ruixin Biotechnology, Shanghai, China) were utilized 
to quantify the quantities of TNF-α, IL-1β and IL-6 in the cell lysates 
following the manufacturer’s instructions.

NO production assay

Using a NO assay kit (Jiancheng Bioengineering, Nanjing, Jiangsu, 
China), NO concentration in cells is gauged by the transformation of 
NO in cell lysates into nitrate and nitrite with a NO assay kit. The 
absorbance of each well was measured at 550 nm using a 
microplate reader.

Mitochondrial membrane potential assay

Mitochondrial Membrane Potential Assay Kit with JC-1 
(Solarbio, Beijing, China) was used to measure changes in 
mitochondrial membrane potential caused by ethanol in GES-1 
cells. JC-1 monomer fluoresces (green) were observed at excitation/
emission (Ex/Em) 515 nm/529 nm, and JC-1 polymer fluoresces 
(red) were detected at excitation/emission (Ex/Em) 585/590. 
Changes in the potential of the mitochondrial membrane were 
detected by the shift in color of the fluorescence. Treated GES-1 
cells in confocal dishes were incubated with JC-1 reagent (10 μM, 
1 mL/well) for 20 min at 37°C protected from light and then 
imaged with confocal microscopy. The ratio of red to green 
fluorescence was utilized for determining changes in the 
mitochondrial membrane potential.

TdT-mediated dUTP nick end labeling 
(TUNEL) assay

Apoptosis of GES-1 cells was assessed using the One Step 
TUNEL Apoptosis Assay Kit (Beyotime, Beijing, China). Briefly, 
cells were fixed with 4% paraformaldehyde (Beyotime, Beijing, 

China) for 30 min and then incubated with Terminal 
Deoxynucleotidyl Transferase containing fluorescein-dUTP for 
60 min at 37°C. Finally, an Antifade Mounting Medium (Beyotime, 
Beijing, China) was added and then visualized by 
confocal microscopy.

Immunofluorescence

GES-1 cells were treated and immobilized with 4% 
paraformaldehyde for 30 min, then blocked with 5% skim milk 
powder (Wako Pure Chemical, Osaka, Japan) for 2 h. Cells were 
incubated with anti-Nrf2 antibody (16396-1-AP, 1:1000; 
Proteintech, Chicago, IL, United States) at 4°C overnight. The next 
day, they were incubated with a fluorescent secondary antibody 
for 1 h. Antifade Mounting Medium with DAPI (Beyotime, 
Beijing, China) was added and images were taken with 
confocal microscopy.

Western blot

The protein concentration in the cell lysate was quantified using 
KeyBio BCA Protein Assay Kit (Beyotime, Beijing, China). Following 
thorough mixing with loading buffer, lysates were boiled for 5 min. 
Following a 10% SDS-PAGE separation, the proteins were electrophoresed 
at 300 mA for 1.5 h, and subsequently transferred to a PVDF membrane 
(Millipore, MA, United States). The PVDF membranes were blocked with 
5% skim milk powder for 2 h at room temperature and then co-cultured 
with the primary antibody overnight at 4°C. The next day, the PVDF 
membranes were co-incubated with secondary antibody for 1.5 h at room 
temperature. Finally, the membranes were immersed in ECL 
chemiluminescent solution, detected by Tanon Imager 4,600 system 
(Tanon, Shanghai, China) and analyzed by Image J software (NIH, 
Bethesda, MD, United States).

Statistical analysis

The experimental data were analyzed by Graph Pad Prism version 
8.0 (Graph Pad Software, San Diego, CA, United States). Results were 
expressed as means ± SEM, and the differences were analyzed by 
One-way ANOVA with Dunnett’s multiple comparison test, where 
p < 0.05 was considered statistically significant.

Results

Effect of different concentrations of scFOS 
and ethanol on the survival rate of GES-1 
cells

The chemical structures of the three scFOS were shown in 
Figure 1A. Figure 1B showed that the viability of GES-1 cells decreased 
with the increase of ethanol concentration from 5 to 9% with 
incubation for 2 h. According to our results and literature search, 
we selected 7% ethanol with an inhibition rate of about 40% as (Model, 
M) concentration for our further study (28).

https://doi.org/10.3389/fnut.2024.1374579
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2024.1374579

Frontiers in Nutrition 04 frontiersin.org

The cell viability of GES-1 cells treated with different 
concentrations of scFOS for 24 h was shown in Figure 1C. scFOS at 
the concentration from 0 mg/mL (Control, C) to 200 mg/mL for 24 h 
did not affect GES-1 cells viability. scFOS at concentrations of 50 and 
100 μg/mL were selected for subsequent experiments.

As shown in Figure 1D, GES-1 cells treated with the three scFOS 
at 50 μg/mL and 100 μg/mL for 24 h markedly improved cell viability 
compared to that in the M group. After the aforesaid ethanol 
treatment, the cells were found to be shrunken and rounded. However, 
the morphology of cells pretreated with scFOS was significantly 
improved (Figure 1E). These results indicated that scFOS improved 
cell viability and morphology in ethanol-exposed GES-1 cells.

scFOS ameliorated oxidative stress in 
ethanol-treated GES-1 cells

The O2−production in GES-1 cells detected using DHE staining 
was shown in Figure 2A. O2− over-production was observed in GES-1 
cells under 7% ethanol, and significantly reversed under scFOS 
administration. The DCFH-DA staining showed that ethanol exposure 
promoted intracellular ROS production, which was attenuated after 
scFOS treatment (Figure 2B). As shown in Figure 2C, the SOD activity 
of the M group was significantly reduced, while scFOS treatment 
significantly elevated SOD activity. Meanwhile, Nystose (N1, N2) and 
1F-Fructofuranosylnystose (F1, F2) pretreatment exhibited better 
enhancement of SOD activity in ethanol-damaged GES-1 cells. As 
shown in Figure 2D, scFOS pretreatment significantly decreased the 
MDA content in comparison to that in M group. Among them, 
Nystose (N1, N2) and 1F-Fructofuranosylnystose (F1, F2) pretreatment 
could better reduce the MDA content in ethanol-exposed GES-1 cells. 
These findings suggested that pretreated with scFOS could attenuate 
ethanol-induced oxidative stress by suppressing ROS production and 
lipid peroxidation, as well as increasing intracellular SOD activity, of 
which Nystose and 1F-Fructofuranosylnystose showed a better 
improvement effect.

scFOS reduced oxidative damage via the 
Nrf2/Keap1 pathway

Figure  3A showed that the Nrf2 expression level was 
upregulated and Keap1 expression was downregulated in the 
scFOS group in comparison with the M group. As shown in 
Figure 3B, compared with the C group, the expression of HO-1, 
SOD1 and SOD2 proteins in the M group was significantly 
decreased. Compared with the M group, HO-1, SOD1 and SOD2 
protein expression of the scFOS administration group was 
significantly reduced to a level close to the normal group. Indeed, 
Nrf2 immunofluorescence also revealed an accumulation of 
nuclear Nrf2 in the scFOS treatment group, while Nrf2 expression 
in the cytoplasm was significantly reduced in comparison with 
those in the M group (Figure 3C). In addition, nuclear morphology 
was observed using DAPI staining, while cells with nuclear 
fragmentation were considered to be a marker of apoptosis (29). 
Compared to the C group, the nucleus of the ethanol-treated group 
was fragmented and the morphology was abnormal, which was 
improved after scFOS pretreatment. Therefore, scFOS could trigger 

the degradation of Keap1 and promote the entry of Nrf2 into the 
nucleus, thereby increasing the expression of antioxidants such as 
HO-1 and SOD to reduce the level of oxidative stress in cells. These 
results demonstrated that scFOS could improve ethanol-induced 
oxidative stress in GES-1 cells by regulating the Nrf2/Keap1 
signaling pathway.

scFOS inhibited inflammatory response 
and apoptosis by NLRP3/ASC/Caspase-1 
pathway

The production of NO can be  used as a predictor of the 
inflammatory effects in the disease process. As shown in Figures 4A,B, 
ethanol significantly increased NO and iNOS production in GES-1 
cells in comparison to the C group. In the scFOS treatment group, all 
three scFOS could correct the significant decrease in iNOS content 
induced by ethanol. However, 1-Kestose and Nystose administration 
significantly reduced NO production in comparison with the ethanol-
treated group, while there was no significant change in the 
1F-Fructofuranosylnystose-treated group, indicating the potential of 
scFOS to suppress the inflammatory response.

Proinflammatory cytokines, including TNF-α, IL-1β and IL-6, 
are crucial mediators in the majority of inflammatory pathologies. 
Therefore, we further determined the effect of scFOS on the release 
of TNF-α, IL-1β and IL-6  in ethanol-exposed GES-1 cells. As 
demonstrated in Figure  4C, ethanol treatment considerably 
increased TNF-α, IL-1β and IL-6 levels in comparison to the C 
group, while scFOS administration dramatically decreased these 
inflammatory factor levels. The above results suggested that scFOS 
may exert excellent anti-inflammatory effects in ethanol-treated 
GES-1 cells.

Apoptosis can be detected early by observing the change in JC-1’s 
fluorescence from red to green. The red/green fluorescence ratio of the 
M group was considerably reduced following ethanol treatment for 
2 hours, as seen in Figure 4D. All three scFOS significantly increased 
the red/green fluorescence ratio in comparison with that in the 
ethanol-treated GES-1 cells, with 1-Kestose and Nystose exhibiting a 
better improvement effect than 1F-Fructofuranosylnystose. JC-1 
staining results showed that all scFOS treatment groups could improve 
ethanol-induced apoptosis in a dose-dependent manner, which was 
further confirmed by TUNEL analysis. As shown in Figure 4E, the 
positive staining cells in the M group were significantly elevated than 
those in the C group and scFOS treatment group.

The NLRP3 signaling pathway is crucial for both apoptosis and 
the inflammatory response. Western blot analysis showed that ethanol 
induction increased the expression of NLRP3, apoptosis-associated 
speck-like adaptor protein (ASC) and cysteinyl aspartate specific 
proteinase 1 (Caspase-1) (Figure 4F). However, pretreatment with 
three scFOS significantly inhibited ethanol-induced activation of these 
proteins, suggesting that scFOS can also prevent ethanol-induced 
inflammatory response and apoptosis by inhibiting NLRP3 signaling.

Discussion

Inulin is a water-soluble storage polysaccharide, which belongs to 
a class of non-digestible carbohydrates. With its function of improving 
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health and regulating the gastrointestinal system, inulin is widely used 
in the development of functional foods (30). Fructans with a degree 
of polymerization between 3 and 5 are called scFOS. It has been 

reported that the degree of polymerization of scFOS may affect its 
biological activity (31). Related studies have shown that 
1F-Fructofuranosylnystose could scavenge free radicals in vitro, but its 

FIGURE 1

Effect of different concentrations of scFOS and ethanol on the survival rate of GES-1 cells. (A) The chemical structure of 1-Kestose, Nystose and 1F-
Fructofuranosylnytose. (B) Concentration effect of ethanol on cell viability. (C) Concentration effect of 1-Kestose, Nystose, 1F-Fructofuranosylnytose 
on cell viability. (D) Cell viability was measured after pretreatment with 50, 100  μg/mL 1-Kestose (K1, K2), Nystose (N1, N2) and 1F-Fructofuranosylnytose 
(F1, F2) for 24  h and incubation with 7% ethanol for 2  h. (E) GES-1 cell morphology under the condition of panel (D) treatment. The cell viability of each 
group was expressed in percentage in comparison with the C group. *p  <  0.05, **p  <  0.01 or ***p  <  0.001 compared with M group, #p  <  0.05, ##p  <  0.01, 
###p  <  0.001 compared with the C group.

https://doi.org/10.3389/fnut.2024.1374579
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Chen et al. 10.3389/fnut.2024.1374579

Frontiers in Nutrition 06 frontiersin.org

antioxidant mechanism is not yet clear. We studied the protective 
effect and mechanism of scFOS in FOS, 1-Kestose, Nystose and 
1F-Fructofuranosylnystose, on ethanol-induced GES-1 cell injury.

In cell experiments, GES-1 cells were treated with different 
concentrations of ethanol to establish an alcohol injury model. 
Through the inverted microscope observation, it was found that the 
cells treated with a high concentration of ethanol would cause the cells 
to contract and round, and then fall off from the bottle wall (32). The 
same phenomenon was also confirmed in the present study. Direct 
observation of cell status is helpful for preliminary judgment of 
screening concentration. A study demonstrated that the cell survival 
rate was approximately 50% after exposure to 3% ethanol for a 
duration of 4 h (33). Furthermore, the study outlined the 
recommended concentration (2–8%) and duration (2–6 h) to 
minimize volatilization in ethanol molding (33). In this study, ethanol 
treatment for 2 h and the cell survival rate of about 60% was used as 
modeling criteria to explore the optimal concentration. It was found 
that 7% ethanol could meet the modeling requirements for 2 h. 
Ethanol intake can cause oxidative stress in cells, which damages 
GES-1 cells by increasing lipid peroxidation and decreasing the 
activity of antioxidant enzymes (34).

In the development of ethanol-induced gastric mucosal injury 
through oxidative stress, reactive oxygen species (ROS) play a crucial 
role (35). Therefore, the evaluation of the resistance and repair ability 
of GES-1 cells to alcohol injury can be indicated by their antioxidant 

activity. As a class of enzymes that catalyze the disproportionation of 
superoxide anion radicals to H2O2 and O2, SOD plays a crucial role in 
helping the body against oxidative damage (36). Ethanol treatment 
induced oxidative stress, increased intracellular ROS and MDA 
content, and decreased SOD activity (37). These findings are consistent 
with the results of our study, which demonstrated that ethanol caused 
a significant increase in ROS levels in GES-1 cells and disrupted the 
antioxidant system, as represented by SOD. scFOS pretreatment could 
protect GES-1 cells from oxidative stress, and the antioxidant effects 
of Nystose and 1F-Fructofuranosylnystose are better than that of 
1-Kestose.

ROS generation is regulated by Nrf2 signaling (38). Under 
normal conditions, Nrf2 and Keap1 are easily degraded in the 
cytoplasmic binding (39, 40). In oxidative stress situations, Keap1 
undergoes a conformational shift or Nrf2 is directly phosphorylated 
in response to internal and external free radicals and substances 
stimulating the cell (41). Nrf2 in cells can get rid of the inhibition of 
Keap1 and accumulate in the nucleus through the nuclear 
translocation signal of Neh1 domain on Nrf2 (42). Upon entering the 
nucleus, activated Nrf2 triggers the production of HO-1 and 
downstream antioxidant proteases (43, 44). The up-regulation of 
HO-1 may be one of the most important cell protection mechanisms 
in the event of cell stress (45). The possible mechanism of the Nrf2/
HO-1 signaling pathway in the protective effect of scFOS on alcohol-
injured GES-1 cells was then investigated. Our results showed the 

FIGURE 2

Effect of scFOS on oxidative stress in ethanol-treated GES-1 cells. (A) Intracellular superoxide anion (O2−) measured by DHE staining and the 
fluorescence intensity analysis. (B) Intracellular ROS measured by DCFH-DA fluorescent probe. MDA content (C) and SOD activity (D) were measured 
by biochemical kits. *p  <  0.05, **p  <  0.01 or ***p  <  0.001 compared with M group, #p  <  0.05, ##p  <  0.01, ###p  <  0.001 compared with C group.
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suppression of Keap1 and the promotion of Nrf2, HO-1, SOD1 and 
SOD2 by scFOS in the stimulation of ethanol, confirming that scFOS 
could prevent ethanol-induced GES-1 cell damage by alleviating 
oxidative stress.

Inflammation, as a biological response to potential harm, stands 
out as a pivotal process in the gastric mucosal defense mechanism 
(46). Ethanol promotes inflammation, which in turn leads to the 
accumulation of inflammatory cytokines. NLRP3 inflammasome 
plays a key role in many diseases, and it may establish a bridge 
between inflammation and oxidative stress (47, 48). NLRP3 
inflammasome is an intracellular complex associated with 
inflammatory response, which induces the production of mature 
IL-1β and triggers apoptosis through caspase-1 cleavage, playing an 
important role in the formation of gastric ulcer (49–51). The marker 
of early apoptosis is the damage of active mitochondria, which is 
closely related to cellular oxidative damage (52). In this study, the 
JC-1 probe was used to observe the decrease of MMP in cells under 

confocal microscopy. DAPI staining and TUNEL staining provided 
evidence for ethanol-induced apoptosis, which was characterized 
by nuclear condensation and fragmentation. Our study found that 
scFOS could significantly inhibit the increase of ethanol-induced 
NLRP3, ASC and Caspase-1 protein expression in GES-1 cells, 
indicating that scFOS enhanced ethanol-induced NLRP3 
inflammasome activation-mediated apoptosis, suggesting that 
scFOS may protect GES-1 cells from ethanol-induced damage by 
inhibiting NLRP3. At the same time, we also detected that the levels 
of IL-1β, TNF-α, IL-6, iNOS and NO in alcohol-induced GES-1 
cells were significantly increased, and scFOS pretreatments could 
reverse this phenomenon to varying degrees. Interestingly, 
we observed that 1F-Fructofuranosylnystose could not significantly 
reduce the expression of NO in cells, but the expression level of 
iNOS in cells decreased significantly, which may be  that 
1F-Fructofuranosylnystose could not inhibit the non-enzymatic NO 
pathway in cells (53).

FIGURE 3

scFOS reduced oxidative damage via the Nrf2/Keap1 pathway. (A) Western blot analysis of Nrf2 and Keap1 expression. (B) Western blot analysis of 
SOD1, SOD2 and HO-1 expression. (C) Effect of ethanol stimulation on nuclear translocation of Nrf2 in GES-1 cells: Nrf2 (green) and DPAI (blue) in 
treated GES-1 cells were immunostained. Representative images of double staining are shown. Scale bar  =  5  μm. *p  <  0.05, **p  <  0.01 or ***p  <  0.001 
compared with M group, #p  <  0.05, ##p  <  0.01, ###p  <  0.001 compared with C group.
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Conclusion

In summary, this study showed that scFOS could protect 
GES-1 cells from ethanal-induced oxidative stress and 
inflammatory response via Nrf2 and NLRP3 inflammasome-
related pathway proteins. These findings demonstrated that 
scFOS could successfully prevent ethanol-induced stomach cell 
injury in vitro, suggesting its potential for safeguarding 
gastrointestinal health. However, further research is needed to 
fully elucidate the extent of scFOS’s benefits in addressing 
stomach diseases.

Data availability statement

The raw data supporting the conclusions of this article will 
be made available by the authors, without undue reservation.

Author contributions

YC: Writing – review & editing, Writing – original draft, 
Visualization, Methodology, Investigation. YZ: Writing – review & 
editing, Visualization, Methodology, Formal analysis. HLu: 
Methodology, Formal analysis, Writing – review & editing. WZ: 
Visualization, Methodology, Investigation, Writing – review & 
editing. YG: Formal analysis, Data curation, Writing – review & 
editing. GN: Methodology, Formal analysis, Writing – review & 
editing. XM: Visualization, Methodology, Data curation, Writing – 
review & editing. HLv: Visualization, Methodology, Investigation, 
Writing – review & editing. XQ: Resources, Writing – review & 
editing. XD: Writing – review & editing, Writing – original draft, 
Visualization, Funding acquisition, Data curation, Conceptualization. 
JC: Writing – review & editing, Visualization, Resources, Project 
administration, Funding acquisition, Conceptualization.

FIGURE 4

scFOS inhibited inflammatory response and apoptosis by NLRP3/ASC/Caspase-1 pathway. (A) Western blot analysis of iNOS expression. (B) NO 
production was evaluated by spectrophotometry. (C) Anti-inflammatory inflammatory factors TNF-α, IL-1β and IL-6 quantified by ELISA. 
(D) Quantitative evaluation of the MMP content in ethanol-treated GES-1 cells using the JC-1 polymer/monomer fluorescence ratio. (E) The levels of 
apoptosis were analyzed using a TUNEL detection kit. (F) Expression of NLRP3, ASC and Caspase-1 was examined using Western blot. *p  <  0.05, 
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