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Introduction: Historically, secular and seasonal trend analyses have been

examined using self-report measures of intake. Rarely are objective measures

and known determinants of dietary intake used in these analyses. Our objective

was to quantify the seasonal and secular differences in an objective ad libitum

intake paradigm while considering the contribution of determinants, such as

fat-free mass (FFM) index and spontaneous physical activity (SPA) limited to the

restricted space of a whole-room calorimeter.

Methods: For this study, recruitment of N = 292 healthy, diabetes free, adults

occurred from 1999 to 2020. Assessment during their 10-day stay included

body composition (by DXA), SPA (by an approximately 24-h stay in whole-

room calorimetry), and ad libitum intake (by a vending machine for 3 days). This

secondary analysis used general linear models (GLM) to investigate secular and

seasonal differences while adjusting for sex, age, FFM index, FM (fat mass) index,

SPA, and race/ethnicity.

Results: FFM index and SPA were positively associated with all intake measures

(p < 0.05). In all adjusted seasonal models, season did not affect intake.

Adjusted secular trends models (kcals/year) demonstrated a decrease in total

kcals (β = −55), intake as percent weight maintaining energy needs (β = −2),

protein kcals (β = −10), fat kcals (β = −27), and carbohydrates kcals (β = −22)

(all p < 0.05). After further adjustment for SPA, significance remained in all intake

measures (p < 0.05). Secular trends in body composition revealed no changes

in weight, BMI, and percent body fat (all p > 0.20).

Discussion: Our results indicate that over time, ad libitum intake decreased in

this controlled research setting and remained significant even after accounting

for positive determinants of intake. A significant ad libitum decrease, coupled

with no change in body composition, may highlight a participant bias

toward calorie restriction in a controlled setting over time and deserves

further investigation.
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1 Introduction

Changes in food intake patterns may vary over different
temporal scales, including seasonally and over more extended
periods (secular trends), and are influenced by shifts in agricultural,
cultural, socioeconomic, and environmental factors (1–3).
Understanding the temporal changes in energy intake may help
elucidate mechanistic or physiological reasons for the rise in
obesity rates over the last few decades (4). Rates of obesity have
risen around the world since the 1980s, with the current prevalence
in American adults at approximately 42% (4). Examining changes
in components of energy balance principles may help understand
this increase. Energy balance considers the relationship between
two components of human metabolism: energy intake and
expenditure (5). Fundamentally, the energy balance equation
argues that energy intake in excess of energy expenditure leads to
weight gain (5). Therefore, understanding the role of energy intake
in secular and seasonal models will be important to understanding
how trends in dietary intake have changed over time.

Evidence for a seasonal effect on dietary intake is inconsistent
(6, 7). A meta-analysis showed slightly higher intake in winter
compared to other seasons (7). Another study in the US also
demonstrated increases in overall dietary intake in winter and
attributed this to a holiday season effect (8). However, results
are not consistent across populations. Yoshimura et al. (6)
demonstrated that participants in Japan ate significantly fewer
overall calories, less protein, and less fat in winter than in autumn.
Still, other studies have found no effect of seasonality on intake.
Bernstein et al. (9) found no relationship between seasons and
the intake of macronutrients, micronutrients, or food groups. Ma
et al. (10) demonstrated slight fluctuations in total energy intake,
fat, and carbohydrate intake throughout the year but no clear
seasonal pattern.

Research supporting changes in dietary intake over time
(secular trends) is mixed as well. In the last few decades, the
impact of diet on obesity has been a huge concern of governments
and public health officials. In the United States alone, we have
implemented several nutrition policies to try to impact dietary
intake over the years, including improving school lunches, taxing
soda, and adding calories to menu items at restaurants, all in an
effort to improve nutrition and decrease unhealthy calorie intake
(11). Despite all these efforts, individuals still eat more today
than they were decades ago. Le et al. (12), using food availability
data published by the Food and Agriculture Organization at the
United Nations, demonstrated an increase in the global average
calories consumed per person from approximately 2,250 in 1960
to 2,800 in the 2010s. Therefore, in order to understand trends in
dietary intake, it is important to look at secular trends in addition
to seasonal ones.

The National Health and Nutrition Examination Survey
(NHANES) data from 1999 to 2016 reported a decrease in the
percent energy intake of carbohydrates and an increase in the
percent intake of protein and fat (13). During this time, NHANES
data also recorded increased high-quality carbohydrates, saturated
and unsaturated fatty acids, and an overall rise in the Healthy
Eating Index score (13). Despite an apparent increase in diet
quality, intakes of low-quality carbohydrates and saturated fats
remained high (13). Using NHANES data from 1971 to 2008,

Brown et al. (1) reported decreased total fat and protein intake
and increased carbohydrates, overall intake, leisure time, physical
activity, and BMI. This inconsistency in secular trends results
may be due to the inherent limitations and bias of self-reported
dietary intake measures, such as recall bias and measurement
error (14). Historically, secular and season trend analyses, such as
with NHANES collected data, have used subjective self-reported
measures of dietary intake (14).

Additionally, our group has previously identified temporal
decreases in spontaneous physical activity (SPA) and a positive
association between SPA, as used in the constrained space of the
whole-room calorimeter, and energy intake (5, 15). Briefly, in our
study, SPA is a measure of physical activity that is associated
with fidgeting-like behaviors and small preferences for movement,
such as standing instead of sitting (15). Even though it is a small
component of overall energy expenditure, it is highly variable
and easily measured in certain study paradigms (like a metabolic
chamber) (15). Thus, SPA was included in models to investigate
how temporal factors (i.e., seasonality and secular trends over time)
affect the relationship between SPA and food intake. Lastly, it has
been shown that fat-free mass (FFM) index is a significant positive
predictor of energy intake and should also be included in the
models (16).

The primary aim of the current study was to assess the
effects of seasonality and secular trends on ad libitum dietary
intake as objectively quantified in an inpatient setting. The
secondary aim was to evaluate whether the relationships between
known determinants of energy intake, SPA, and fat-free mass
(FFM) index account for these trends (5, 16). We hypothesize
that there will be a time-related change in dietary intake on
our vending machine paradigm, which will be impacted by the
inclusion of a measurement of physical activity (SPA) and body
composition (FFM index).

2 Materials and methods

2.1 Recruitment

Recruitment for this study occurred at the NIDDK Obesity
and Diabetes Clinical Research section in Phoenix, Arizona.
Participants were recruited by NIDDK staff through flyers,
newspaper ads, the internet (clinicaltrials.gov), and word of mouth.
It was part of a larger inpatient study, the Food Intake Phenotype
Study, that assessed changes in food preferences and intake, which
has been actively recruiting since 1999 (ClinicalTrails.gov identifier
NCT00342732) (17). All participants consented to participate
in this study by giving written informed consent. This was
approved by the NIH IRB.

2.2 Inclusion and exclusion criteria

Participants selected for analysis from 1999 to 2020 were
healthy adults (based on falling within the normal range for
screening labs, medical history, and a physical exam), free from
diabetes (based on oral glucose tolerance test (OGTT) on day
4). N = 314 individuals were available for this analysis based on
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available and complete vending machine information (Figure 1).
Participants were further excluded from this analysis if OGTT
results revealed they had diabetes (n = 6) or missing data for the
OGTT (n = 5). Lastly, participants (n = 11) were excluded for
missing DXA information such as height and weight. In total,
n = 22 of the initial 314 were excluded for the above reasons,
leaving n = 292 for subsequent analysis. All analyses with SPA were
conducted on a subset, n = 206, as some participants were missing
SPA data (n = 86). No metabolic chamber dates were recorded from
November 2005 to September 2009; however, the recruitment and
data collections methods did not change over this time.

2.3 Data collection

Once admitted to the inpatient study floor at the NIH Phoenix,
patients began a weight-maintaining diet for the first three days
of their ten-day inpatient stay. The weight-maintaining energy
needs (WMEN; 50% carbohydrates, 30% fat, and 20% protein) were
first calculated using Ferraro et al.’s equation based on weight and
gender and then adjusted daily by the research dietitian to ensure
stable weight throughout the baseline period before volunteers
had access to the vending machines (18, 19). During this time,
a DXA (DPX-1, Lunar Radiation Corp, Madison, Wisconsin)
machine assessed body composition measurements such as fat-
free mass (FFM) and fat mass (FM). These measurements were
used to determine the FFM index and FM index, which considers
height in addition to overall fat-free mass or fat mass (20). Due
to the long recruitment period of these studies, from 1999 to
2020, different DXA machines were used. Therefore, values were
standardized across DXA machines using comparative equations
(21, 22). Next, participants spent roughly twenty-four hours
in a metabolic calorimeter, which measured twenty-four-hour
energy expenditure and its components, including SPA (23).
While not a measure of overall physical activity, SPA reflects
small restless movements participants make in the respiratory
chambers, like sitting to standing. During their stay in the metabolic
calorimeter, participants were fed a weight-maintaining diet and
asked not to exercise.

2.4 Dietary intake collection

Following the stay in the metabolic calorimeter, participants ate
ad libitum using an automated vending machine paradigm for three
days, as previously described (17). Each participant was assigned
their own vending machine, and the foods selected for that vending
machine were individualized for each participant based on their
answers to a hedonic food assessment (24). Foods that appeared
on this assessment ranged from single food items such as eggs or
spinach to full meals like spaghetti and meat sauce. A full list of
food items can be seen in Table 1. Barring some changes in the
availability of certain food items, the food list has been consistent
since the beginning of the study. Participants then selected these
foods by completing an 80-item Food Selection Questionnaire
containing ordinary mealtime foods by rating their preference for
the items listed on a scale from 1 (extremely dislike) to 9 (extremely
like), with 5 being neutral. Foods selected for the vending machine

ranged from 4 to 8 to serve participants food they liked while trying
not to encourage overconsumption (24). Before being placed in the
vending machines in the morning, all selected food and packaging
for the day were inventoried and weighed.

During the three days in which patients were encouraged to
eat ad libitum from the vending machines, study participants were
required to eat alone in a specified vending machine room without
distractions such as TV, personal devices, or phones. Typical
condiments and bread were available in this room. When they were
hungry, participants chose the food they wished to eat, and time
was recorded. All packaging and any leftover food were reweighed
after the meal to calculate an accurate intake for each eating episode
(including bread and condiment intake). The reproducibility of this
paradigm has been validated in previous studies, with an ICC of
0.90 (17, 19).

Macronutrient intake assessment was completed using CBORD
Professional Diet Analyzer Program (CBORD Inc., Ithaca, NY,
USA) and Food Processor (version 10.0.0; ESHA Research, Salem,
OR, USA) (25, 26). Intake variables on the vending machines, such
as total energy intake, carbohydrate kcal intake, protein kcal intake,
and fat kcal intake, were averaged for the three days inpatient and
are reported as the mean calorie intake, which was also expressed
as a percentage of WMEN (%WMEN).

2.5 Categorizing seasonality

Seasonality was defined using temperatures from the Global
Daily Climatology Network dataset archived with the US
NOAA/National Climatic Data Center. See Aydin et al. (27)
for a more detailed explanation of how the seasonal cut-offs
were determined. Here, season definitions are winter defined as
December 21st to March 20th, spring as March 21st to June 20th,
summer as June 21st to September 20th, and fall as September 21st
to December 20th (27).

2.6 Demographic data collection

Race/ethnicity, sex, and age were collected via self-report
on a demographic questionnaire during intake. Race/ethnicity
was divided into four distinct categories: Indigenous Americans,
White, Black, and Other (the other category comprised Asian,
Hispanic, and people who identified as multiple races). Indigenous
Americans accounted for a large percentage of participants.
Therefore, sensitivity analyses were also conducted for all models,
including only Indigenous Americans, which did not change the
results (data not shown).

2.7 Statistical analysis

SAS (version 9.4, SAS Institute Inc., Cary, NC, USA) was
used for the statistical analysis (28). An alpha of 0.05 was set as
the significance level for all tests. Normally distributed data are
expressed in mean +/− standard deviation (SD). First, dietary
intake measures were assessed without seasonal or secular trends
variables to understand the impact of the determinants of dietary
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FIGURE 1

Inclusion and exclusion criteria for participants included in this secular and seasonal analysis. Based on valid vending machine information, N = 314
participants in Phoenix, Arizona, were selected for this analysis. N = 22 were excluded from the analysis for the reasons listed above. Leaving
N = 292 participants for analysis.

intake in the models. This was done using general linear models
(GLMs) adjusted for sex, age, race/ethnicity, FFM index, FM index,
and SPA in all intake measurements. Next, separate GLMs were
used to assess seasonality and secular trends in food intake by
including either season (seasonality: winter = reference) or date
(secular trends) in the abovementioned model. Models were further
adjusted for SPA to assess its relationship with time-related trends
and dietary intake. Separate general linear models assessed secular
trends in body composition measures (weight, percent body fat,
and BMI) over time while adjusting for sex, age, and race/ethnicity.
R-squared for certain GLMs were reported in the results as well.
All secular trends data was reported in change by year. Results were
also quantified using partial correlations (partial r) adjusting for the
same covariates. Beta coefficients for these models are abbreviated
with “β” representing a change of kcal or percent for a 1 unit change
in the predictors.

Our research unit has two respiratory chambers. To ensure this
did not impact the data, a sensitivity analysis was run controlling for
the chamber, and the results remained the same (data not shown).
Twenty-four-hour energy expenditure, another major determinant
of energy intake, was also adjusted for all models in place of
body composition measurements, and results remained the same
(data not shown).

3 Results

The following analysis included a total of 292 participants
(Table 2). The majority were male (n = 178, 61%), Indigenous
American (n = 171, 59%), with obesity (n = 145, 50%) and
a mean BMI of 31.6 ± 8.03. Participants were roughly evenly
distributed across seasons, with fall having the most participants
(n = 79), followed by spring (n = 76), winter (n = 75), and
summer (n = 62). The average total energy intake of all the
participants on the vending machines was 3,896 ± 1,375 kcal/day,

and the average percent of weight-maintaining diet eaten of 140%
± 46%, demonstrating the documented propensity of participants
to overeat on this reproducible vending machine paradigm (17).

3.1 Determinants of dietary intake

FFM index was a significant positive predictor of all energy
intake measures: total (β = 173 kcal, p < 0.0001), %WMEN
(β = 5%, p = 0.002), protein (β = 28 kcal, p < 0.0001), fat (β = 83
kcal, p < 0.0001), and carbohydrate (β = 69 kcal, p = 0.0017). In
addition, SPA was also a significant positive predictor in all energy
intake models: total (β = 37 kcal, p = 0.0033), %WMEN (β = 1%,
p = 0.011), protein (β = 5 kcal, p = 0.0042), fat (β = 13 kcal,
p = 0.020), and carbohydrate (β = 20 kcal, p = 0.0033). Conversely,
FM index was consistently a significant negative predictor of intake:
total (β = −101 kcal, p = 0.0016), %WMEN (β = −5%, p< 0.0001),
protein (β = −17 kcal, p = 0.0002), fat (β = −44 kcal, p = 0.0024),
and carbohydrate (β = −44 kcal, p = 0.0095). These determinants
mostly remained significant in adjusted models assessing secular
and seasonal trends (Tables 3, 4).

3.2 Seasonality trends of dietary intake
and related body composition measures

Overall, there was no significant effect of season in any measure
of intake, in either unadjusted (Table 5) or adjusted models. In
adjusted models, there were no seasonal differences in total kcal
intake (overall p-value for season = 0.10), %WMEN (overall p-value
for season = 0.061), fat intake (overall p-value for season = 0.12),
carbohydrate intake (overall p-value for season, p = 0.16), and
protein intake (overall p-value for season, p = 0.024, all post-hoc
p> 0.05).
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TABLE 1 List of 77 food items offered in the vending machine protocol.

Food item

Pizza Oatmeal Ham

Cheeseburger Chocolate pudding Green beans

Orange English muffin Potato salad

Fried chicken Corn flakes and milk Chicken with pasta

Eggs Refried beans Popcorn

Baked potato Granola bar Apple pie

Corn Cup of noodles Sliced turkey

Spaghetti with sauce Bagel Blueberry muffins

Chicken pot pie Rice Krispies and milk KitKat bar

Barbecue wings Pinto beans Nestle crunch

French toast Peanuts Cheez-Its

Beef stew Sausage McMuffin Tortilla chips

Sausage Ritz crackers Chicken noodle soup

Reese’s cups Rice Krispies treats Crackers

Cheddar cheese Cinnamon bun Pretzels

Chili with beans Cottage cheese Baby Ruth

Pancakes Chocolate donut Spinach

Apples Jello Pork and beans

Chicken nuggets Apple sauce Bologna

Stuffed baked potato Croissant Raisins

Potato chips Yogurt Fig Newtons

Peanut M and M’s Corned beef hash Gummy bears

Cooked rice Cheesecake Fruit roll-ups

Tater tots Macaroni salad Mushroom soup

Peaches Canned tuna Sugar wafers

Doritos Fudge cookies

3.3 Secular trends of body composition

The secular trend in body composition metrics was analyzed
to assess whether there were any concurrent changes in body
composition during the analyzed changes in dietary intake.
Separate models were adjusted for sex, age, race/ethnicity, and date,
with body size or composition as the dependent variable. Over
time, there was no significant change in weight (β = 0.099 kg/year,
p = 0.70), BMI (β = −0.10 kg/m2/year, p = 0.15), and body fat (%)
(β = −0.023%/year, p = 0.37).

3.4 Secular trends of dietary intake

Unadjusted models for total energy intake, %WMEN, fat,
carbohydrate, and protein intake were negatively associated with
time (Table 6). The effect size in these GLMs for intake variables
was expressed as change in kcals over a year. After adjustments
for age, race/ethnicity, sex, FFM index, and FM index, secular
decreases in total energy intake (β = −55 kcal/year, p < 0.0001),
%WMEN (β = −2%/year, p < 0.0001), protein intake (β = −10

kcal/year, p < 0.0001), fat intake (β = −27 kcal/year, p < 0.0001),
and carbohydrate intake (β = −22 kcal/year, p = 0.0003) remained
significant (Figure 2). Additional models were run with percent
total energy intake by macronutrient instead of total macronutrient
calories, and results remained largely similar (Table 7).

3.5 Secular trends of dietary intake and
SPA

In previous studies, SPA demonstrated a significant change over
time and was therefore added to time and intake models (15).
After including SPA, time remained significant in all intake models:
total (β = −51 kcal/year, p < 0.0001), %WMEN (β = −2%/year,
p < 0.0001), protein (β = −10 kcal/year, p < 0.0001), fat (β = −23
kcal/year, p < 0.0001), and carbohydrate (β = −23 kcal/year,
p < 0.0001). Interestingly, as seen in Table 2, including SPA in the
models led to a decline in effect size while remaining a significant
positive predictor or intake.

4 Discussion

In this analysis of food intake data over twenty years, while
season had no effect, there was an overall secular decline in
ad libitum food intake in all recorded measures. FFM index and
SPA were positive determinants of energy intake and accounted for
a large proportion of the variance. With each further adjustment
of the secular trends models to include these determinants of
intake, there was a decline in overall effect size with a concomitant
increase in R2. Despite SPA and body composition adjustment, the
secular decrease in intake was still present. In addition, there were
no changes in body composition measurements, including body
weight, BMI, and body fat percentage.

Previous studies in our unit have associated both SPA and FFM
index with dietary intake (5, 16). In this case, SPA reflects small
restless physical movements participants make in the respiratory
chambers, like sitting to standing, and is a tiny yet highly variable
component of energy expenditure (15). In all season and secular
models, FFM index and SPA were significant positive predictors
of intake and thus were essential features of each model. Models
were also adjusted for FFM, FM, and height separately, as opposed
to FFM index, and significance remained (data not shown). Other
secular and seasonal analyses mentioned above, such as Brown
et al., used NHANES cross-sectional data and did not adjust for
these known determinants in their models (1, 13, 29, 30). As shown
inTable 6, the secular decline in intake persisted despite adjustment
for these parameters. With each model adjustment, the parameter
estimates decreased, but overall R2 increased, indicating that the
FFM index and SPA accounted for some of the decline. While the
FFM index was a significant positive predictor in dietary intake
models, the FM index was a significant negative predictor of intake.
While this is unexpected, other research from our unit found
similar results and attributed them to the potential interactions
with hormones in obese individuals (16).

Previous studies have reported mixed results on the seasonality
of dietary intake (6–10). Winter has been significantly associated
with increased dietary intake in several studies (6–8). It is worth
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TABLE 2 Demographics, anthropometrics, and intake of 292 healthy study participants by season collected from 1999 to 2020.

Demographics Fall Winter Spring Summer Total

n (%) 79 (27%) 75 (26%) 76 (26%) 62 (21%) 292

Age (years) 34.5 (11.1) 36.3 (10.5) 34.9 (10.1) 38.2 (10.5) 35.9 (10.6)

Race/ethnicity, n (%)

AI/AN 51 (64.6%) 46 (61.3%) 38 (50%) 36 (58.1%) 171 (58.6%)

White 20 (25.3%) 19 (25.3%) 31 (40.8%) 14 (22.6%) 84 (28.8%)

AA 2 (2.5%) 6 (8%) 3 (3.9%) 5 (8.1%) 16 (5.5%)

Other 6 (7.6%) 4 (5.3%) 4 (5.3%) 7 (11.3%) 21 (7.2%)

Sex

Male 44 (55.7%) 47 (62.7%) 47 (61.8%) 40 (64.5%) 178 (61%)

Female 35 (44.3%) 28 (37.3%) 29 (38.2%) 22 (35.5%) 114 (39%)

Body composition measurements

FFM (kg) 61.2 (14.5) 60.9 (14.4) 62.3 (10.4) 59.8 (14.2) 61.1 (13.4)

FM (kg) 32.3 (15.4) 27.9 (12.4) 31.0 (14.3) 25.6 (12.8) 29.4 (14.0)*

FFM index (kg/m)2 21.9 (4.1) 20.8 (3.8) 21.4 (3.1) 20.5 (3.5) 21.2 (3.7)

FM index (kg/m)2 11.8 (5.9) 9.8 (4.7) 10.9 (5.5) 8.9 (4.2) 10.4 (5.2)*

BMI (kg/m2) 33.7 (9.1) 30.5 (7.5) 32.4 (7.8) 29.4 (6.8) 31.6 (8.0)*

Height (cm) 166.6 (9.0) 170.6 (9.6) 170.4 (8.8) 169.9 (9.0) 169.3 (9.2)*

Body weight (kg) 93.5 (26.2) 88.8 (23.0) 93.3 (20.8) 85.4 (23.6) 90.5 (23.6)

Body fat (%) 33.4 (9.0) 30.6 (8.9) 31.9 (9.3) 29.0 (8.5) 31.4 (9.0)*

Dietary intake variables

Total intake (kcal) 3,802 (1,556) 4,051 (1,402) 4,053 (1,276) 3,635 (1,181) 3,896 (1,375)

Total intake (% WMEN) 135.0 (50.2) 146.1 (45.8) 145.6 (44.3) 131.9 (39.7) 139.9 (45.6)

WMEN (kcal) 2,795 (283) 2,752 (263) 2,784 (221) 2,739 (275) 2,769 (261)

Carbohydrate (kcal) 1,934 (781) 2,082 (711) 2,041 (633) 1,888 (662) 1,990 (702.23)

Protein (kcal) 472 (199) 505 (182) 541 (200) 457 (159) 505 (182)

Fat (kcal) 1,457 (679) 1,555 (632) 1,550 (593) 1,345 (528) 1,483 (617)

Values are expressed as means ± standard deviations or n (%) unless specified otherwise. Dietary intake variables are reported in kcals/day unless otherwise specified. Significant differences
between seasons were tested using an ANOVA, and global p-values are denoted, overall *p< 0.05. AA, African American; AI/AN, American Indian and Alaska Native; FFM, fat-free mass; FM,
fat mass; WMEN, weight-maintaining energy needs.

TABLE 3 General linear models adjusted secular trends demonstrating the significance of determinants of dietary intake.

Model predictors Total intake (kcal)
β (p-value)

Total intake (%
WMENa)

β (p-value)

Protein (kcal)
β (p-value)

Fat (kcal)
β (p-value)

CHO (kcal)
β (p-value)

FFM index 141.9 (0.0002) 3.5 (0.012) 19.8 (< 0.0001) 59.7 (0.0006) 62.4 (0.0023)

FM index −55.1 (0.065) −3.06 (0.0043) −7.7 (0.049) −15.3 (0.26) −31.04 (0.0003)

SPA 35 (0.0036) 1.09 (0.012) 4.9 (0.0032) 12.7 (0.021) 18.7 (0.0043)

This table demonstrates information for models adjusted in two different ways, differentiated by the horizontal line. The FFM Index and FM Index models are adjusted for secular trends, age,
sex, race, FFM index, and FM index, while the SPA model includes those same adjustments plus SPA (n = 206). The β and p-values for the GLMs are reported. β are reported as the change in
kcal/ 1 unit change in the predictor, except for %WMEN, which is expressed as % of calculated WMEN/ 1 unit change in the predictor. aweight-maintaining energy needs.

noting that while Phoenix, the location of the above analysis,
can be characterized by a milder winter compared to these other
studies, results in winter have been inconsistent nonetheless. In
these studies, seasonal effects varied, with individuals in the US
eating more in winter and Japanese eating less (6). Several other
analyses have found no significant relationships between dietary
intake and season (9, 10). Studies demonstrating seasonal changes
in dietary intake relied on methods such as 24-h recall, dietary

questionnaires, and food diaries (6–10). In contrast, this above
analysis used objective measures of dietary intake on a validated
vending machine paradigm (17). There was no overall effect of
season for overall or macronutrient intake, even in models adjusted
for confounders such as FFM-index or SPA.

When considering these known determinants, the secular
trends analysis results showed an unexpected decline in intake
across all macronutrient intake measures. Previous reports
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TABLE 4 General linear models adjusted seasonality demonstrating the significance of determinants of dietary intake.

Model predictors Total intake (kcal)
β (p-value)

Total intake (%
WMENa)

β (p-value)

Protein (kcal)
β (p-value)

Fat (kcal)
β (p-value)

CHO (kcal)
β (p-value)

FFM index 219.05 (< 0.0001) 6.40 (< 0.0001) 34.08 (< 0.0001) 98.84 (< 0.0001) 93.75 (< 0.0001)

FM index −108.63 (0.0002) −5.11 (< 0.0001) −17.63 (< 0.0001) −42.32 (0.0017) −52.71 (0.0007)

SPA 32 (0.010) 1.00 (0.028) 4.43 (0.013) 11.32 (0.048) 17.38 (0.0097)

This table demonstrates information for models adjusted in two different ways, differentiated by the horizontal line. The FFM Index and FM Index models are adjusted for season, age, sex,
race, FFM index, and FM index, while the SPA model includes those same adjustments plus SPA (n = 206). The β and p-values for the GLMs are reported. β are reported as the change in kcal/
1 unit change in the predictor, except for %WMEN, which is expressed as % of calculated WMEN/ 1 unit change in the predictor. aweight-maintaining energy needs.

TABLE 5 Unadjusted general linear models demonstrating a lack of significance between measures of intake and seasons.

Model predictors Total intake (kcal)
β (p-value)

Total intake (%
WMENa)

β (p-value)

Protein (kcal)
β (p-value)

Fat (kcal)
β (p-value)

CHO (kcal)
β (p-value)

Fall −249.32 (0.26) −11.11 (0.13) −33.49 (0.27) −97.83 (0.32) −147.78 (0.19)

Spring 2.34 (0.99) −0.45 (0.95) 36.08 (0.24) −4.61 (0.96) −41.60 (0.72)

Summer −415.49 (0.079) −14.15 (0.071) −48.29 (0.13) −209.28 (0.048) −194.42 (0.11)

This table demonstrates information for unadjusted models. The β and p-values for the GLMs are reported. β are reported as the change in kcal/ season when compared to the reference season
of Winter, except for %WMEN, which is expressed as % of calculated WMEN/ season. aweight-maintaining energy needs.

TABLE 6 General linear models with varying adjustments demonstrating a decline in ad libitum intake and the significance of the adjustments in the
models from 1990 to 2020.

Intake
measure

(A) Unadjusted
Model
β (R2)

(A)
r

(B) Adjusted
Model
β (R2)

(B)
partial r

(C) Adjusted plus
SPA Model

β (R2)

(C)
partial r

Total intake (kcal) −80** (0.16) −0.40** −55** (0.36) −0.27** −51** (0.37) −0.28**

Total intake (%
WMENa)

−3** (0.15) −0.39** −2** (0.25) −0.28** −1** (0.28) −0.29**

Protein (kcal) −13** (0.21) −0.45** −10** (0.42) −0.37** −10** (0.40) −0.38**

Fat (kcal) −40** (0.18) −0.42** −27** (0.35) −0.30** −23** (0.35) −0.29**

CHO (kcal) −35** (0.12) −0.34** −22* (0.30) −0.21* −23** (0.32) −0.24*

This table demonstrates information for models adjusted in three different ways. The β and R2 for the GLMs are reported. Correlation coefficients (r) or partial r are also reported to demonstrate
the impact of further adjustments to the relationship between intake and time. Model (A) is an unadjusted GLM for secular trends and dietary intake. While (B) is adjusted for age, sex, race,
FFM index, and FM index, then (C) is further adjusted for SPA, n = 206. β are reported as the change in kcals/year, except for %WMEN, which is expressed as %/year. **p< 0.0001, *p< 0.05.
aWeight maintaining energy needs.

demonstrating temporal trends in dietary intake are varied. Shan
et al. (13) also reported decreases in carbohydrate kcal intake over
a similar period, from 1999 to 2016. However, they found increases
in protein and fat kcals. (13) In contrast, Brown et al. (1) found
increases in carbohydrate intake and decreases in protein and fat.
Lastly, Ford and Dietz (29) reported an increase in overall kcals
from the 1971–1975 NHANES to the 2003–2004 NHANES but
a significant decrease from the 2009–2010 NHANES. Ford and
Dietz (29) concluded that dietary intake appears to peak in the
2003–2004 NHANES data and is beginning to trend downward
(29). A similar trend was demonstrated with added sugar by Wang
et al. (30), with added sugar intake peaking in 2000–2002 and
declining by 2009–2010.

A potential explanation for this decrease in measures of intake
lies in previously published data on the decrease in SPA. In several
previously reported studies, as well as our results above, intake
was significantly positively associated with SPA that is limited to
restless and fidgeting-like behaviors possible in the whole-room
calorimeter (1, 5). Additionally, Travis et al. (15) demonstrated a
secular decline in SPA. If the decline in SPA is representative of an

overall decrease in physical activity, this could be reflected in less
drive to eat (e.g., reduced activity reducing drive for intake). Thus,
the secular trend described may be an adaptation to unhealthy and
increasingly sedentary conditions. This trend toward increasing
sedentary behavior, which, despite reduced energy intake, may
be why there aren’t accompanying body composition changes.
However, Travis et al. (15) also found significant secular decreases
in BMI to accompany their decreases in SPA. Interestingly, no
changes in body composition measures (BMI, weight, and percent
body fat) were found in this current analysis.

Another possible explanation for the secular decline in
energy intake may be increased awareness of nutrition science
and government health promotion during this time (11, 31).
In particular, the emphasis on overconsumption as a public
health issue (32). The beginning of the 21st century was a
time marked by an obesogenic food environment of unlimited
access to highly palatable foods (12). While we still live in
this environment today, the public discourse around the health
implications of this environment has increased. This can potentially
impact a participant’s eating behavior in controlled conditions.
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FIGURE 2

Graphs of adjusted residual models for secular trends analyses of various measures of dietary intake as measured by an objective vending machine
paradigm from 1999 to 2020 during a 10-day inpatient study. Models are adjusted for age, sex, race, FFM index, FM index, and date and demonstrate
the secular trend in (A) residual total calorie intake (r2 = 0.36) (B) residual %WMEN (r2 = 0.25) (C) residual total protein intake in kcals (r2 = 0.42) (D)
residual total carbohydrate intake reported in kcals (r2 = 0.30) (E) residual total fat intake reported in kcals (r2 = 0.35). β are reported as the change in
kcals/year. No participants were recruited for this study from 2006 to 2008, leaving a small break in the middle, as seen in the graphs above.

In fact, one study demonstrated that participants tended to
eat more at home than in the lab (33). Previous research
has also shown that participants who are being watched or
know they are being watched tend to restrict their calories
(33). Therefore, participants under experimental conditions may
have an unintentional bias and increased intake awareness,
leading to an inadvertent restriction in energy intake under
controlled conditions. This may offer an additional or alternate
reason for participants’ eating less on our vending machines
over time, without a corresponding decrease in weight or BMI.
Unfortunately, this is something that could not be measured

in this present analysis but is an interesting consideration for
researchers moving forward.

There are a few limitations of this study that need to be
acknowledged. First, the population was predominantly Indigenous
American, thus possibly limiting the generalizability of these
results. However, in other studies from our unit, similarities in
the physiology of energy intake have been demonstrated across
populations (34). Secondly, food consumption in this vending
machine paradigm is done in an inpatient setting, thus not in line
with standard dietary intake in a free-living population. However,
the vending machine paradigm has high reproducibility across
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TABLE 7 General linear models with varying adjustments demonstrating a decline in ad libitum percent macronutrient intake and variance in the
models from 1990 to 2020.

Intake
measure

(A) Unadjusted
Model

β

(A) R2 (B) Adjusted
Model

β

(B)
R2

(C) Adjusted plus
SPA Model

β

(C)
R2

Protein (%) −0.00066** 0.023 −0.00077* 0.16 −0.00080* 0.15

Fat (%) −0.022** 0.051 −0.0020* 0.10 −0.00099 0.056

CHO (%) 0.0015** 0.026 0.00062* 0.090 0.00069 0.041

This table demonstrates information for models adjusted 3 different ways. The β and R2 for the GLMs are reported. Model (A) is an unadjusted GLM for secular trends and dietary intake.
While (B) is adjusted for age, sex, race, FFM index, and FM index, then (C) is further adjusted for SPA, n = 206. β are reported as the change in % energy intake from each macronutrient/year
**p< 0.0001, *p< 0.05.

repeated visits (ICC = 0.90), indicating people consistently eat the
same across vending days (17). Additional information on secular
or seasonal changes in satiety may have provided further insight
into dietary intake trends but unfortunately was not collected in this
study. Lastly, similar to our food intake measurement, spontaneous
physical activity was measured under controlled conditions in the
respiratory chamber. Therefore, this may not be entirely reflective
of an individual’s free-living physical activity. However, since
the measurement of spontaneous physical activity (SPA) has not
changed significantly in this time, it may still demonstrate an
overall trend of less physical activity while in the chamber, as
previously published (5).

Herein, we report a secular decrease in ad libitum intake during
an inpatient research study. Increased public health awareness
around excessive dietary intake, in addition to previously published
work showing a decline in SPA, may be factors driving this current
observation of a decrease in energy intake. This suggests that when
conducting dietary intake measurements in controlled settings, one
should consider the possibility of unintentional dietary restriction
among participants. Overall, these findings may elucidate trends in
energy intake, its determinants over time, and can inform future
analyses into this relationship.
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