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Proteins and polyphenols are abundant in the daily diet of humans and 
their interactions influence, among other things, the texture, flavor, and 
bioaccessibility of food. There are two types of interactions between them: 
non-covalent interactions and covalent interactions, the latter being irreversible 
and more powerful. In this review, we  systematically summarized advances 
in the investigation of possible mechanism underlying covalent polyphenols-
proteins interaction in food processing, effect of different processing methods 
on covalent interaction, methods for characterizing covalent complexes, and 
impacts of covalent interactions on protein structure, function and nutritional 
value, as well as potential bioavailability of polyphenols. In terms of health 
promotion of the prepared covalent complexes, health effects such as 
antioxidant, hypoglycemic, regulation of intestinal microbiota and regulation 
of allergic reactions have been summarized. Also, the possible applications in 
food industry, especially as foaming agents, emulsifiers and nanomaterials have 
also been discussed. In order to offer directions for novel research on their 
interactions in food systems, nutritional value, and health properties in vivo, 
we considered the present challenges and future perspectives of the topic.

KEYWORDS

food functional ingredients, covalent interaction, protein, polyphenols, functional 
foods

1 Introduction

In human diet, polyphenols are considered as antioxidants that are mostly abundant and 
widely distributed active components of plants with high biological activity (1, 2). In this regard, 
they are known as the “seventh nutrient.” More than 8,000 polyphenolic compounds have been 
identified, with high levels existing in wine, tea, nuts, berries, cocoa and various plant foods (3, 
4). Polyphenols have shown lots of valuable effects and uses in the food industry. First of all, 
important natural pigments in food industry have been identified to be polyphenols, namely 
blueberries, cherries, strawberries, anthocyanins, etc. (5, 6). Polyphenols are a general term for 
plant components that have several phenolic hydroxyl (OH) groups in their molecular structure. 
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Polyphenol compounds contain at least one aromatic ring with OH 
group, which can be  divided into phenolic acid, flavone, flavanol, 
lignans, etc., in terms of their carbon skeleton structure (7). As shown 
in Figure 1A, the chemical structures of polyphenolic compounds have 
three main carbon atom skeletons of C6-C3-C6 (flavonoids), C6-C3 
(hydroxycinnamic acid derivatives) and C6-C1 (hydroxybenzoic acid 
derivatives). Inter alia, the most diverse and broadly distributed 
polyphenols are flavonoid, wherein they include flavonol, flavone, 
isoflavone, flavanone, anthocyanin and flavanol. With regards to health 
benefits, polyphenols have demonstrated strong anti-inflammatory, 
antibacterial and antioxidant properties, and in addition, have been 
found to possess anti-cancer and anti-cardiovascular disease effects 

(8–10). Therefore, there is considerable interest in polyphenols as 
bioactive components in functional foods.

Protein is a biological macromolecule with a certain spatial 
structure, wherein it is considered as a substance formed by coiled 
folding of polypeptide chains. Protein is one of the six nutrients 
required by the human body and is mainly found in livestock and 
poultry meat, milk, eggs, cereals, legumes and other foods (11, 12). 
Coexistence of dietary proteins-polyphenols is very common, namely 
soy milk (soy protein-flavonoids), fruit milk (dairy protein-fruit 
polyphenols), milk tea (dairy protein-tea polyphenols), and plant 
protein drinks (plant protein-plant polyphenols). The interaction 
between polyphenols and proteins influences the structure, taste and 

FIGURE 1

Chemical structures. (A) Basic structure of dietary polyphenols. (B) Structure of common protein amino acid residues.
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function of the food (13–15). Polyphenols form covalent bonds with 
proteins, mostly with free amino (lysine), sulfhydryl (SH, cysteine), 
and carbonyl groups as well as other amino acid residues (like 
tryptophan, proline, methionine, histidine and tyrosine, etc.) in the 
amino acid side chain of proteins (Figure 1B displays the structures of 
common amino acid residues).

Proteins and polyphenols in food are highly susceptible to 
interaction during food storage, transportation and processing, which 
adversely affect their structure, function, and nutritional value (16–18). 
Mechanistically, complexes of polyphenols and proteins are formed 
through interactions that are covalent and noncovalent. 
Comparatively, covalent bonding is irreversible and stronger than 
noncovalent bonds, wherein both bonds have a strong influence on 
the structure and function of proteins and polyphenols. Hence, the 
complexes formed by covalent bonds are more suitable for food 
applications. In addition, covalent effects tend to be more effective 
than non-covalent effects in enhancing the antioxidant activity of 
polyphenols (19).

During processing, transportation and storage of food, protein-
polyphenol interactions should be  better understood in order to 
control the changes in functionality and quality of protein-polyphenol 
complexes. Hence, the present review presents a systematic overview 
of the formation mechanism of protein and polyphenol covalent 
complexes in food and their influencing factors, characterization 
methods and the functional properties and potential applications, 
provide a theoretical framework for the high-value utilization of 
proteins and polyphenols in foods, as well as for product development 
and application within the food industry.

2 Covalent polyphenols-proteins 
interactions during food processing

Covalent polyphenol-protein interaction is a specific type of 
binding that occurs under specific conditions. The initiation of 
covalent bonds between polyphenols and proteins is mainly due to the 
formation of quinone or semi-quinone radicals (20, 21). During 
manufacturing of food products, various processing methods are 
usually used to treat the food products, for instance heat treatment, 
enzymatic treatment, ultrasound, etc. The processing methods can 
have a covalent effect on the components of polyphenol-protein in the 
food system, while their structure, sensory quality and functional 
properties can be  affected. Currently, researchers have partially 
investigated the effect of processing methods on the covalent 
interaction between polyphenols and proteins in foods.

2.1 Heat treatments

During the production process, food products are subjected to 
different heat treatment processes to improve functional properties, 
nutritional and organoleptic characteristics. Most importantly, 
thermal treatment is a crucial process utilized in the food industry for 
sterilization. Heat treatment normally reduces pathogenic bacteria in 
food and facilitates long-term storage. Common heat treatments 
include pasteurization, boiling, baking, autoclaving, and ultra-high 
temperature (UHT) instantaneous sterilization. Among the common 
processing methods, heat treatment has been found to induce 

polyphenols to autoxidize to form quinone or semiquinone structures, 
which structurally unfolds proteins, thereby exposing more amino 
acid residues and thus potentially forming irreversible covalent bonds 
between the two (Figures 2A,D). Kaur et al. (22) found that milk 
proteins formed higher amounts of covalent binding with phenolic 
acids in oats after UHT treatment compared to alkali treatment. Chen 
et al. preheated soybean isolate and found that it exhibited a stronger 
binding ability to anthocyanin after treatment at 121°C, wherein it 
could effectively improve the thermal and oxidative stability of 
anthocyanin (23). Also, wheat alcohol-soluble protein-
proanthocyanidin (PA) interactions could help to systematically 
control foaming and gelling, create new textures, and reduce 
inflammatory responses. Whereas both are more potent at high 
temperatures, wheat alcohol-soluble protein-procyanidin interactions 
can modify protein structure or available binding sites to reduce 
inflammatory responses to proteins such as allergic or celiac 
reactions (24).

2.2 Enzymatic processing

The oxidation of phenolic compounds in the presence of oxygen 
is enzymatically catalyzed to form quinone structures. It is well known 
that enzymatic oxidation requires the simultaneous fulfillment of 
three conditions, that is oxygen, phenolic compounds and polyphenol 
oxidase (PPO) (Figure 2B). Due to their electrophilic nature, quinones 
have the ability to undergo reactions with the free amino groups of 
proteins, specifically lysine, cysteine, and tryptophan, resulting in the 
formation of covalent bonds (25–27). Besides, polyphenols can 
be  covalently bound to amino acids containing SH groups upon 
oxidation. Li et  al. prepared covalently coupled compounds of 
lactoferrin with epigallocatechin gallate (EGCG) using enzymatic and 
non-enzymatic methods. Enzymatic cross-linking promoted the 
covalent attachment of EGCG to lactoferrin more effectively and 
reduced the allergenicity of the protein (28). In addition, in food 
processing, proteins are often enzymatically modified to enhance their 
functional properties. However, the functional properties of proteins 
are altered due to the production of small peptides of low molecular 
weight, loss or alteration of natural structure, and enhancement of 
peptide interactions with the peptide itself or with other substances in 
the matrix during enzymatic digestion. Usually, the products obtained 
from proteolysis are highly digestible, hypoallergenic and have 
antioxidant activity (29, 30). Using different soy protein hydrolysates 
that have been covalently bound to EGCG, it was found that different 
amino acid compositions and molecular weights affected the soy 
protein hydrolysate-EGCG interactions and emulsification properties. 
Meanwhile, peptide from EGCG and soy protein hydrolysates 
demonstrated a synergistic effect on the emulsification and antioxidant 
capacity of covalently coupled compounds (31).

2.3 Ultrasonication

As a non-thermal treatment technique, ultrasound is widely used 
in the food industry because of its maneuverability, time-saving and 
low sensitivity. The chemical and physical properties of materials are 
improved by the cavitation, micro-fluidization and mechanical effects 
that are produced by ultrasonication (32). Firstly, the solubility of 
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insoluble proteins can be increased. In addition, the cavitation effect 
breaks up the droplets and generates lots of OH radicals in solution, 
while simultaneously, there is mechanical unfolding of protein 
structure coupled with reaction of exposed SH and amino groups with 
OH radicals to produce activated protein derivatives, amid covalent 
interaction with polyphenolic compounds (Figures  2C,D). It was 
shown that ovalbumin-EGCG (OVA-EGCG) conjugates produced via 
ultrasound-assisted free radical treatment could be used as potential 
emulsifiers and antioxidants, thus expanding the application of OVA 
as a dual functional component (33). This phenomenon could 
potentially be attributed to the increased molecular flexibility of OVA 
resulting from the treatment, which in turn, might contribute to the 
improved emulsification properties. Therefore, more in-depth studies 
on the effect of processing methods on polyphenol-protein 
interactions in food components are needed. Chen et al. found that 
ultrasound treatment helped to accelerate the covalent reaction 
between myofibrillar proteins and polyphenols, which promoted the 
unfolding of myofibrillar protein structures, thus resulting in products 
with better antioxidant activity and digestive properties (34).

2.4 pH

Proteins are susceptible to denaturation during food processing, 
particularly in response to fluctuations in pH levels. This can result in 

alterations to the protein structure, while polyphenols may generate 
free radicals or quinones in alkaline environments, leading to their 
covalent binding with proteins (35, 36). Liu et  al. (37) observed 
variations in the binding affinity of EGCG for β-LG under different 
pH conditions, with the binding affinities ranking in descending order 
as pH 7.0 > pH 5.3 > pH 2.5. This discrepancy can be attributed to the 
structural changes of β-LG, in which the fact that β-LG exists as a 
dimer at pH 7.0, a tetramer at pH 5.3, and a monomer at pH 2.5. 
Furthermore, the binding capacity is significantly influenced by the 
type of polyphenol and the pH conditions. For example, bovine serum 
proteins bind more to tannins at pH 4.9 than at pH 7.8 (20), while 
gallic acid is lowest with bovine serum proteins at pH 3.5 (38). 
Therefore, alterations in pH levels play a crucial role in modulating the 
interaction between proteins and polyphenols, highlighting the 
importance of considering pH in the context of the food industry.

Notably, polyphenol-protein covalent interaction reactions are 
intricate and have the potential to result in the generation of 
undesirable products. The safety of the product must also undergo 
evaluation. For example, in a study of sugarcane leaf polyphenol-
zearalolysin prepared by a covalent method and evaluated for safety, 
it was found that the hemolysis rate was less than 5% and the cell 
viability (LX-2) was greater than 80%, indicating a favorable safety 
profile (39). Hence, it is imperative for researchers to carefully select 
the binding mode of polyphenol-protein complexes based on their 
research objectives and practical application to prevent the generation 

FIGURE 2

Covalent interactions between polyphenols and proteins. (A) Formation of quinone compounds during heat treatment. (B) Enzymatic mechanism for 
formation of o-quinones. (C) Schematic representation of protein ultrasound-exposed active groups. (D) Reaction of o-quinones with thiol and amine 
groups by nucleophilic 1,4-Michael addition.
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of undesirable products. In addition, the assessment of potential risks 
associated with any newly formed covalent should be  conducted 
before widespread use in the food industry.

3 Characterization of 
polyphenol-protein covalent 
complexes

Different analytical methods are required for characterization of 
covalent complexes properties like conformation, composition, 
relative molecular mass, bond type and structure (Table 1) (20, 56). 
These analytical methods mainly include circular dichroism (CD), 
differential scanning calorimetry (DSC), electrophoresis, fluorescence 
spectroscopy, Fourier transform infrared spectroscopy (FT-IR), 
reverse phase high performance liquid chromatography, light 
scattering, mass spectrometry (MS), nuclear magnetic resonance 
(NMR), UV–Vis absorption spectroscopy, volume exclusion 
chromatography and small-angle X-ray scattering (20, 57, 58). The 
nature of polyphenols that form complexes with proteins via these 
analytical methods can be better understood.

3.1 Electrophoresis

In an applied electric field, electrophoresis can be used to separate 
proteins by differences in charged molecules based on their 
conformation, molecular weight, isoelectric point and spatial structure 
(59). SDS-PAGE is a technique used for the separation of proteins 

according to their molecular weight and charge. SDS-PAGE 
electrophoresis along with both β-mercapto-ethanol and SDS can 
break non-covalent bonds between proteins and other substances, but 
not the covalent bonds. Therefore, SDS-PAGE can distinguish between 
covalent and non-covalent complexes of protein (60). Liu et  al. 
characterized the covalent complexation between whey proteins and 
polyphenols by the SDS-PAGE technique, while the degree of 
conjugation of different polyphenols with whey proteins varied (40). 
Also, SDS-PAGE was used to evaluate the covalent complexation 
process of ovotransferrin and catechin induced by using free radical 
and treatment methods (61). Besides, Tao et al. showed that beta-
lactoglobulin (β-LG) dimerization occurred after EGCG covalent 
modification by SDS-PAGE analysis (36).

Capillary electrophoresis (CE) is a chemical analytical technique 
that involves the separation and detection of sample components 
through the use of a capillary tube as a separation channel, in 
conjunction with an electrolytic bath to facilitate the process. The 
primary disadvantage of CE is that sample adsorption results in 
diminished separation efficiency and sensitivity. Polyphenol-protein 
complexes can also be distinguished from free proteins through the 
utilization of CE. In addition, covalent complexes found in polyphenol-
rich beverages, foods and beverages are mostly characterized through 
CE coupled with chromatography (41).

3.2 MS technique

The MS has a powerful analytical capability to provide 
stoichiometric and structural information on the covalent complexes 

TABLE 1 Characterization of polyphenol-protein covalent complexes.

Method of analysis Characteristics References

Electrophoresis CE Differentiate free proteins from protein-

polyphenol covalent complexes

(40, 41)

SDS-PAGE

Mass spectrometry MALDI-MS Molecular weight and structure (42–44)

ESI-MS

Spectroscopy FT-IR Changes in protein structure (45–47)

CD

Fluorescence spectroscopy

Chromatography SEC Molecular mass (48, 49)

RP-HPLC

Light scattering SLS Physicochemical properties (50, 51)

DLS

ELS

Microscope AFM Morphology (52, 53)

TEM

SEM

Others NMR Thermal stability, etc. (19, 54, 55)

DSC

TGA

CE, Capillary electrophoresis; SDS-PAGE, Sodium dodecyl sulfate polyacrylamide gel electrophoresis; MALDI-MS Matrix-Assisted Laser Desorption/Ionization Time of Flight Mass 
Spectrometry; ESI-MS, Electrospray Ionization Mass Spectrometry; FT-IR, Fourier Transform infrared spectroscopy; CD, Circular Dichroism; SEC, Size exclusion chromatography; SLS, Static 
Light Scattering; DLS, Dynamic Light Scattering; ELS, Electrophoretic light scattering; TEM, Transmission Electron Microscope; AFM, Atomic Force Microscope; NMR, Nuclear Magnetic 
Resonance; DSC, Differential scanning calorimetry; SEM, Scanning Electron Microscope; TGA, Thermogravimetry Analysis.
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of polyphenols with proteins based on changes in the molecular mass-
to-charge ratio. It has been shown that MALDI-MS and ESI-MS are 
valuable tools for the structural characterization of protein covalent 
complexes. MALDI-MS method is a soft ionization technique that 
provides quantitative information insights into the average molecular 
weight and distribution of biopolymers (62). The integration of 
ESI-MS with solution-based establishment separation techniques, 
such as HPLC methods, enhances its utility as a robust tool for 
characterizing the structural and compositional properties of 
biopolymers (62). MALDI-TOF-MS method is a new type of soft 
ionization biomass spectrometry. The MALDI-TOF-MS method 
operates on the principle of first mixing the sample with a matrix to 
create a crystalline film, followed by irradiation with a laser. The 
matrix absorbs the laser energy and subsequently transfers it to the 
sample molecules, resulting in ionization through the acquisition or 
loss of protons during the ionization process, ultimately leading to the 
ionization of the molecule. The charged molecules undergo 
acceleration within the flight tube due to the presence of an electric 
field, with the ions being identified based on the varying time taken 
to reach the detector relative to their mass-to-charge ratio (M/Z), 
which is directly correlated to the flight time (63).

Qie et al. analyzed chlorogenic acid and β-LG covalent complexes 
using MALDI-TOF-MS, wherein high temperature could promote the 
formation of polyphenol-protein covalent complexes (43). Additional, 
microLC-timsTOF-Pro-MS/MS in combination with bioinformatics 
was employed to identify C160 as (−)-epicatechin o-quinone and the 
main covalent binding site of β-LG after protein-polyphenol reaction 
was analyzed in solution formed from incubation of β-LG with 
(−)-epicatechin at 37 and 60°C (42). The above covalent process offers 
great potential for a comprehensive food analysis strategy. The 
electrospray ionization-MS (ESI-MS) can be used to further confirm 
covalent bonding and assess molecular weight changes of the 
conjugates. Based on ESI-MS results, the researchers observed 
α-lactalbumin (ALA)-catechin covalent modifications and at least one 
catechin molecule bound to ALA (44). Prigent et al. found that the 
molecular weight of α-ALA and lysozyme increased from 680 to 
690 Da with the addition of chlorogenic acid, thereby suggesting that 
the proteins were covalently bound to quinones (64).

3.3 Spectroscopy

Endogenous fluorescence spectroscopy can be used to characterize 
tertiary structural changes in proteins. Because proteins possess 
chromogenic groups such as tryptophan, tyrosine, and phenylalanine, 
the proteins themselves have endogenous fluorescence characteristics. 
Information on the conformational changes of proteins is obtained by 
detecting the chromophores of proteins. Ishtikhar and colleagues 
observed (46, 65) that when the excitation wavelength of the 
fluorescence spectrum of protein was 295 nm, the endogenous 
fluorescence of protein mainly came from tryptophan, while tyrosine 
and phenylalanine were not excited, but when the excitation 
wavelength was 280 nm, the endogenous fluorescence of protein 
mainly came from tyrosine and tryptophan, while phenylalanine was 
not excited.

The CD is currently the main method for the determination of the 
secondary structure of proteins, which have multi-chiral and 
photoactive properties such as peptide bonds, disulfide bonds and 

aromatic amino acid residues in their structures. It was shown through 
CD and fluorescence spectroscopy that EGCG could induce changes 
in different tertiary and secondary structures of soy protein before or 
after heating. During heating, EGCG rapidly react with exposed 
aromatic amino acids of the protein prior to aggregation of the 
macromolecule. After heating, addition of EGCG to soymilk caused 
increased disarrayed spirals of soy protein increased more, thereby 
leading to protein conformation that has more disordered structures 
(45). In addition, the covalent binding of camphor seed kernel 
proteins and phenolic compounds led to an increase in β-folding 
(from 19.81 to 21.39%) and a decrease in random coiling (from 26.07 
to 24.87%) (47). The above results indicate that different polyphenols 
interact with proteins and have different effects on the secondary 
structure of proteins. Some scientists have provided insight into nature 
of molecular structural interactions and impacts of polyphenol types 
using UV–Vis spectroscopy. On this score, Liu et al. discovered that 
the structure of zein was altered by the formation of covalent 
compounds using UV–Vis spectroscopy (19).

3.4 Other analytical technologies

In addition to the above techniques, many other analytical 
techniques are available for the characterization of covalent complexes. 
Static light scattering (SLS), dynamic light scattering (DLS) and 
electrophoretic light scattering (ELS) techniques were used to 
characterize the changes in the physicochemical properties of proteins 
after binding to polyphenols (51). In combination with analysis, 
information on charge, conformation, hydration radius and molecular 
weight of biopolymers can be provided by these techniques, wherein 
the biopolymers can facilitate further development of complexes as 
active substance delivery systems (50, 66). Atomic force microscopy 
(AFM) measurements provide insight into complex morphology, 
aggregate formation, and the effect of polyphenol affixation on 
proteins. Of note, information on the shape and size of covalent 
complexes can be provided by the AFM technique. Nonetheless, AFM 
imaging uses dehydrated samples, hence the outcomes cannot 
be compared to those of DLS (hydrodynamic diameters) obtained in 
dispersions. Besides, differential scanning calorimetry (DSC) can 
be used to assess the thermal stability of protein-polyphenol covalently 
bound systems (19, 54). Since each of the above analytical methods 
has its own strengths and weaknesses, several of them should be used 
in combination to obtain reliable and desirable experimental results.

4 Bioactive effects of 
polyphenol-protein covalent 
complexes

4.1 Effect of polyphenol-protein covalency 
on potential polyphenol bioaccessibility

The effect of polyphenol-protein covalency on the bioaccessibility 
of polyphenols is currently unclear. The interaction of proteins with 
polyphenols can adversely affect the nutritional value and digestibility 
of proteins, mainly because the interaction disrupts the structure of 
essential amino acids. Rawel et al. showed that phenolic compounds, 
such as chlorogenic acid and caffeic acid, reduced the lysine, cysteine 
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and tryptophan content of soy protein when the former were 
covalently combined with the latter, which affected biological 
availability of the aforementioned amino acids (67). In addition to 
this, there are favorable effects of protein-polyphenol interactions. 
Several studies have shown that the covalent formation of polyphenol-
protein has positive or even paltry impacts on the bioaccessibility of 
phenolics. It was found that the addition of green coffee powder to 
bread recipes significantly increased the phenolic content, with the 
addition of 5% increasing the phenolic content by 4.17 times (68). 
However, it is believed that the phenols eventually separated from the 
polyphenol-protein complexes and then did not affect the total 
absorption of the phenols (69). Also, there was a significant influence 
on the functional properties and digestibility of proteins due to 
protein-phenolic interactions. It was found that chicken polyphenols 
were covalently bound to myofibrillar protein via ultrasound 
assistance, which increased the bioaccessibility of the protein (34). 
Research has indicated that when coffee and cocoa polyphenols were 
combined with β-LG, the digestion of β-LG by pepsin was delayed by 
a factor of 2 at pH 1.2. Following in vitro gastrointestinal digestion, the 
polyphenols could produce a phenolic layer that minimized protein 
digestion in the digestive system. This layer provided protection for 
digestive enzymes by preventing them from targeting the cleavage 
sites of the proteins, thereby boosting digestive stability (70).

Indeed, several protein-phenolic covalently linked complexes have 
been developed to improve the stability of food-grade emulsions or 
granules, bioavailability and bioaccessibility of interacting phenolic 
compounds, which emphasizes the effectiveness of the associated 
systems as innovative carriers of bioactive ingredients (71). In general, 
protein-polyphenol interactions affect protein and phenol 
bioaccessibility both positively and negatively, therefore, for a 
thorough understanding of this complex relationship, more studies are 
needed. Moreover, there are no in vivo experiments to study the 
bioaccessibility of protein-polyphenol complexes.

4.2 Effect on digestibility

Food are taken in through the oral cavity and undergo the 
processes of digestion and absorption within the oral cavity, stomach, 
and small intestine, facilitated by various enzymes. Therefore, it is 
nutritionally standpoint to understand the impact of polyphenol 
protein covalency on digestibility of protein. Jiang et al. (72) found 
that anthocyanins were covalently coupled to soy protein, and the 
hydrolysis of the coupling product in the 5 h simulated small intestine 
was close to 60%, whereas the hydrolysis of soy protein was only about 
45%. This may be  due to the fact that the alteration of the 
conformational structure of soy protein induced by the presence of 
anthocyanins, rendering it more vulnerable to hydrolysis by digestive 
enzymes (e.g., pepsin and pancreatic enzymes) (73). Waqar et al. (74) 
prepared β-LG covalent bound to 4-methylcatechol, observing an 
increase in digestibility after 2 h of pepsin digestion (3.7%) and after 
4 h of pancreatic digestion (34%) in comparison to β-LG (2.9, 32%). 
These findings suggest that the presence of covalent bonds does not 
significantly impact protein digestibility.

In addition, Zhou et al. (75) investigated the effect of in vitro 
digestion of EGCG-SPI covalent and non-covalent on polyphenols. 
After simulated gastric and small intestinal digestion, the residual rate 
of EGCG in covalent and non-covalent was 95.30 and 74.3%, 

respectively, while the residual rate of EGCG in the control group was 
64.01%, which indicated that the protein exhibits a protective 
influence on polyphenols, with the covalent attachment to EGCG 
demonstrating a heightened protective efficacy. While in this study, 
the protein digestibility of covalent and non-covalent was 54.00 and 
59.14%, respectively, which was significantly lower than that of SPI 
(76.17%). Variations in research findings may be  attributed to 
variances in the specific proteins and polyphenols utilized in the 
studies. It is also important to consider polyphenol-protein covalent 
interactions through simulated in vitro digestion studies in the colon, 
and to investigate the impact of these interactions on the 
colonic microbiota.

4.3 Effect on antioxidant activity

Usually, the combination of polyphenols with proteins protects 
and even enhances the antioxidant activity of polyphenols. Wang 
et al. utilized laccase as a catalyst for covalently binding soy protein 
with gallic acid. The resulting covalent compound exhibited a 
remarkably enhanced antioxidant capacity, which was found to 
be directly proportional to the concentration of gallic acid. Notably, 
the respective 2, 2-diphenyl-1-picryl-hydrazyl (DPPH) free radical 
scavenging rate and 2, 2′-azino-bis(3-ethyl-benzo-thiazoline-6-
sulfonic acid) (ABTS) free radical scavenging capacity of the 
compound were nearly 5-fold and 1.5-fold higher than those of soy 
protein alone, while the reducing power was more than 3-fold higher 
(76). The covalent complex of catechin and OVA exhibited enhanced 
scavenging activity against DPPH and ABTS radicals and had a 
higher reduction capacity for ferric reducing antioxidant power 
(FRAP) (77). Covalent complexes of polyphenols that have been 
bound to different proteins displayed varying antioxidant activity, 
with OVA-EGCG showing the highest antioxidant activity (78). Also, 
available literature has suggested that coupling of β-LG and EGCG 
provided substantial protection against oxidation of low-density 
lipoprotein (LDL), which may beneficially suppress atherosclerosis 
(36). As a result of the covalent connection between catechin and 
lactalbumin, their scavenging activity was higher than that of proteins 
or polyphenols alone, thereby suggesting that when the two 
components were combined, a synergistic effect occurred (44). 
Moreover, the anticancer activity of whey protein combined with 
quercetin or onion extract was substantially enhanced against cell 
line of human lung cancer (H1299) (79). It has been discovered that 
interaction between proteins and polyphenols resulted in the 
introduction of active OH group from polyphenols into proteins, 
thereby conferring upon the proteins a significantly augmented 
antioxidant capacity (40, 80, 81). So that it can endow proteins with 
significantly increased antioxidant activity. This makes the 
polyphenol–protein complexes used as antioxidant emulsifiers, 
antioxidant films, etc. In addition, there are potential applications of 
the above-mentioned covalent complexes in the pharmaceutical and 
cosmetic fields.

4.4 Effect on antibacterial activity

Polyphenols have strong antibacterial effect, however, their 
powerful antibacterial mechanisms involve protein binding and 
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modification, which are essential for the survival of bacteria. It was 
found that serum from athletes supplemented with blueberry-green 
tea-polyphenol soy protein complex significantly delayed the 
exercise-induced increase in viral replication (p  < 0.05) (82). 
Previous studies have shown that polyphenols of black tea could 
interrupt the pathogenic cell membranes via binding to proteins of 
the membranes and form covalent complexes that may act in a 
bactericidal or bacteriostatic manner (83). Based on existing work, 
phenolics such as carvacrol and resveratrol-trans dihydro-dimer 
have been found to affect Gram-negative and-positive bacteria, 
wherein the authors observed disruption of membrane potential 
when resveratrol-trans dihydro-dimer was incubated with Bacillus 
cereus and Escherichia coli, amid the above process being regulated 
by cell division (84). This disruption occurs when phenolic OH 
groups interacted with proteins, thus leading to changes in protein 
conformation that culminate in membrane potential alterations 
(84). Besides, polyphenols of apple, specifically proanthocyanidin 
interacted with staphylococcal enterotoxin A protein (responsible for 
most staphylococcal-induced food poisoning, a toxin of 
Staphylococcus aureus), which has been reported to prevent 
production of the toxin (85). In covalent interactions, phenolics are 
converted to quinones, which then react with protein nucleophilic 
groups (i.e., NH2 and -SH). The structure of the polyphenols is 
altered and their structure–function relationship affects their 
antimicrobial activity.

4.5 Effect on hypoglycemic activity

Polyphenols found in foods of plant origin have shown 
therapeutic activity against chronic diseases such as type-2 diabetes. 
In a clinical trial, serum collection and metabolomic analysis of 
athletes who consumed blueberry and green tea polyphenols with 
soy protein isolate (SPI) complex for 17 days showed elevated 
3-hydroxy-butyrate and acetoacetate with SPI complex 
consumption, thus indicating enhanced ketogenesis and fatty acid 
oxidation during 3 days of exercise recovery (86). Roopchand et al. 
found that 300 and 500 mg/kg doses of grape pomace 
polyphenol-SPI complex significantly reduced blood glucose in 
obese and hyperglycemic C57BL/6 mice at 6 h after administration, 
with the 500 mg/kg dose approaching the effect of metformin (87). 
Also, 300 and 600 mg/kg doses of defatted soybean meal complexed 
with grape polyphenols significantly reduced blood glucose levels 
in hyperglycemic C57BL/6 J mice (88). Ribnicky et al. demonstrated 
that complexation of soy protein with polyphenols of Artemisia 
dracunculus L. increased the acute hypoglycemic activity and 
improved the bioavailability of polyphenols (89). The complex 
improves the therapeutic effect of polyphenols in type-2 diabetes, 
possibly because the protein-bound polyphenols are protected 
during gastrointestinal transit allowing more of the compounds to 
be  maintained in the small intestine and potentially active, or 
allowing more polyphenols to be  transported to the colon for 
microbial metabolism into other active metabolites. Thus, 
polyphenol-rich proteins may provide a new food system for 
creating nutrient-rich, low-sugar and high-protein food 
compositions that can be  used in the dietary management of 
diabetes or metabolic syndrome.

4.6 Effect on anti-inflammatory activity

A consistent correlation has been shown between diet and 
inflammation (90). Dietary polyphenols have been extensively used 
in the inhibition of inflammatory responses and, in addition, some 
proteins and peptides have exhibited anti-inflammatory effects.

Blueberry polyphenol extract-protein aggregates significantly 
reduced RAW 264.7 cellular reactive oxygen species (ROS) 
production and down-regulated gene expression of inflammatory 
markers (COX-2 and IL-1β), in addition to inhibiting nitric oxide 
(NO) production and gene expression of inducible nitric oxide 
synthase (iNOS) (91). Zein-based resveratrol nanoparticles provided 
high and prolonged plasma levels of polyphenols and reduced serum 
tumor necrosis factor-α (TNF-α) levels in an lipopolysaccharide 
(LPS)-induced endotoxin shock model mouse for at least 48 h (92). 
Silk sericin hydrolysates and oxidized flavonoids form covalent that 
were significant in inhibiting NO and 15-lipoxygenase (15-LOX) 
production (93). Our hypothesis is that proteins have the capability 
to encapsulate polyphenols, thereby protecting and enhancing their 
stability (94). In summary, anti-inflammatory activity can 
be increased by the interaction of specific proteins with polyphenols, 
especially through covalent bonding.

4.7 Effect on modulation of gut microbiota

An increase in oxidative stress can result in abnormalities in flora 
of intestines and changes in body pathology. Natural endogenous 
hormones, active constituents and novel functional nanocarriers 
controlled the oxidative stress response, wherein proteins and 
polyphenols are vital regulators. These ingredients can play a 
significant role to maintain microecology of intestines and regulate 
the intestinal flora species composition by promoting antioxidant 
enzyme activity and effectively reducing free radicals in the body (95, 
96). Increased polyphenols bioavailability, promotion of protein 
digestion and absorption and enhanced total antioxidant capacity are 
the potential benefits of proteins-polyphenols interaction (97, 98). 
Current studies have shown that small-molecule protein and 
polyphenols synergistically suppressed aging and regulated intestinal 
bacteria (99). The addition of mung bean protein-polyphenol 
complexes aided Roseococcus, Bifidobacterium and Bacteroidetes 
proliferation in intestines of senescent mice and inhibited 
Bifidobacterium and Roseburia growth, amid the complexes being 
superior to mung bean protein in the proliferation of Bifidobacterium 
(100). Protein protection may enhance the bioavailability and stability 
of polyphenols. Polyphenols can enter the colon through the upper 
gastrointestinal tract and are more readily absorbed and transported 
by the monomolecular layer (101). In future, protein-polyphenol 
complex foods can be developed to promote the microecological 
balance of intestinal flora.

4.8 Effect on modulation of allergic 
reactions

Food allergies do not only have a negative impact on quality of 
life, but can also have life-threatening consequences. It is estimated 
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that 90% of food allergies are caused by milk, eggs, peanuts, nuts, 
shellfish, fish, wheat or soy (102). Several studies have shown that the 
interaction of polyphenols with proteins affects the sensitization of 
proteins. The results of established studies have confirmed that 
complexation of anthocyanin- and proanthocyanidin-rich 
polyphenol extracts with peanut matrix demonstrated substantially 
decreased binding capacity of immunoglobulin (IgE) and suppressed 
release of histamine and β-hexosaminidase from mast cells (103, 
104). Also, existing studies have shown that the complexation of these 
polyphenols with proteins is covalent in nature (105). In contrast to 
the significantly lower IgE binding capacity of these EGCG-OVA 
conjugates compared to natural OVA, while changes in protein 
structure was induced by noncovalent complexes of EGCG-OVA but 
did not reduce interactions of IgE allergen owing to low affinity (106). 
Also, Wu et  al. successfully reduced the sensitization of β-LG by 
covalently binding it to EGCG and chlorogenic acid (107). Various 
studies have found that the allergenicity of soy protein was reduced 
by the covalent action of polyphenols on soy 7S protein (108, 109). In 
vivo studies also showed that complexation of peanut protein-
polyphenol decreased plasma IgE in C3H/HeJ mice that have been 
sensitized by peanut, in addition to a significant downregulation of 
CD63 expression (a surface marker protein of basophil), thus 
implying a reduction in allergic reactions in the above-mentioned 
mice (110). These studies provide a new approach to reducing protein 
allergenicity in food industry production. Binding of proteins to 
polyphenols leads to structural changes in the proteins that may 
eliminate conformational IgE-binding epitopes, thereby affecting the 
sensitization of the proteins. To further confirm these results, the 

“complex structural sensitization” relationships behind certain food 
allergens need to be elucidated and the mechanisms should be studied 
in greater depth.

A schematic representation of the possible biological activities of 
polyphenol-protein covalent complexes is displayed in Figure  3. 
Current studies on the activity of protein-polyphenol covalent are 
mainly in vitro experiments, and only allergenicity has been studied 
more in vivo in experimental animals. Therefore, future in vivo 
preclinical and even clinical studies are needed to investigate the 
activity and mechanistic action of the complexes.

5 Polyphenol-protein covalent 
complexes in food applications

5.1 Emulsifiers agents

Protein-polyphenol covalent complexes have a wide range of 
applications in emulsion delivery systems because of their good 
antioxidant and emulsifying properties. The complex showed better 
advantages as an emulsifier compared to the single control protein. 
For instance, the covalent bond between catechin-α-ALA exhibited 
superior stability, with a particle size increase of less than 10% after 
30 days of storage at 25°C (44). After being stored at 37°C for 
30 days, the β-carotene content in egg white proteins decreased by 
approximately 15%. However, in the catechin-egg white protein 
covalent, the degradation of β-carotene was approximately 60% 
slower (111). Furthermore, it has been reported that covalently 

FIGURE 3

Biological activity of polyphenol-protein covalent complexes.
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bound emulsions of catechins with β-LG and lactoferrin can 
effectively encapsulate β-carotene (112, 113). Abd et al. prepared 
β-LG-caffeic acid covalent complexes by using carbodiimide 
crosslinkers as functional emulsifiers with antioxidant properties. 
Meanwhile, the results showed that the covalent complexes did not 
only demonstrate better water solubility, but also significantly 
improved the antioxidant properties and stability of the emulsion as 
well as reduced the oxidation of lipids in the emulsion. As compared 
to β-LG (% scavenging index = 34.2), β-Lg- caffeic at pH 6 and pH 
8.5 was a more potent scavenger of DPPH radicals (% scavenging 
index = 88.9 and 91.6, respectively) (35). The preparation of stable 
emulsions from covalent complexes exhibited great potential 
advantages, mainly as follows (56, 114, 115). (1) Using covalent 
complexes, each bioactive substance could effectively play its 
respective functionalities, such as proteins acting as surfactants and 
polyphenols as antioxidants, or the two working together. (2) 
Covalent complexes can be  used to reduce the effects of 
environmental factors such as temperature, pH, ionic strength and 
enzyme catalysis on emulsions and improve emulsion stability. For 
example, the denaturation temperature of linseed protein-
hydroxytyrosol covalent (154.30°C) was significantly higher than 
that of flaxseed protein (147.06°C), which may be related to the 
conformational change of the protein upon covalent modification 
with phenolic compounds (26). The improved emulsification activity 
is attributed to the increased surface hydrophobicity of the protein 
after modification, while the improved emulsion stability is 
attributed to stronger repulsive forces between the droplets 
encapsulated in the covalent complex (116). Another report showed 
that the foaming and emulsifying properties of lentil protein 
decreased after interaction with red onion peel phenolic extracts/
gallic acid, but the bioavailability or antioxidant capacity of the 
phenolic compounds increased significantly (117). It is essential to 
consider the type, while content and ratio of phenolics and proteins 
should be fully considered when designing functional foods since 
they interact with one another and modify their functional 
properties and biological activity. As well, covalent complexes are 
limited in their application due to their complex, time-consuming 
and expensive preparation process.

5.2 Foaming agents

Available literature has stated that the interfacial properties of 
proteins and their capability to form and stabilize foams were affected 
by generation of polyphenol-protein complexes (118, 119). Studies on 
various whey protein (WP, like lactoferrin, α-LA and β-LG) that have 
been covalently associated with EGCG has shown that the resulting 
conjugates display superior interfacial properties in comparison to 
noncovalent complexes of WP-EGCG (116). For example, the 
interfacial protein adsorption fractions of α-LA, noncovalent α-LA-
EGCG complex, and covalent α-LA-EGCG complex were 69.9, 66.1, 
and 77.1%, respectively; and the interfacial protein adsorption 
fractions of β-LG, noncovalent β-LG-EGCG complex, and covalent 
β-LG-EGCG complex were 81.4, 75.9, and 88.9%, respectively. The 
disparity in the strength of binding interactions between proteins and 
polyphenols in covalent and noncovalent complexes likely accounts 
for the ease of separation observed. Specifically, the strong interactions 

present in covalent complexes result in a higher degree of 
hydrophilicity on the protein surface compared to noncovalent 
interactions. Furthermore, the formation of covalent complexes can 
result in the development of an interfacial layer on the oil droplet’s 
surface, ultimately leading to enhanced stability (116).

A significant increase in foaming properties has been reported 
for whey proteins that have been covalently bound to chlorogenic 
acid (120, 121), tannic acid and sodium caseinate (122) as well as egg 
proteins that were covalently bound to green tea polyphenols (123). 
It was reported that the conjugation of gallic acid and EGCG with 
whey protein enhanced their foaming properties, which can 
be  attributed to the increased molecular flexibility caused by the 
conjugation (124). The foaming ability is closely related to the rapid 
diffusion of proteins toward the air-water interface. Baba et al. used 
ultrasound treatment to link whey protein with quercetin by covalent 
bonding, which resulted in significant increased foaming capacity 
over whey protein (125). Lin et  al. (108) showed that covalent 
modification of soybean 7S protein with chlorogenic acid and EGCG 
increased the foaming properties from about 15% to about 30%, with 
foam stability above 80%. The covalent foaming ability of ovalbumin 
cross-linked using laccase-catalyzed ferulic acid was higher (99.7%) 
than that of natural ovalbumin (94.3%) (126). The foaming 
performance of the system was influenced by factors such as protein 
adsorption at the air-water interface, the amount of adsorbed protein, 
and conformational changes at the interface (127). Protein-
polyphenol complexes therefore exhibit different foaming properties 
depending on polyphenol and protein nature and structure as well as 
coupling method, and thus further research is needed to determine 
the best binding methods between different proteins and polyphenols 
in order to produce new compositions with improved 
functional properties.

5.3 Nanomaterials

In addition, protein-polyphenol covalent complexes can also 
be used as nanomaterials. Because proteins are of amphipathic nature, 
complexes of protein-polyphenol have binding affinity for both 
hydrophilic and hydrophobic substances (128–130). Therefore, the use 
of phenolic-protein adducts as new carriers for unstable bioactive 
substances (namely phenolic compounds, fatty acids, hormones, other 
lipophilic and drugs) has recently become a hot topic (131, 132). Ge 
et al. prepared corn protein-soybean seed coat polyphenol covalently 
cross-linked nanoparticles, which improved the oxidative stability of 
soybean seed coat polyphenols and reduced the release of free fatty 
acids during simulated in vitro gastrointestinal digestion (133). Lau 
et  al. discovered that protein-polyphenol complexes have great 
potential for oral administration of a variety of active food-derived 
ingredients through several experiments, including intestinal and this 
was accomplished by using protein-polyphenol complexes as potential 
materials for multilayer membrane microcapsules (134). Polyphenols 
and proteins can be covalently bound without chemical cross-linking 
agents, while both studies on complex properties demonstrated better 
functional advantages, followed by superior properties in comparison 
with single protein emulsions in delivery systems. Hence, theoretically 
polyphenol-protein covalent have great potential as functional 
complex carriers. A schematic representation of the possible 
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applications of polyphenol-protein covalent complexes in foods is 
presented in Figure 4.

6 Summary and future perspective

Current research works clarifying the mechanism of action of 
polyphenol-protein covalency was highlighted in this review, while 
the impact of various food processing methods, characterization 
techniques, health-promoting effects, properties of covalents, and 
their applications in the food field were discussed. Polyphenols exert 
an influence on proteins with regard to their solubility, thermal 
stability and other related characteristics. These functional properties 
are essential to determine the physical properties of food ingredients 
during preparation, processing or storage. Thus, covalent binding of 
proteins and polyphenols is a potential approach to improve the 
stability of proteins subjected to thermal processing.

Scientists have achieved much progress in strengthening and 
clarifying the formation of polyphenol-protein covalent complexes 
through prevalent utilization of molecular docking for predicting 
phenolic compounds and protein binding sites (136). However, 
limited research has been conducted on comprehensively determining 
the binding sites and identifying the specific amino acid residues that 
directly contribute to the formation of polyphenol-protein covalent 
complexes. Furthermore, the impact of varying conditions such as 
temperature, pressure, and other factors during food processing on 
the alteration of these binding sites remains largely unexplored. The 
investigation of the formation of polyphenol-protein covalent 
complexes and the identification of specific binding reaction 
characteristics can be further enhanced through a practical approach. 
This refinement aims to assess validity of the universal law governing 

polyphenol-protein covalent complexes and facilitate later 
advancement of nutraceuticals and functional foods. Furthermore, 
there exists a limited body of research pertaining to the intrinsic 
characteristics of the covalent bond, which encompasses 
physicochemical attributes, biological functionality and various 
other properties.

Moreover, the utilization of model polyphenolic compounds-
proteins has been prevalent in contemporary research on covalent 
interactions between polyphenols and proteins. Based on these 
aforementioned considerations, it is imperative to conduct further 
investigations pertaining to covalent interactions within real systems 
that encompass phenolic compounds, such as those found in tea, 
coffee, cocoa, etc., as well as proteins present in milk, soy, rice, etc. The 
findings of such studies, namely current study and previous works, 
may act as a reference for nutraceuticals and functional foods 
development, which may be  utilized as efficacious candidates for 
monitoring the characteristic changes in polyphenol-protein 
covalent complexes.

In vitro findings have recently disclosed the nutritional value of 
polyphenol-protein covalent complexes; however, further investigation 
is needed to ascertain whether these nutritional values were detected 
at doses that are close to in vivo dietary intake levels. Further in vivo 
studies, as well as potential toxicity investigations should 
be  strengthened for understanding the application direction of 
polyphenol-protein covalent complexes.

Altogether, the present perspectives provide new insights into 
formation and changes in polyphenol-protein covalent complexes and 
how polyphenol-protein covalent complexes improve health status, 
which offers new prospects for research trends in future and 
opportunities to boost development of functional food products 
toward precision nutrition.

FIGURE 4

Polyphenol-protein covalent complexes in food applications (128, 135).
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