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A better understanding of the factors contributing to systemic concentrations of 
carotenoids is necessary given the weak correlations between circulating levels 
and dietary intake of carotenoids. Although genetic variation may play a key role 
in the interindividual variability in carotenoid concentrations, few genome-wide 
association studies (GWAS) have focused on carotenoids. We used a random 
sample (n  =  519) of postmenopausal participants in the Sister Study with data 
on genotypes and plasma carotenoid levels to conduct GWAS for each of five 
carotenoids (mcg/mL): alpha-carotene, beta- carotene, cryptoxanthin, lycopene, 
and lutein/zeaxanthin. We used linear regression models and an additive genetic 
model to evaluate associations between 371,532 variants and inverse normal 
transformed carotenoid concentrations. We found evidence for one genome-wide 
statistically significant association with the combined carotenoids of lutein and 
zeaxanthin for rs6564851-C (beta  =  −0.377, se  =  0.059, p  =  4.6×10−10) and rs6420424-A 
(beta  =  −0.334, se  =  0.059, p  =  2.2×10−8), upstream of beta-carotene oxygenase 1 
(BCO1) gene on chromosome 16. No other variant was associated with any of the 
remaining four carotenoids. Our results for the common rs6564851 and rs6420424 
variants correspond to previous findings. Although biologic mechanisms explain 
the association between beta-carotene and the variants, the inverse association 
with lutein/zeaxanthin will require further investigation.
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1 Introduction

Carotenoids are a group of lipophilic pigmented compounds produced by plants and 
microorganisms but not by humans (1). Dietary intake of fruits and vegetables is the primary 
source of carotenoids, including α-carotene, β-carotene, β-cryptoxanthin, lutein/zeaxanthin, 
and lycopene (2). Consumption of carotenoids and circulating carotenoids are associated with 
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decreased risk of several outcomes including obesity (3, 4), 
cardiometabolic disease (5, 6), some cancers (7–10), eye diseases (11, 
12), and mortality (13, 14).

Dietary intake of carotenoids is poorly correlated with plasma 
levels because of measurement errors in carotenoid consumption from 
self-administered dietary questionnaires and variations in 
bioavailability of carotenoids from different foods. Biomarker 
measurements of circulating carotenoids may be more reflective of 
underlying carotenoid exposure, although they too are subject to 
measurement error (15). Furthermore, concentrations of circulating 
carotenoids by individual differences in absorption and metabolism 
of carotenoids, may be influenced by the degree of food processing in 
the source of the carotenoids and genetic factors (16).

Genetic variation is suggested to play a key role in the 
interindividual variability in carotenoid concentrations (17, 18). In 
addition, the effect of genetic variants on plasma concentrations of 
carotenoids may affect the ability of carotenoids to prevent chronic 
diseases (19). Several single nucleotide polymorphisms (SNPs) are 
known to be associated with circulating carotenoid status, but the 
evidence has been limited to mostly candidate gene association studies 
(17). A few genome-wide association studies (GWAS) showed that the 
β-carotene 15,15′-monooxygenase 1 (BCMO1) gene affects circulating 
carotenoid levels (20) and observed significant associations with 
α-carotene concentrations for three novel loci (21).

Thus, we aimed to identify genome-wide associations with plasma 
carotenoids using a subcohort sample (n = 513) from a previous case-
cohort study of carotenoids and postmenopausal breast cancer from 
the Sister Study (22).

2 Methods

2.1 Sample

Data were obtained from the Sister Study, a prospective cohort of 
50,884 women who had a sister with breast cancer, but had not been 
diagnosed with breast cancer themselves prior to baseline (23). 
Participants aged 35–74 years in the United States, including Puerto 
Rico, were enrolled between 2003 and 2009. At enrollment, 
anthropometric measurements and biological samples, including 
blood samples, were taken by trained examiners in a home exam. The 
Sister Study is overseen by the National Institutes of Health 
Institutional Review Board. All participants provided written 
informed consent.

We previously assessed carotenoid levels in plasma taken from a 
random sample of 524 Sister Study participants who were 
postmenopausal at enrollment (22). The random sample included 43 
women who developed breast cancer after enrollment. Carotenoids 
measured included alpha-carotene, beta-carotene, cryptoxanthin, 
lycopene, and lutein/zeaxanthin, all measured in mcg/
mL. We  combined lutein and zeaxanthin because zeaxanthin is a 
structural isomer of lutein, and they have similar health effects (24). 
We also examined a second internal validation sample of estrogen 
receptor (ER)-negative and ER-positive breast cancer cases (n = 400) 
that were also sampled for the original carotenoid and oxidative stress 
analysis and had genotype data. The data was from release 9.1, with 
follow-up through 9/30/2019. Measurement of these fasting plasma 
carotenoids has been described (22). In brief, these five carotenoids 

were analyzed across 64 batches with control samples using high-
performance liquid chromatography (HPLC) and calibration relying 
on standards within physiological ranges and corrected for HPLC 
purity. Carotenoid concentrations were adjusted for batch effects by 
subtracting batch-specific random effects from the measured level.

Genotyping of blood samples collected at enrollment was 
conducted using the Infinium OncoArray genotyping panel (Illumina 
Inc.) (25). The OncoArray panel has more than 530,000 single 
nucleotide polymorphisms (SNPs), including ancestry informative 
markers. Around half of the SNPs had been included in that panel to 
create a GWAS backbone, and the other half had been included as 
markers for specific sites known or hypothesized to be cancer-related.

Given the random sample with a combination of a fully 
characterized set of carotenoids and genotype data from a large 
commonly used panel, we conducted a GWAS to assess associations 
between carotenoids and SNPs. This exploratory study with a relatively 
smaller sample size may inform and confirm existing associations 
between carotenoid levels with SNPs having a larger minor allele 
frequency (MAF)—SNPs with a smaller MAF are not as likely to 
demonstrate a signal given the sample size.

2.2 Statistical methods

Descriptive statistics for each sample included the median and 
interquartile ranges (IQR) for continuous variables and percentages 
with corresponding counts for categorical variables.

We used PLINK (v1.9) (26, 27) to conduct quality control for the 
discovery sample with 523 participants with at least one carotenoid 
measure and genotype data for at least 494,444 SNPs. Quality control 
included the following steps: (a) deleting SNPs with more than 2% 
missing (n = 993), (b) removing individuals missing more than 2% of 
genotype data (n = 4), (c) removing non-autosomal SNPs (n = 26,232), 
(d) removing SNPs with minor allele frequency < 0.02 (n = 95,687). 
We did not remove any people from the sample based on relatedness 
and there was one family in the sample with two sisters participating 
in the study. After the quality control process, 519 individuals and 
371,532 autosomal SNPs remained in the discovery sample. Given that 
the participants in our sample had a first-degree family history of 
breast cancer, we  calculated, but did not exclude, SNPs based on 
Hardy Weinberg equilibrium (HWE) p-values.

In the internal validation sample based on 402 remaining cases 
with at least one non-missing carotenoid value and genotype data for 
494,444 SNPs, the quality control process was as follows: (a) deleting 
SNPs with missingness >0.02 (n = 809), (b) removing individuals 
missing more than 2% of genotype data (n = 4), (c) removing 
non-autosomal SNPs (n = 26,251), (d) removing SNPs with minor 
allele frequency < 0.02 (n = 95,008). Of the remaining 372,376 SNPs in 
the validation sample, there were 366,482 SNPs also present in the 
discovery sample, which we used for analyses. After the quality control 
process, 398 individuals and 366,482 SNPs remained in the 
validation sample.

To account for population stratification, we calculated principal 
component values using PLINK and based on 2,290 ancestry 
informative markers (25). The top five components were adjusted for 
in each multivariable model.

Linear regression models in PLINK were used to test genetic 
associations with each of the continuous carotenoid levels. After 
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evaluating QQ-plots and a range of transformations, we used the 
inverse normal transform (28) for all the carotenoids, given the 
extreme values present in the distribution of these outcomes. This 
transformation involves finding the sample quantile and back-
transforming to a standard normal score. In the linear regression 
model, we assumed an additive effect of allele count at each SNP. In 
addition to the first five ancestry principal components, we included 
age at blood draw and examiner-measured body mass index (BMI) 
at enrollment as covariates in the linear regression models. To 
account for false discoveries in the numerous association tests, 
we used a genome-wide Bonferroni testing threshold of p < 5 × 10−8 
for an alpha level of 0.05. Data visualization of the association tests 
included Manhattan plots and quantile-quantile (QQ) plots. With 
the QQ-plots, we also estimated the lambda statistic, the genomic 
inflation factor, to assess bias. Following association tests, we used 
LocusZoom (29) to provide regional information for SNPs below 
our p-value threshold.

3 Results

The primary and validation samples had similar medians and IQR 
for each of the carotenoids (Table 1). The median BMI of participants 
in the primary sample was 27 kg/m2, and the median age at enrollment 
was around 60 years. The carotenoid levels in our analytic sample were 
all positively correlated with one another (Supplementary Figure 1), 
with the strongest correlation being 0.69 for beta-carotene and alpha-
carotene and the weakest correlation being 0.25 for alpha-carotene 
and lycopene.

After conducting the genome-wide age and BMI adjusted 
association tests for the five carotenoids, we observed two SNPs with 
genome-wide statistically significant associations with the combined 
category of lutein and zeaxanthin: rs6564851 and rs6420424 on 
chromosome 16 (Figure 1). For each additional copy of the C allele 
(allele frequency = 0.52) for rs6564851, there was a 0.381 (SE = 0.059, 

p-value = 1.9×10−10) standard deviation decrease in the inverse normal 
transformed combined lutein and zeaxanthin concentration (Table 2). 
The median batch-adjusted values of the lutein and zeaxanthin 
concentrations by genotype confirm this association 
(Supplementary Figure 2; Supplementary Table 1).

For each additional copy of the A allele (allele frequency = 0.50) of 
the rs6420424 SNP there was a 0.334 (SE = 0.059, p-value = 2.2×10−8) 
standard deviation decrease in the inverse normal transformed 
combined lutein and zeaxanthin concentration (Table  2). 
We confirmed this association in the estimates of median lutein and 
zeaxanthin concentrations by genotype (Supplementary Table  2). 
We found evidence that rs6420424 is in LD (r2 = 0.66, D = 0.84) with 
the top SNP, rs6564851.

A post-hoc analysis of the separate lutein and zeaxanthin outcomes 
for rs6564851 suggested both carotenoids contribute to this 
association. The additive association for the C allele was −0.372 
(SE = 0.059, p-value = 4.7×10−10) for lutein and − 0.339 (SE = 0.061, 
p-value = 3.6×10−8) for zeaxanthin (Table 2). Given that the medians 
were similar for the AA and AC genotypes, we  also conducted a 
post-hoc analysis using a recessive model for the rs6564851 SNP 
(Supplementary Table 3).

Inspection of the QQ plot (Figure 2) for the transformed data 
shows little evidence of inflation in the association statistic (genomic 
inflation factor, lambda = 0.983). Inspection of the rs6564851 and 
rs6420424 variants in a regional association plot shows these 
intergenic variants are upstream of the beta-carotene oxygenase 1 
(BCO1) gene (Supplementary Figure 3).

We did not find evidence of any genome-wide statistically 
significant associations for the other four carotenoids 
(Supplementary Figures  4–15). The association in the validation 
sample was also negative for the C allele of rs6564851 with a decrease 
in lutein and zeaxanthin (beta = −0.184, SE = 0.065, p-value = 0.005; 
Supplementary Table 4). Similarly, for the A allele of rs6420424 there 
was a decrease in lutein and zeaxanthin (beta = −0.139, SE = 0.068, 
p-value = 0.041).

TABLE 1 Descriptive statistics by sample.

Characteristic Primary, N =  519 Replication, N =  398

Total carotenoids, Median (IQR) 1.30 (0.96–1.77) 1.31 (0.99–1.80)

Alpha carotene, Median (IQR) 0.08 (0.05–0.12) 0.08 (0.05–0.13)

Beta Carotene, Median (IQR) 0.36 (0.23–0.57) 0.37 (0.22–0.58)

Lycopene, Median (IQR) 0.42 (0.32–0.58) 0.42 (0.32–0.56)

Cryptoxanthine, Median (IQR) 0.11 (0.07–0.17) 0.11 (0.07–0.18)

Lutein and Zeaxanthin, Median (IQR) 0.27 (0.19–0.38) 0.27 (0.20–0.36)

Lutein, Median (IQR) 0.20 (0.14–0.29) 0.21 (0.14–0.28)

Zeaxanthin, Median (IQR) 0.07 (0.05–0.09) 0.07 (0.05–0.09)

BMI, kg/m2, Median (IQR) 27 (23–31) 28 (24–32)

Age (years), Median (IQR) 60 (56–65) 61 (56–66)

Race/ethnicity, n (%)

Non-Hispanic white 457 (88) 343 (86)

Non-Hispanic Black 33 (6.4) 26 (6.5)

Hispanic 12 (2.3) 16 (4.0)

Other 17 (3.3) 13 (3.3)
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4 Discussion

We conducted GWAS for five carotenoids in a sample of over 
500 U.S. women to discover variants associated with alpha-
carotene, beta-carotene, cryptoxanthin, lycopene, and combined 
lutein and zeaxanthin. There was a genome-wide statistically 
significant association between two variants, rs6564851 (negative 
for the C allele) and rs6420424 (negative for A allele), and the 
combined lutein and zeaxanthin levels. We qualitatively replicated 
this association in a distinct sample of cases from the same data 
source. In separating out the two carotenoids, we found similar 

associations showing that both lutein and zeaxanthin contributed 
to the significant negative associations with the combined levels.

The rs6564851 and rs6420424 variants have been discussed in 
the literature in relation to beta-carotene serum levels (20, 30–32) 
in non-US samples, but not specifically as relative to lutein and 
zeaxanthin levels. In a GWAS (20) that assessed the same 
carotenoids, the investigators found inverse, additive associations 
(95% CI) between the G allele of rs6564851 (for this comparison, 
C and G alleles considered the same variant), the SNP most 
strongly associated with beta carotene, and lutein [−0.032 
(−0.040, −0.024)] and zeaxanthin [−0.008 (−0.012, 0.004)], with 

FIGURE 1

Manhattan plot for lutein and zeaxanthin carotenoid.

TABLE 2 Association tests for rs6564851 and rs6420424, chromosome 16.

SNP/Carotenoid Position Index/reference 
allele

Beta SE p-value

rs6420424

Lutein and Zeaxanthin 81242102 A/G −0.334 0.059 2.24281e-08

Lutein 81242102 A/G −0.327 0.059 4.55187e-08

Zeaxanthin 81242102 A/G −0.289 0.061 2.60106e-06

Beta carotene 81242102 A/G 0.131 0.059 0.0265754

rs6564851

Lutein and Zeaxanthin 81264597 C/A −0.381 0.059 1.86233e-10

Lutein 81264597 C/A −0.372 0.059 4.73324e-10

Zeaxanthin 81264597 C/A −0.339 0.061 3.60168e-08

Beta carotene 81264597 C/A 0.148 0.059 0.0123591
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the lutein association attaining genome-wide statistical 
significance. In this same study, a haplotype-based analysis 
including rs6564851 and rs6420424 demonstrated similar effect 
sizes similar to rs6464851 alone. Also, in this study, the G allele 
from rs6564851 was positively associated with beta-carotene 
[0.149 (95% CI: 0.120, 0.177)]. Our results replicate this 
association found between this SNP and lutein. Although not 
significant at a genome-wide level, we  found an additive 
association (95% CI) with the C allele for the inverse normal 
transformed beta-carotene level (0.148, SE = 0.059, p = 0.01). As 
previously discussed (20), the direction of association is not the 
same for each of these carotenoids, and the mechanism underlying 
this difference remains unexplained.

The rs6564851 and rs6420424 variants are upstream from the 
BCO1 gene, which codes a key enzyme in beta-carotene 
metabolism to vitamin A. As noted in a prior study (20), both 

variants are also within a 23 kb region including the Polycystic 
kidney disease 1-like 2 (PKD1L2) gene, but the BCO1 gene 
represents a better candidate for further exploration. Functional 
investigation of these variants reveals they are in a promoter 
region (33) of BCO1 associated with the regulation of vitamin A 
production. The rs6564851 and rs6420424 variants were 
associated with catalytic activity of BCO1 (30), also associated 
with beta-carotene concentrations. A prior finding that female 
carriers of the T allele of rs6564851 and G allele of rs6420424 
demonstrated a reduction in beta-carotene conversion (32) that is 
consistent with our results despite its different population of 
young female volunteers with a mean age of 20 years and a smaller 
sample size (n = 28). Our findings show an association between 
this variant and beta-carotene that corresponds to the direction of 
effect outlined in the prior study, but it was not statistically 
significant at a genome-wide level (Table 2).

FIGURE 2

QQ plot for lutein and zeaxanthin carotenoid.

https://doi.org/10.3389/fnut.2024.1372393
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Von Holle et al. 10.3389/fnut.2024.1372393

Frontiers in Nutrition 06 frontiersin.org

There is no biologically plausible function related to lutein and 
zeaxanthin based on prior research with this variant and the proximal 
BCO1 gene. Potential explanations for the association between this 
region and lutein and zeaxanthin levels include the role of beta-
carotene levels that are associated with this region and influencing 
the lutein and zeaxanthin levels on a separate unstudied physiological 
path (20). This interpretation suggests beta carotene influences lutein 
and zeaxanthin through its relationship with the rs6564851 and 
rs6420424 variants instead of a direct association between the variant 
and lutein and zeaxanthin. However, if higher beta-carotene levels 
suppress lutein and zeaxanthin levels, the positive correlation 
between these observed carotenoids in our analytic sample 
(Supplementary Figure 1) does not correspond to a hypothesis of 
higher beta-carotene levels suppressing lutein and zeaxanthin levels. 
Pleiotropy, the separate associations between a SNP and multiple 
phenotypes, could also explain these different associations with beta-
carotene and lutein and zeaxanthin.

Among the advantages of this work, the number of carotenoids 
allowed us to assess a broad array of carotenoids in this 
GWAS. With these outcomes, we confirmed an association not 
extensively assessed in the literature between lutein 
and zeaxanthin.

Several limitations exist for this study. One limitation was the 
selection of only postmenopausal women due to the scientific 
rationale of the parent study from which our sample was drawn, 
representing a random selection from a case-cohort study to 
investigate associations between carotenoids and inflammation 
(22). Another limitation of these analyses was the small sample 
size, which restricts our power to detect smaller effect sizes as 
statistically significant. Also, the validation sample that included 
cases from the same study was not an independent sample and is 
a limitation of this work. However, the results from the convenient 
validation sample matched our findings from the discovery 
sample in terms of the direction of the association. Replication of 
these results and further study of functional effects can further 
our understanding of these differing associations between these 
two carotenoids and the rs6564851 and rs6420424 variants.

Findings from this study may have implications for carotenoid 
research, particularly in areas such as Mendelian randomization 
(MR) and nutritional supplementation. We identified one SNP 
associated with lutein and zeaxanthin, rs6564851, which has been 
included in MR studies investigating associations between beta 
carotene and outcomes such as cardiovascular disease (34) and 
inflammatory bowel disease (35). Future MR studies may also 
include rs6564851 as an instrumental variable for lutein and 
zeaxanthin levels. Identifying these carotenoids, in addition to 
beta-carotene, and their association with this SNP could provide 
information on causal pathways for these health outcomes. 
Furthermore, another study found higher plasma beta-carotene 
levels associated with the G allele of the rs654851 SNP in Ghana 
(30) and suggested that it may be relevant to food fortification 
efforts in populations at risk for malnutrition. Given the 
association with lutein and zeaxanthin in our results, studies 
investigating supplementation with lutein and zeaxanthin may 
also need to consider this variant and its potential for reduced 
efficacy in certain groups of people.

In summary, we  have found an association between two 
common SNPs, rs6564851 and rs6420424, and combined serum 

lutein and zeaxanthin levels, which is consistent with a prior study 
(20). Although we  did not replicate a previous discovery of an 
inverse association with this variant and beta-carotene levels at a 
genome-wide significance level, we  found a similar inverse 
direction of association relative to the association with lutein and 
zeaxanthin. Biologic mechanisms explaining the association 
between the rs6564851 and rs6420424 variants and lutein and 
zeaxanthin levels remain unclear and further investigation is 
needed to understand this relationship. These common variants 
may be important when assessing circulating serum levels of lutein 
and zeaxanthin.
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