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Background: Limited and inconclusive data from observational studies and 
randomized controlled trials exist on the levels of circulating micronutrients in 
the blood and their association with respiratory infections.

Methods: A Mendelian randomization (MR) analysis was conducted to assess 
the impact of 12 micronutrients on the risk of three types of infections [upper 
respiratory tract infections (URTI), lower respiratory tract infections (LRTI), 
and pneumonia] and their 14 subtypes. This study utilized a bidirectional MR 
approach to evaluate causal relationships and included a range of sensitivity 
analyses and multivariable MR to address potential heterogeneity and pleiotropy. 
The threshold for statistical significance was set at p  <  1.39  ×  10−3.

Results: Meta-analysis revealed that higher levels of circulating copper were 
significantly associated with a reduced risk of URTI (odds ratio (OR)  =  0.926, 
95% CI: 0.890 to 0.964, p  =  0.000195). Additionally, copper demonstrated a 
suggestive association with a reduced risk of LRTI (p  = 0.0196), and Vitamin B6 
was nominally associated with a reduced risk of pneumonia (p  = 0.048). Subtype 
analyses further indicated several suggestive associations: copper reduces the 
risk of acute pharyngitis (p  = 0.029), vitamin C increases the risk of critical care 
admissions for pneumonia (p  = 0.032) and LRTI (p  = 0.021), and folate reduces 
the risk of viral pneumonia (p  = 0.042). No significant connections were observed 
for other micronutrients.

Conclusion: We observed a genetically predicted potential protective effect 
of copper in susceptibility to upper respiratory infections. This provides new 
insights for further research into the role of micronutrients in the prevention and 
treatment of infection.
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Introduction

Infections have long been considered one of the major causes of 
significant health loss globally. Specifically, respiratory infections are 
a leading cause of morbidity and mortality annually worldwide (1). 
Acute upper respiratory tract infections (URTI) are among the most 
common diagnoses in global primary care due to their high incidence 
rate, with 17.2 billion cases occurring annually worldwide (2). Lower 
respiratory tract infections (LRTI) represent the primary infectious 
factor contributing to mortality and rank as the fifth-leading cause of 
death globally (3). LRTI was a major cause of illness and death in 
children, particularly those under five years of age (3). Pneumonia, the 
most common type of LRTI, accounts for 30% of all respiratory system 
deaths, according to data from the Organization for Economic 
Cooperation and Development (4). Infections impose a heavy burden 
on families and societies. Thus, preventing, diagnosing early, and 
treating these infections pose significant challenges to public health 
systems, making it crucial to identify modifiable risk factors for these 
infections. Today, while some infection-related risk factors, such as 
BMI (5) and lifetime smoking (6), have been identified, the role of 
circulating micronutrients in the pathogenesis of infections 
remains unclear.

Micronutrients in the blood, including various vitamins (such as 
vitamin A, vitamin B6, vitamin B12, folate, vitamin C, vitamin D, and 
vitamin E) and trace elements [like copper (Cu), zinc (Zn), selenium 
(Se), magnesium (Mg)], play a crucial role in the immune system (7). 
Therefore, their deficiency can increase the likelihood of host 
infections. Conversely, severe or recurrent infections can also increase 
the risk of malnutrition. Observational studies have found that 
deficiencies in vitamins A and C are associated with increased 
susceptibility to respiratory infections (8). However, some randomized 
controlled trials have produced inconsistent results, indicating that 
supplementation with vitamins A and C does not improve the 
incidence or duration of LRTI (9, 10). Other researchers believe that 
lower levels of vitamin D are associated with an increased risk and 
severity of acute respiratory infections (11, 12), yet some studies show 
contrary evidence, finding no difference in vitamin D status between 
LRTI patients and control groups (13), and no significant correlation 
between low levels of vitamin D and a higher rate of influenza (14). It 
is noteworthy that these observational study results vary greatly, 
potentially influenced by underlying confounding factors or reverse 
causality, which is unavoidable in traditional epidemiological research.

Mendelian randomization (MR), utilizing genetic variations as 
instrumental variables (IVs), effectively circumvents the confounding 
factors often unmanageable in observational studies and minimizes 
the likelihood of reverse causation. This approach is widely used to 
assess causal relationships between risk factors and diseases. In the 
absence of randomized controlled trials (RCTs) or when initiating 
new RCTs is not feasible, MR serves as a crucial alternative strategy, 
offering reliable evidence on the causal links between exposures and 
disease risks (15).

Given the lack of evidence on the relationship between circulating 
micronutrients in blood and respiratory infections, we  aimed to 
integrate genome-wide association study (GWAS) resources to 
evaluate their causal links using the MR approach. We hypothesized 
that levels of micronutrients are associated with the risk of respiratory 
tract infections. Specifically, we identified 12 micronutrients [calcium 
(Ca), beta-carotene, Cu, folate, Fe, Mg, phosphorus, Se, vitamin B6, 

vitamin C, vitamin D, and Zn] related to infection and assessed their 
relationship with URTI, LRTI, pneumonia, and their 14 common 
subtypes, providing feasible strategies for early prevention and 
improvement of respiratory infection.

Materials and methods

Study design

This study is reported according to the STROBE-MR guidelines 
(Supplementary Table S1). Figure 1 and Supplementary Figure S1 
illustrate the study design, outlining the included studies and key 
steps. Our MR analysis adhered to three assumptions. Firstly, the 
selected instrumental variables (IVs) must be strongly associated with 
the micronutrients. Secondly, the IVs should not be  linked with 
confounding factors that affect both micronutrients and respiratory 
infections. Thirdly, the instrumental variables should influence 
respiratory infections only through the micronutrients, thus avoiding 
horizontal pleiotropy.

In summary, we  conducted a comprehensive MR study using 
publicly available summary data from 32 GWAS studies, to assess the 
relationship between micronutrient levels and various respiratory 
infections. Our analysis included data from 12 exposure and 20 
outcome studies, all limited to participants of European descent to 
minimize population stratification bias. Our analysis was bidirectional, 
first assessing the causal impact of 12 micronutrients on three 
common respiratory infections. Summary data for these infections 
were obtained from two independent GWAS consortia, used for initial 
and replication analyses, followed by a meta-analysis for result 
consolidation. Secondly, we  conducted subtype analyses for each 
respiratory infection and finally investigated reverse relationships.

Our study uses publicly accessible data from studies that already 
have the necessary participant consent and ethical authorization, 
hence our study did not require separate institutional ethics approval.

GWAS data on micronutrients

A literature search was performed using PubMed1 for published 
GWAS data on micronutrients related to European populations, with 
the last search conducted on June 1, 2023. GWAS studies on cobalt, 
sodium, molybdenum, potassium, chromium, and vitamin K were 
excluded due to the absence of significant top SNPs (p < 5 × 10−8) 
(16–18). Initially, we identified 15 potential micronutrients: Ca (19), 
beta-carotene (20), Cu (21), folate (22), Fe (23), Mg (17), phosphorus 
(24), Se (25), vitamin A (26), vitamin B6 (27), vitamin B12 (22), 
vitamin C (28), vitamin D (29), vitamin E (30), and Zn (21), However, 
vitamins A and E were not included as their respective GWAS had 
been corrected for variations in body mass index (BMI), potentially 
biasing the genetic effects due to this adjustment (31). To avoid 
potential sample overlap issues between studies, we did not use GWAS 
data on micronutrients from the UK Biobank (32) and the FinnGen 
Consortium (33). Ultimately, 13 micronutrients were finalized as our 

1 https://www.ncbi.nlm.nih.gov/pubmed

https://doi.org/10.3389/fnut.2024.1373179
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
https://www.ncbi.nlm.nih.gov/pubmed


Wei et al. 10.3389/fnut.2024.1373179

Frontiers in Nutrition 03 frontiersin.org

exposure factors. A summary description for each exposure was 
provided in Supplementary Table S2.

GWAS data on respiratory infections

Our primary MR analysis targeted three types of respiratory 
infections: URTI, LRTI, and pneumonia. We used GWAS data from 
two separate European ancestry cohorts for these outcomes, namely 
the UK Biobank (32) and FinnGen Release 9 (33). The UK Biobank is 
a substantial biomedical research database, established in 2006, 
containing samples from 500,000 individuals for research on diseases, 
genetics, and lifestyle. FinnGen is an extensive Finnish cohort study 
amalgamating disease endpoint genetic data from Finnish biobanks 
and health records. More information can be found on FinnGen’s 
website.2 We investigated the link between genetic variants in trace 
nutrients and respiratory infections, starting with FinnGen Release 9’s 
latest GWAS data as our discovery cohort, followed by replication 
analysis using UK Biobank data, and concluding with a combined 
meta-analysis to confirm our hypotheses.

Our subtype analysis involved examining summarized data from 
the UK Biobank and FinnGen Release 9. We identified four URTI 
subtypes (acute nasopharyngitis, influenza, acute pharyngitis, and 
other and unspecified tonsillitis), four LRTI outcomes (bronchiectasis, 
acute bronchiolitis, acute bronchitis, and critical care admission with 
LRTI), and six pneumonia disease states (asthma-related pneumonia, 
bacterial pneumonia, viral pneumonia, pneumonia mortality, critical 

2 https://finngen.gitbook.io/documentation/

care admission with pneumonia and 28-day pneumonia mortality in 
critical care). These were chosen as secondary outcomes to assess the 
connection between circulating micronutrients and the risk of 
different subtypes and severity levels of respiratory infections. Of the 
14 subtypes analyzed, data for the different severity outcomes of LRTI 
and pneumonia were obtained from the Hospital Episode Statistics 
(HES) of the UK Biobank, with the rest sourced from FinnGen 
Release 9. For more details on the outcomes, see 
Supplementary Table S3.

Effect size estimate and sensitivity analysis

For each micronutrient, top independent SNPs were chosen based 
on a rigorous threshold (p < 5 × 10−8), discarding those with linkage 
disequilibrium of r2 < 0.001 with 10,000-kb windows and palindromic 
SNPs. We evaluated the strength of each IV using F-statistics, with all 
selected SNPs presenting an F-statistic greater than 10, suggesting a 
low likelihood of being weak instrumental variables 
(Supplementary Table S4).

For MR analyses, the inverse variance-weighted (IVW) method 
is the main approach using a random-effects model to assess the 
causal impact of circulating micronutrients on respiratory 
infections. IVW is the main method commonly used in MR 
Studies, which combines all Wald ratios for each SNP to provide a 
summary estimate, avoiding confounding factors and obtaining an 
unbiased estimate of the effect size in the absence of horizontal 
pleiotropy (34). We also used supplementary methods, including 
the MR-Egger (slope-intercept) and weighted median (WM) 
approaches, estimating effect sizes using the Wald ratio of each 
SNP when only one is available. To ensure the reliability of our 

FIGURE 1

Using Mendelian randomization to study the causal relationship between micronutrients and respiratory infection. UVMR, Univariate Mendelian 
randomization; MVMR, Multivariate Mendelian randomization; BMI, body mass index.
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conclusions, sensitivity analyses were performed to examine 
heterogeneity and pleiotropy in the genetic factors that might skew 
the results of Mendelian MR. Firstly, for exposures with three or 
more SNPs, we  checked for consistency in effect size direction 
across three methods (IVW, WM, and MR-Egger). Secondly, 
we assessed heterogeneity with Cochran’s Q test (35) across the 
gene IVs used in both cohorts. Thirdly, the degree of horizontal 
pleiotropy was evaluated using the Egger intercept method (36). 
Fourthly, we applied the MR-PRESSO test to identify outliers (37), 
and conducted the MR-PRESSO heterogeneity global test to detect 
the potential horizontal pleiotropy. Fifthly, leave-one-out 
sensitivity analysis was performed by sequentially removing each 
SNP, ensuring MR estimates were not driven by certain 
strong SNPs.

In the primary MR analysis, we conducted a replication analysis 
of GWAS data for URTI, LRTI, and pneumonia from the UK Biobank, 
assuming that both databases had complete summary statistics. 
We then utilized the random-effects model from the meta package 
(38) (version 6.5) to merge results from both the FinnGen cohorts and 
the UK Biobank. The combined results from this meta-analysis were 
regarded as the final estimates of causal effect sizes.

Multivariate MR analysis and directivity test

To address confounding in our analysis, we  performed a 
multivariate MR analysis. This process was aimed at identifying 
whether the candidate micronutrients under study independently 
influence respiratory infections, considering multiple genetic 
variations and confounding factors. We sourced summary data for 
two well-known risk factors associated with respiratory infections: 
BMI (5) and lifetime smoking (6). The BMI data were derived from 
the GIANT consortium (dataset IDs: ieu-a-90, ieu-a-91, ieu-a-92) 
(25), and the lifetime smoking data (39) were from the UK Biobank. 
Detailed GWAS information for these studies was provided in 
Supplementary Table S5.

To determine the possibility of reverse causation between the 
candidate micronutrients and outcomes, we undertook two directional 
tests. First, we  performed the MR Steiger test (40) to assess the 
direction of the associations. Following this, a reverse MR analysis was 
carried out, treating respiratory infections as the exposure and the 
candidate micronutrients as the outcome.

Supplementary analysis using less stringent 
criteria for the selection of genetic 
instruments

Lastly, the validation of the link between Cu and upper respiratory 
tract infections can be found in the results section, we performed an 
additional analysis. Due to the limited number of available IVs for Cu 
(only two) found at stricter thresholds (p <  5 × 10−8 and r2 < 0.001 
within 10,000-kb windows), which hindered the heterogeneity and 
horizontal pleiotropy tests, we adopted a looser threshold (p < 5 × 10−6 
and r2 < 0.001 within 10,000-kb windows). We then reanalyzed URTI 
outcomes from both FinnGen and UK Biobank cohorts using MR 
analysis and subsequently further compared the meta-combined MR 
results with the initial effects.

Statistical analyses

All data analyses were carried out using the R package 
“TwoSampleMR” and “MRPRESSO” of R software 4.2.3.3 The GWAS 
meta-analyses were mainly performed using a random-effects model 
provided by the “meta” package (version 6.5). Considering multiple 
tests, the Bonferroni-adjusted level of statistical significance (for 12 
exposures and 3 outcomes) was established at p = 1.39 × 10−3 (0.05/36). 
p-values falling between 0.05 and 0.00139 were deemed to have 
nominal significance. Power analysis was conducted using the online 
resource at http://cnsgenomics.com/shiny/mRnd/, where the primary 
parameters included the outcome’s sample size, case proportion, OR, 
and R2. In our research, we considered only those micronutrients with 
an R2 greater than 1% or those with over 50% statistical power for at 
least one respiratory infection outcome, thereby excluding vitamin 
B12 (Supplementary Tables S2, S6).

Results

The circulating micronutrients had between 1 to 11 instrumental 
variables, with a median count of 4. These SNPs had F-statistics 
ranging from 16 to 711, with the median at 49, clearly above the 
traditional threshold of 10, suggesting a very low probability of weak 
instrument variables. One SNP for vitamin C (rs13028225) was 
unavailable in all outcome datasets. Two SNPs for phosphorus 
(rs1697421, rs9469578) were removed due to incompatible alleles.

Impact of micronutrient levels on overall 
risk of respiratory infections

Following our initial selection of instruments, we conducted a 
preliminary evaluation of the relationship between 12 circulating 
micronutrients and the risks of URTI, LRTI, and pneumonia.  
In the FinnGen discovery cohort, we  observed one significant  
causal relationship and two suggestive associations 
(Supplementary Tables S7–S9). Specifically, genetically predicted Cu 
levels showed a notable protective effect against the occurrence of 
URTI [odds ratio (OR) = 0.924, 95%CI: 0.888 to 0.963, p = 0.000159, 
IVW] (Supplementary Table S7). Sensitivity analysis results were 
presented in Supplementary Table S10, the p-value obtained from 
Cochran’s Q test indicated no heterogeneity (p = 0.419). However, 
given the restricted number of available SNPs, with only two available, 
it was not possible to conduct MR-PRESSO and MR-Egger regression 
analyses. Additionally, two micronutrients show suggestive 
associations with the outcomes: Cu (reduces the risk of URTI, 
p = 0.038, IVW) (Supplementary Table S7) and zinc (decreases the risk 
of pneumonia, p =  0.047, IVW) (Supplementary Table S9). In the 
sensitivity analyses of these two suggestive associations, the p-values 
from Cochran’s Q tests indicated no heterogeneity. The MR-Egger 
assessment for horizontal pleiotropy between the IVs and outcomes 
showed insufficient evidence of horizontal pleiotropy 
(Supplementary Table S10).

3 https://www.r-project.org/
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After replication and meta-analysis in the UK Biobank, with 
Bonferroni correction applied, the only statistically significant 
association identified between micronutrients and infections was the 
genetically estimated levels of Cu in the blood and their association 
with URTI. An increase of one standard deviation (SD) in the 
genetically predicted blood levels of Cu was associated with an OR of 
0.926 (95% CI, 0.890 to 0.964, p = 0.000195), as confirmed in the 
meta-analysis (Figure 2; Supplementary Table S7). Additionally, as 
shown in Supplementary Table S6, the analysis power for the causal 
relationship between Cu and URTI was 98%, further confirming the 
reliability of our results. Furthermore, the meta-analysis indicated two 
suggestive associations: Cu shows a nominal relationship with 
decreased risk of LRTI (OR = 0.939, 95% CI: 0.892 to 0.990, p = 0.0196) 
(Figure  2; Supplementary Table S8), and Vitamin B6 displays a 

nominal protective effect against the risk of pneumonia (OR = 0.924, 
95% CI: 0.854 to 0.999, p = 0.048) (Figure 2; Supplementary Table S9).

We observed almost no evidence of an association between the 
blood levels of calcium, β-carotene, folate, iron, magnesium, phosphorus, 
selenium, vitamin C, vitamin D, and zinc with the overall risk of URTI, 
LRTI, and pneumonia (Figure 2; Supplementary Tables S7–S9).

Associations between micronutrients and 
specific subtypes of respiratory infections

Our study evaluated the link between 12 micronutrients and 14 
subtypes of respiratory infections, detailed in Figure  3 and 
Supplementary Table S11. We found four preliminary associations 

FIGURE 2

Forest plot for the meta-analysis of circulating micronutrients levels on the risk of respiratory infection. Nsnp, number of SNP; OR, odds ratio; CI, 
confidence interval; Ca, calcium; Cu, copper; Fe, iron, Mg, magnesium; Se, selenium; Zn, zinc.
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(p < 0.05) involving three micronutrients and four infection subtypes. 
Specifically, there appeared to be  suggestive causal relationships 
between genetically predicted serum Cu levels and acute pharyngitis 
(OR = 0.855, 95% CI: 0.744 to 0.984, p = 0.029, IVW), vitamin C and 
critical care admission with LRTI (OR = 2.213, 95% CI: 1.129 to 4.338, 
p = 0.021, IVW), vitamin C and critical care admission with pneumonia 
(OR = 1.392, 95% CI: 1.030 to 1.882, p = 0.032, IVW), and folate and 
viral pneumonia (OR = 0.602, 95% CI: 0.368 to 0.982, p = 0.042, IVW). 
Despite this, sensitivity analyses found no evidence of heterogeneity or 
pleiotropy (Supplementary Table S11), and these associations did not 
meet our stringent statistical threshold after the Bonferroni correction.

Furthermore, no clear evidence was found linking blood levels of 
calcium, β-carotene, iron, magnesium, phosphorus, selenium, vitamin 
B6, vitamin D, or zinc with the risk of developing any of the four subtypes 
of URTI, four subtypes of LRTI, or six outcomes of pneumonia.

Multivariable MR analyses and 
directionality test

Further multivariable MR studies assessing the influence of 
potential risk factors [BMI (5) and lifetime smoking (6)] on the 
relationship between Cu and URTI. The results, adjusted for each risk 
factor, indicated a similar effect as our primary analysis (Table 1). In our 
directionality test, the initial Steiger test did not support a reverse causal 
relationship between Cu and URTI (Supplementary Table S12). 
Furthermore, reverse MR analysis using significant, independent SNPs 
associated with URTI outcomes confirmed that URTI does not influence 
circulating Cu levels in the blood, suggesting a minimal likelihood of a 
reverse causal effect, as detailed in Supplementary Table S13.

Supplementary analyses

In our additional analysis exploring the link between Cu and 
upper respiratory infections, we used a relaxed threshold criteria 
(p < 5 × 10−6 and r2 < 0.001 over 10,000-kb windows), identifying six 
instrumental variables. Supplementary Table S14 shows detailed 
information about these six instrumental variables, with the lowest 
F-statistic being 21, indicating a low likelihood of weak instruments. 
The IVW method resulted in an OR of 1.04 (95% CI, 0.969 to 1.040, 
p =  0.842), but with notable heterogeneity (Cochran’s Q test 
p =  5.18 × 10−3). This heterogeneity disappeared after removing 
rs12582659 and rs10014072. Subsequently, utilizing the remaining 

FIGURE 3

Heatmap showing the causal effects of circulating micronutrients levels on respiratory infection subtypes risk by using IVW or wald ratio method. IVW, 
inverse-variance weighted; Ca, calcium; Cu, copper; Fe, iron, Mg, magnesium; Se, selenium; Zn, zinc; LRTI, lower respiratory tract infections.

TABLE 1 Multivariable Mendelian randomization analyses of Cu with 
common risk factors for URTI adjusting for potential risk of factors.

Outcome Model OR (95%CI) p-value

URTI Unadjusted model 0.926 (0.890, 0.964) 1.95E-04

Adjusted for Obesity 

(Class 1)
0.920 (0.871, 0.971) 2.54E-03

Adjusted for Obesity 

(Class 2)
0.930 (0.875, 0.988) 0.019

Adjusted for Obesity 

(Class 3)
0.925 (0.902, 0.948) 4.25E-10

Adjusted for Obesity 

(Class 1, 2 and 3)
0.921 (0.866, 0.981) 1.02E-02

Adjusted for Lifetime 

smoking
0.951 (0.914, 0.988) 0.011

URTI, upper respiratory infection; OR, odds ratio; CI, confidence interval.
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four SNPs as IVs for Cu, we reconducted MR analyses on URTI in 
the FinnGen and UK Biobank cohorts. This meta-analysis of these 
results produced an effect similar to our primary findings, with an 
OR of 0.947 (95% CI, 0.901 to 0.995, p = 0.033, IVW) (Supplementary  
Table S15; Supplementary Figure S2).

Discussion

This MR research focused on examining the possible connections 
between 12 circulating micronutrients and respiratory infections. Our 
findings revealed associations of potential statistical significance with 
five micronutrients. After multiple correction tests, we established a 
strong and robust causal link between one micronutrient and 
respiratory infections. We  ruled out the possibility of reverse 
causation, confirming that the identified micronutrient is a precursor 
to infection, not a result. Specifically, high levels of genetically 
predicted circulating Cu in the blood were closely associated with a 
lower risk of upper respiratory tract infections. This research is the 
first of its kind to use MR methods to thoroughly examine the causal 
connections between various micronutrients in the blood and the 
susceptibility, severity, and subtypes of respiratory infections.

Cu, a key micronutrient, is instrumental in the functioning and 
maintenance of various immune cells, including Th cells, B cells, 
neutrophils, NK cells, and macrophages. Previously, there was no clear 
link between circulating Cu levels in the blood and the risk of human 
respiratory infections. An RCT revealed that supplementing burn 
patients with elevated levels of Cu notably decreased their infection risk 
(41). Another trial demonstrated that the enhancement of Cu 
supplementation in healthy individuals with Cu levels that were below 
to within the normal range led to increased interleukin-2 production 
from blood cells (42), which is essential for natural killer cell cytotoxicity 
and T-helper cell proliferation. Moreover, recent research has shown that 
supplementing Cu and zinc may have a positive effect on platelet 
activation in patients with pulmonary embolism during SARS-CoV-2 
infection (43), leading to the proposal of Cu as a potential therapy during 
COVID-19. This aligns with our findings that high levels of Cu may offer 
protection against infectious diseases. A previous cellular experiment 
revealed a possible mechanism, showing that Cu-enriched cell cultures 
enhanced macrophage phagocytosis and bactericidal capabilities (44). 
Polarized macrophages produce more anti-inflammatory factors, such 
as IL-10 and TGF-β, and mitigate inflammation by inhibiting effector T 
cells (45). Our MR study provides genetic evidence supporting the 
protective effect of Cu against URTI. Additionally, we  observed a 
suggestive association between Cu levels and a reduced risk of LRTI and 
acute pharyngitis, although these findings did not meet our stringent 
statistical criteria. These results suggest that Cu may play a beneficial role 
in respiratory infections and could be a promising candidate for the 
prevention and treatment of these conditions. Based on these findings, 
incorporating assessments of Cu levels into routine health screenings 
and exploring Cu-based nutritional interventions as part of personalized 
medical strategies may be beneficial for optimizing the prevention and 
management of infections.

We also found a suggestive negative correlation between 
genetically estimated blood vitamin B6 levels and the risk of 
pneumonia. Although previous research on Vitamin B6 and 
respiratory infections was sparse, its protective role against diseases 
was indirectly supported by extensive studies. In previous 
observational studies, vitamin B6 deficiency has been associated with 

a variety of autoimmune diseases, including rheumatoid arthritis, 
multiple sclerosis (46), and type I diabetes (47). Vitamin B complex 
can treat neuroinflammation after peripheral nerve injury (48), and 
multiple animal studies may explain the mechanism of this 
occurrence. Mice deprived of the Vitamin B6 diet showed decreased 
IL-2 levels and increased IL-4 levels (49). Similarly, decreases in anti-
inflammatory cytokines (TGF-β, interleukin-4, interleukin-10, 
interleukin-11, and interleukin-13) and increases in pro-inflammatory 
cytokines (interleukin-1, interleukin-6, interleukin-8, interleukin-12, 
interleukin-15, and interleukin-17) were also found in grass carp 
deficient in vitamin B6, Activated the NF-κB signaling pathway (50). 
A recent MR Study also found a suggestive association of increased 
vitamin B6 levels with reduced risk of ischemic stroke (51). 
Unfortunately, this finding, like ours, did not pass a strict statistical 
threshold. In this study, we observed a suggestive association between 
vitamin B6 levels and reduced risk of pneumonia, indicating its 
potential application in the prevention and treatment of pneumonia. 
Larger studies are needed to further confirm our conclusions.

In addition, we observed a suggestive association between genetically 
predicted increases in folate levels and a reduced risk of viral pneumonia, 
similar to previous observational studies in which Jacobson found 
significantly reduced serum folate in patients with viral and mycoplasma 
pneumoniae infections (52). Sato et al.’s study also proved that folate 
deficiency may be an independent marker of increased risk of aspiration 
pneumonia in the elderly (53). Recently, Najafipou’s study also proposed 
that hypomethylation of ACE-2 gene caused by folate deficiency is an 
independent risk factor for severe acute respiratory distress syndrome 
(ARDS) (54). However, our MR Did not find an association between 
folate and pneumonia, bacterial pneumonia, asthma-related pneumonia, 
and the severity of pneumonia, and further studies are needed to explore 
the protective effect of folate on the risk of viral pneumonia.

Concerning vitamin C, earlier observational studies have 
suggested that vitamin C may reduce the severity and mortality risk 
in elderly patients with pneumonia (55). However, a recent MR study 
found no link between circulating vitamin C levels and the risk of 
developing pneumonia (56). Although our research indicated a 
nominal positive correlation between circulating vitamin C levels and 
the incidence of severe lower respiratory tract infections and severe 
pneumonia, this finding could be a result of multiple testing and did 
not meet our strict statistical significance threshold.

Interestingly, our research did not establish a causal relationship 
between the genetically predicted levels of circulating nutrients such as 
calcium, beta-carotene, vitamin D, iron, magnesium, phosphorus, 
selenium, and zinc, and the risk of respiratory infections, including 
both upper and lower tract infections and pneumonia. Some systematic 
reviews indicate that the effect of micronutrient supplements on 
infections is minimal. For example, zinc supplementation shows no 
impact on LRTI in infants (57), and there was no evidence supporting 
selenium’s role in infection prevention (58). This points to a lack of 
extensive research in this area. While previous MR studies have found 
a connection between iron and sepsis (59), we  did not find any 
evidence linking these nutrients to the infections we studied. Earlier 
MR studies suggested a link between low vitamin D levels in the blood 
and a higher risk of pneumonia (60), but meta-analyses of vitamin D 
supplementation experiments contradict this idea (61). These studies 
may suggest that these micronutrients might not be causative factors 
in respiratory infections and related outcomes.

There were several strengths in our study. It stands as the inaugural 
MR study that thoroughly examines the association between 12 
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different micronutrients and the risk of respiratory infection 
susceptibility and severity, thus reducing potential confounders 
present in observational studies. Furthermore, Existing large-scale 
GWAS data were predominantly available for European ancestry 
populations, enabling us to access sufficient sample sizes for robust 
analyses, European ancestry populations tend to have higher genetic 
homogeneity, reducing heterogeneity in gene–environment 
interactions. Moreover, we  used data from two separate GWAS 
databases for our three primary outcome analyses (URTI, LRTI, and 
pneumonia), and performed a meta-merger of these results. This 
approach lessens the impact of data source discrepancies and bolsters 
our associative analysis capabilities. Additionally, we  conducted 
extensive sensitivity analyses to confirm the reliability of our findings.

Additionally, our research was subject to certain limitations. First, 
our MR approach used published aggregated data, which may not 
account for possible non-linear relationships. Second, our sample was 
limited to individuals with European ancestry, which restricts wider 
applicability, though it reduces bias from population stratification. Future 
research should aim to replicate our findings in diverse populations to 
ascertain the universality of the associations. Third, Subtle differences in 
the definition of respiratory infection subtypes across different countries 
and regions might affect the generalizability and accuracy of the study 
findings. However, by utilizing outcome data from two distinct databases, 
we have enhanced the consistency of the results and mitigated the impact 
of this heterogeneity to some extent. Fourth, although we found no 
associations between particular micronutrients and respiratory infection 
risk, we cannot completely discount the possibility that the effects of 
calcium, beta-carotene, iron, zinc, magnesium, phosphorus, selenium, 
and vitamin D were too subtle to determine a causal relationship. 
Therefore, future large-scale genome-wide studies were necessary to 
further explore the potential impact of micronutrients on infections. 
Finally, for Cu, our main MR analysis included only two instrumental 
variables, but additional analyses with relaxed thresholds and more 
genetic tools yielded results similar to our main analysis. This consistency 
was further supported by various sensitivity analyses, multivariable MR, 
and reverse MR, validating our key findings.

Conclusion

Our study suggests that genetically predicted levels of Cu may 
be causally linked to a reduced risk of URTI. This finding offers new 
evidence for the prevention and treatment of respiratory infections.
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