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Purpose: The connection between magnesium and hepatic steatosis has not

been well-studied. This study aimed to explore the link between magnesium

intake and hepatic steatosis, utilizing data from the National Health and Nutrition

Examination Survey (NHANES) 2017–2020.

Materials and methods: The analysis included 5,935 participants, excluding

individuals with hepatitis infection or substantial alcohol consumption.

Magnesium intake assessment was based on 24-h dietary recalls. Hepatic

steatosis evaluation employed the controlled attenuation parameter (CAP),

measured via transient elastography. Multivariate regression and subgroup

analyses were conducted to scrutinize the relationship between magnesium

intake and CAP values.

Results: A higher magnesium intake was associated with lower CAP values, after

adjusting for potential confounders. Subgroup analyses indicated an inverted

U-shaped correlation between magnesium intake and CAP in women, White

people, and non-hypertensive individuals, with respective inflection points at

126, 124.5, and 125 mg/day, respectively. Below these thresholds, a higher

magnesium intake correlated with increased CAP values, while above these

points, it was associated with decreased CAP.

Conclusion: This extensive population-based study indicates an inverse

relationship between magnesium intake and hepatic steatosis in Americans. This

relationship displays an inverted U-curve, varying before and after specified

inflection points in women, White people, and non-hypertensive individuals.

These findings o�er insights into tailoredmagnesium supplementation strategies

for preventing and treating liver steatosis, based on gender and ethnicity.
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Introduction

Hepatic steatosis occurs when fat droplets accumulate within liver cells (1). Fatty liver is

diagnosed when the liver’s fat content exceeds 5% of its weight (2). The severity of fatty liver

varies, ranging from simple fatty liver, which shows no evident inflammation or damage, to

non-alcoholic steatohepatitis (NASH), characterized by significant inflammation and liver

cell damage (3). The global prevalence of fatty liver is rising in parallel with the obesity

epidemic, affecting an estimated 25% of the global population (4). While simple fatty liver

can often be managed with lifestyle and dietary changes, about 30% of cases may progress

to NASH (5). Without treatment, it can progress to liver cirrhosis, liver cancer, or liver
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failure (6). Therefore, early diagnosis and prevention of liver

steatosis are crucial (7).

Magnesium, a vital mineral, is involved in more than 300

enzymatic reactions in the human body, such as energy production,

carbohydrate metabolism, protein synthesis, and regulating blood

pressure (8). Serving as a cofactor for numerous enzymes in

carbohydrate and lipid metabolism, magnesium plays a crucial

role in metabolic processes (9). Preliminary research links low

magnesium intake with a heightened risk of metabolic diseases like

type 2 diabetes and cardiovascular disorders (10, 11).

The link between magnesium and fatty liver disease is currently

under active investigation. Limited studies have explored the role of

serum or dietary magnesium in metabolic dysfunction-associated

steatotic liver disease (MASLD) (12–14). Nevertheless, hepatic

steatosis in the general population is not well-studied in these

investigations. Additionally, previous studies have predominantly

diagnosed MASLD using abdominal ultrasonography, a method

significantly influenced by the physician’s subjective judgment and

technical expertise.

The Controlled Attenuation Parameter (CAP), assessed semi-

automatically via liver elastography, offers a reliable, non-invasive

approach to quantitatively evaluate hepatic steatosis (15). Many

studies, corroborated by liver biopsy, demonstrate a significant

correlation between CAP values and liver fat levels (16–18).

Between 2017 and 2020, the National Health and Nutrition

Examination Survey (NHANES) introduced transient elastography

to measure one hepatic steatosis, yielding the largest dataset of

CAP observations in the United States. Herein, our study aims to

examine the relationship between magnesium intake and hepatic

steatosis by analyzing extensive data on magnesium intake and

CAP values from the 2017–2020 NHANES. We will particularly

focus on whether there are unique associations across different

demographic subgroups.

Materials and methods

Statement of ethics

This study received approval from the National Center

for Health Statistics Research Ethics Review Board, with each

participant providing consent.

Study population

To ensure nationwide representation, NHANES, an extensive,

continuous cross-sectional survey in the US, employs stratified,

multistage, clustered random sampling to gather diet and health

data from the entire population (19). Of the 15,560 participants

in the 2017–2020 NHANES cycle, 9,698 had available CAP data.

We excluded 2,451 participants who tested positive for hepatitis

B antigen, hepatitis C antibody, or hepatitis C RNA, 799 with

significant alcohol consumption (four or more drinks daily),

and 513 lacking magnesium intake data. Ultimately, the study

included 5,935 participants. Figure 1 presents the flowchart of

sample selection.

FIGURE 1

Flowchart of participant selection. NHANES, National Health and

Nutrition Examination Survey; CAP, controlled attenuation

parameter.

Variables

This study focused on magnesium intake as the exposure

variable. Daily dietary intake data were gathered via 24-h recall

interviews and a 30-day dietary supplement questionnaire. For

each NHANES 2017–2018 participant, two 24-h recalls were

conducted. The first dietary recall was performed in person

at the NHANES Mobile Examination Centers (MEC), and the

second via telephone by trained interviewers 3–10 days post-

MEC interview. The United States Department of Agriculture’s

Food and Nutrient Database for Dietary Studies was the source

of information on nutrient intakes, including dietary fiber (20).

The total amount of magnesium consumed per day from food and

dietary supplements was determined. The outcome variable, CAP,

was measured using the FibroScan
R©
502 V2 Touch, equipped with

liver ultrasonography transient elastography. This device measures

CAP by recording ultrasonic attenuation, indicative of hepatic

steatosis and liver fat content.

Categorical variables such as gender, race/ethnicity, education

level, marital status, smoking habit, diabetes, hypertension,

and cholesterol levels were included in our study. Age, body

mass index (BMI), γ-glutamyl transpeptidase (GGT), aspartate

aminotransferase (AST), alanine aminotransferase (ALT), serum

albumin, serum creatinine, and uric acid were among the

continuous factors in our study. You may find detailed information

about CAP, magnesium intake, and other variables at http://www.

cdc.gov/nchs/nhanes/.

Statistical analysis

We utilized a weighted variance estimation technique to

tackle notable fluctuations in our dataset. For categorical data,

the weighted chi-square test was utilized to evaluate group

differences, and for continuous variables, the weighted linear
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TABLE 1 Weighted characteristics of the study population based on magnesium intake tertiles.

Magnesium intake (mg/day) Total (N = 5,935) Low
(10.0–185.5,
N = 1977)

Middle
(185.6–

284.0,p20mm
N = 1,977)

High (284.1–
1,097.0,

N = 1,981)

P-value

Age (years) 44.83± 20.16 40.80± 21.08 45.01± 20.76 47.75± 18.30 <0.0001

Gender (%) <0.0001

Men 47.51 38.07 43.39 58.40

Women 52.49 61.93 56.61 41.60

Race/ethnicity (%) <0.0001

Mexican American 9.76 9.51 9.52 10.17

Other Hispanic 7.38 7.76 7.91 6.63

Non-Hispanic White 62.77 59.67 61.73 66.06

Non-Hispanic Black 11.22 14.71 11.66 8.16

Other race 8.86 8.35 9.17 8.99

Education level (%) <0.0001

Less than high school 10.41 14.42 9.09 8.93

High school 28.02 35.70 29.54 21.88

More than high school 61.57 49.89 61.37 69.19

Marital status (%) <0.0001

Married/living with partner 64.06 56.60 62.17 70.35

Widowed/divorced/separated 18.91 21.58 21.08 15.45

Never married 17.03 21.83 16.75 14.19

Income to poverty ratio 3.14± 1.63 2.78± 1.65 3.13± 1.61 3.43± 1.59 <0.0001

BMI (kg/m2) 29.30± 7.49 29.15± 7.83 29.55± 7.72 29.20± 6.98 0.2007

Smoked at least 100 cigarettes in life (%) 0.0544

Yes 38.28 40.03 39.23 36.33

No 61.72 59.97 60.77 63.67

Diabetes (%) 0.8733

Yes 10.78 11.14 10.67 10.59

No 86.82 86.56 86.67 87.16

Borderline 2.40 2.30 2.66 2.25

Hypertension (%) 0.4496

Yes 31.80 31.40 32.91 31.13

No 68.20 68.60 67.09 68.87

High cholesterol level (%) <0.0001

Yes 34.12 30.76 32.99 37.42

No 65.88 69.24 67.01 62.58

AST (IU/L) 21.06± 10.32 20.43± 12.14 20.54± 8.46 21.96± 10.26 <0.0001

ALT (IU/L) 21.62± 14.75 20.18± 15.34 21.03± 14.31 23.19± 14.52 <0.0001

GGT (IU/L) 26.36± 30.09 25.01± 32.21 27.81± 32.76 26.11± 25.70 0.0263

Serum albumin (g/L) 41.22± 3.23 41.02± 3.34 41.19± 3.30 41.40± 3.08 0.0022

Serum creatinine (mg/dL) 0.85± 0.30 0.83± 0.26 0.84± 0.29 0.88± 0.32 <0.0001

Uric acid (mg/dL) 5.29± 1.38 5.18± 1.42 5.25± 1.38 5.40± 1.33 <0.0001

CAP (dB/m) 261.47± 63.66 255.96± 63.55 265.24± 65.89 262.36± 61.41 <0.0001

Mean± SD for continuous variables: the P-value was calculated by the weighted linear regression model. (%) for categorical variables: the P-value was calculated by the weighted chi-square test.
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TABLE 2 The association between magnesium intake (mg/day) and controlled attenuation parameter (dB/m).

Model Model 2 Model 3

β (95% CI) P-value β (95% CI) P-value β (95% CI) P-value

Magnesium intake (mg/day) 0.01 (−0.00, 0.02) 0.1402 −0.02 (−0.04,−0.01) 0.0003 −0.01 (−0.03,−0.00) 0.0477

Magnesium intake tertile

Low (10.0–185.5 mg/day) Reference Reference Reference

Middle (185.6–284.0 mg/day) 9.28 (5.17, 13.39) <0.0001 4.17 (0.25, 8.10) 0.0373 2.42 (−1.67, 6.50) 0.2462

High (284.1–1,097.0 mg/day) 6.39 (2.39, 10.39) 0.0017 −4.18 (−8.09,−0.27) 0.0364 −3.60 (−7.61, 0.41) 0.0782

P for trend 0.004 0.019 0.036

Model 1: no covariates were adjusted.

Model 2: age, gender, and race/ethnicity were adjusted.

Model 3: age, gender, race/ethnicity, education level, marital status, body mass index, smoking behavior, and the existence of diabetes, hypertension, and high cholesterol level, aspartate

aminotransferase, alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin, serum creatinine and uric acid were adjusted.

In the subgroup analysis stratified by gender and race/ethnicity, the model is not adjusted for gender and race/ethnicity, respectively.

TABLE 3 Stratified analyses of the association between magnesium intake

(mg/day) and controlled attenuation parameter (dB/m).

Subgroup β (95% CI) P value P for interaction

Age (years) 0.5169

<45 −0.02 (−0.04, 0.00) 0.0765

45–60 −0.00 (−0.02, 0.02) 0.9278

>60 −0.01 (−0.04, 0.01) 0.2605

Gender 0.0389

Men −0.00 (−0.02, 0.01) 0.7084

Women –0.02 (–0.04, –0.01) 0.0091

Race/ethnicity 0.0495

Mexican American −0.00 (−0.04, 0.03) 0.9272

Other Hispanic 0.00 (−0.04, 0.04) 0.9241

Non-Hispanic

White

–0.02 (–0.04, –0.00) 0.0307

Non-Hispanic

Black

0.02 (−0.01, 0.05) 0.1851

Other Race 0.02 (−0.01, 0.06) 0.1768

Education level 0.5770

Less than high

school

0.01 (−0.04, 0.05) 0.7937

High school −0.01 (−0.03, 0.02) 0.5507

More than high

school

–0.02 (–0.03, –0.00) 0.0352

Marital status 0.3185

Married/living with

partner

−0.01 (−0.02, 0.01) 0.3308

Widowed/

divorced/ separated

–0.03 (–0.06, –0.00) 0.0310

Never married −0.02 (−0.04, 0.01) 0.3058

Smoked at least 100

cigarettes in life

0.0803

Yes –0.03 (–0.05, –0.01) 0.0130

(Continued)

TABLE 3 (Continued)

Subgroup β (95% CI) P value P for interaction

No −0.00 (−0.02, 0.01) 0.7064

Diabetes 0.0649

Yes −0.01 (−0.05, 0.03) 0.6527

No −0.01 (−0.02, 0.00) 0.1117

Borderline –0.10 (–0.18, –0.03) 0.0090

Hypertension 0.0070

Yes 0.01 (−0.01, 0.04) 0.2381

No –0.02 (–0.04, –0.01) 0.0022

High cholesterol level 0.5610

Yes −0.01 (−0.03, 0.01) 0.5126

No −0.01 (−0.03, 0.00) 0.0689

Age, gender, race/ethnicity, education level, marital status, body mass index, smoking

behavior, and the existence of diabetes, hypertension, and high cholesterol level, aspartate

aminotransferase, alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin,

serum creatinine, and uric acid were adjusted.

Each stratification adjusted for the above factors except the stratification factor itself.

regression model was employed. The beta values and 95%

confidence intervals were calculated using weighted multivariate

linear regression analysis between the magnesium intake and

CAP. For the purpose of subgroup analysis, stratified multivariate

regression analysis was performed, and their interactions were

tested. A combination of smooth curve fits and generalized

additive models were utilized to investigate the non-linear

relationship between CAP and magnesium intake. After non-

linearity was identified, we used a recursive method to identify

the inflection point in the connection between magnesium

intake and CAP, and on either side of this point, we applied

a two-piecewise linear regression model. All analyses were

conducted using R (http://www.Rproject.org) and EmpowerStats

(http://www.empowerstats.com), considering a P-value <0.05 as

statistically significant.
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FIGURE 2

The association between magnesium intake and controlled attenuation parameter. (A) Each black point represents a sample. (B) Solid rad line

represents the smooth curve fit between variables. Blue bands represent the 95% of confidence interval from the fit. Age, gender, race/ethnicity,

education level, marital status, body mass index, smoking behavior, and the existence of diabetes, hypertension, and high cholesterol level, aspartate

aminotransferase, alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin, serum creatinine, and uric acid were adjusted.

Results

Our study comprised 5,935 participants. The population

characteristics based on magnesium intake tertiles are shown

in Table 1. Higher magnesium intake was associated with an

older age, male predominance, non-Hispanic White race, higher

education and income levels, and married/partnered marital status.

Higher cholesterol levels, liver enzyme levels (AST, ALT, GGT),

serum albumin, serum creatinine, uric acid and CAP values

increased with higher magnesium intake. No significant differences

were seen across tertiles for BMI, smoking rates, diabetes or

hypertension prevalence.

Table 2 shows the results of the multivariate linear regression

analysis. In the unadjusted Model 1, magnesium intake showed no

significant association with CAP (β = 0.01, 95% CI: −0.00, 0.02,

P = 0.1402). But when age, sex, and race/ethnicity were taken

into account, Model 2 showed a significant correlation between

increased magnesium intake and decreased CAP (β = −0.02, 95%

CI: −0.04, −0.01; P = 0.0003). Even after accounting for extra

factors, Model 3′s negative connection persisted (β = −0.01, 95%

CI: −0.03, −0.00; P = 0.0477). Analysis by tertiles of magnesium

intake in Model 3 showed that the highest tertile had lower CAP

than the lowest tertile (β=−3.60, 95%CI:−7.61, 0.41, P= 0.0782),

demonstrating a significant linear trend (P for trend= 0.036).

Table 3 details stratified analyses of the association between

magnesium intake and CAP. After adjusting for confounding

factors in the study, the inverse link betweenmagnesium intake and

CAP remained significant for women (β = −0.02, 95% CI: −0.04,

−0.01, P = 0.0091), White people (β = −0.02, 95% CI: −0.04,

−0.00, P = 0.0307) and people without hypertension (β = −0.02,

95% CI: −0.04, −0.01, P = 0.0070), and interaction tests further

confirmed the significance of the differences between groups (all P

for interaction < 0.05). In gender, education level, marital status,

smoking behavior, diabetes, and high cholesterol subgroups, the

interaction effect was not statistically significant, indicating that the

inverse association between magnesium intake and liver steatosis

deposition remains consistent across these subgroups.

Figures 2–5 illustrate smooth curve fits and generalized additive

models, demonstrating an inverted U-shaped relationship between

magnesium intake and CAP in women, White people and people

without hypertension. As shown in Table 4, in the female subgroup,

the standard linear model showed a significant inverse association

between magnesium intake and controlled attenuation parameter

(CAP) (β = −0.02, 95%CI: −0.04, −0.01, P = 0.0091). The two-

piecewise linear regression model revealed a threshold point at

126 mg/day. Below this threshold, there was a significant positive

association between magnesium intake and CAP (β = 0.31, 95%

CI: 0.13, 0.48, P = 0.0005); above the threshold, a significant

inverse association was observed (β = −0.04, 95% CI: −0.06,

−0.02, P = 0.0001). Comparing the goodness of fit between the

two-piecewise linear regression models and the standard linear

model, the log-likelihood ratio test revealed a significant difference

(P < 0.001), providing further support for the use of the two-

piecewise regression model to capture threshold effects. Similarly,

in the non-Hispanic white subgroup and the subgroup without

hypertension, comparisons of the goodness of fit between the

two-piecewise linear regression models and the standard linear

model showed significant differences in the log-likelihood ratio

tests (P = 0.001 and P = 0.004, respectively). In the White people,

inflection points occur at a magnesium intake of 124.5 mg/day,

as evidenced by a significant likelihood ratio (P = 0.001). For

magnesium intakes below 124.5 mg/day, each 1 mg/day increase

was related to a 0.36 dB/m raise in CAP (95% CI: 0.13, 0.60, P =

0.0026); by comparison, for individuals with a magnesium intake

>124.5 mg/day, a 1 mg/day upregulation was connected with a

0.03 dB/m drop in CAP (95% CI: −0.05, −0.01, P = 0.0022).

In the subgroup without hypertension, the two-piecewise linear

regression model indicated a threshold value of 125 mg/day. When
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FIGURE 3

The association between magnesium intake and controlled attenuation parameter stratified by gender. Age, race/ethnicity, education level, marital

status, body mass index, smoking behavior, and the existence of diabetes, hypertension, and high cholesterol level, aspartate aminotransferase,

alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin, serum creatinine, and uric acid were adjusted.

FIGURE 4

The association between magnesium intake and controlled attenuation parameter stratified by race/ethnicity. Age, gender, education level, marital

status, body mass index, smoking behavior, and the existence of diabetes, hypertension, and high cholesterol level, aspartate aminotransferase,

alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin, serum creatinine, and uric acid were adjusted.
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FIGURE 5

The association between magnesium intake and controlled attenuation parameter stratified by the existence of diabetes. Age, gender, race/ethnicity,

education level, marital status, body mass index, smoking behavior, and the existence of diabetes, and high cholesterol level, aspartate

aminotransferase, alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin, serum creatinine, and uric acid were adjusted.

magnesium intake was below 125 mg/day, each 1 mg/day increase

resulted in a 0.25 dB/m increase in CAP (95% CI: 0.07, 0.44, P =

0.0077); whereas when magnesium intake exceeded 125 mg/day,

each 1 mg/day increase led to a decrease in CAP by 0.03 dB/m (95%

CI:−0.04,−0.01, P = 0.0003).

Discussion

This study analyzed 2017–2020 NHANES data from the

United States to explore the relationship between magnesium

intake and liver fat accumulation, using CAP values as a measure.

The multivariate regression analysis indicated a trend of decreasing

CAP values correlating with increased magnesium intake. This

inverse relationship between magnesium intake and hepatic

steatosis is consistent with prior research. A study of 226 healthy

individuals demonstrated an independent association between

lower serum magnesium levels and biopsy-confirmed hepatic

steatosis (13). Another analysis of theNHANES III cohort indicated

a potential link between higher magnesium intake and lower liver

disease mortality in hepatic steatosis patients (21). Furthermore, a

study in which mice were fed a magnesium-deficient diet revealed

increased levels of hepatic steatosis, swelling, and overall scores in

comparison to a control group (22).

In a study on metabolic dysfunction-associated steatotic liver

disease in the Korean NHANES database (23), magnesium intake

was notmentioned in relation toMASLD, possibly due to variations

in study populations and definitions of fatty liver. Our study, on

the other hand, accounted for a broader range of confounding

factors, potentially offering a more in-depth exploration of the true

relationship between the two variables.

Magnesium deficiency is associated with an increased risk

of liver steatosis through several pathways. It disrupts fatty

acid and triglyceride metabolism, leading to fat accumulation

in the liver (22). The deficiency also interferes with insulin

signaling and exacerbates inflammation and oxidative stress in

the liver (24). Additionally, magnesium deficiency may increase

liver adipocytes that produce proteases enhancing angiotensin

II, further worsening steatosis (25). Conversely, magnesium

supplementation can regulate fatty acid metabolism, promote fatty

acid oxidation, and activate the AMP-activated protein kinase-

mammalian rapamycin target protein (AMPK-mTOR) pathway to

induce autophagy in liver cells. This helps reduce intracellular fat

deposition and thereby prevent or improve hepatic steatosis (22).

Our subgroup analysis revealed significant non-linear

associations between magnesium intake and CAP in the female,

White people, and non-hypertension subgroups, each showing a

distinct turning point. Below this point, magnesium intake and

CAP were positively correlated, while above it, they exhibited

a significant inverse relationship. These findings suggest that

the optimal level of magnesium intake may vary by gender,

ethnicity, and hypertension status. To our knowledge, this may

be the first study to unveil the complex non-linear relationship

between magnesium intake and liver fat accumulation, indicating

potential gender, ethnic, and hypertension-related differences.

These variations may be attributable to genetic risk factors, lifestyle

differences, and other elements (26). Further research, involving

larger sample sizes and a prospective approach, is necessary for
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TABLE 4 Threshold e�ect analysis of magnesium intake on controlled

attenuation parameter using the two-piecewise linear regression model.

Controlled
attenuation
parameter

Adjusted β (95% CI), P-value

Women

Fitting by the standard

linear model

−0.02 (-0.04,−0.01) 0.0091

Fitting by the two-piecewise linear model

Inflection point 126

Magnesium intake < 126

(mg/day)

0.31 (0.13, 0.48) 0.0005

Magnesium intake > 126

(mg/day)

−0.04 (−0.06,−0.02) 0.0001

Log likelihood ratio <0.001

Non-Hispanic White

Fitting by the standard

linear model

−0.02 (−0.04,−0.00) 0.0307

Fitting by the two-piecewise linear model

Inflection point 124.5

Magnesium intake <

124.5 (mg/day)

0.36 (0.13, 0.60) 0.0026

Magnesium intake >

124.5 (mg/day)

−0.03 (−0.05,−0.01) 0.0022

Log likelihood ratio 0.001

Non-hypertension

Fitting by the standard

linear model

−0.02 (−0.04,−0.01) 0.0048

Fitting by the two-piecewise linear model

Inflection point 125

Magnesium intake < 125

(mg/day)

0.25 (0.07, 0.44) 0.0077

Magnesium intake > 125

(mg/day)

−0.03 (−0.04,−0.01) 0.0003

Log likelihood ratio 0.004

Age, gender, race/ethnicity, education level, marital status, body mass index, smoking

behavior, and the existence of diabetes, hypertension, and high cholesterol level, aspartate

aminotransferase, alanine aminotransferase, γ- glutamyl transpeptidase, serum albumin,

serum creatinine, and uric acid were adjusted.

Each stratification adjusted for the above factors except the stratification factor itself.

validation. The scale of our study, using data from the NHANES

cohort, strengthens our findings, given NHANES’ nationally

representative scope. This discovery holds significant clinical

implications by emphasizing the need to consider individual

characteristics when assessing the role of magnesium in preventing

and managing hepatic steatosis. Nevertheless, our study has

limitations; as a cross-sectional study, it establishes only a

correlation, not a causal relationship, between magnesium intake

and liver fat. Additionally, the magnesium intake data, based on

two 24-h dietary recalls, could be influenced by reporting biases.

Moreover, as our sample exclusively comprises U.S. participants,

this might limit the generalizability of our findings to international

populations. Lastly, there may be other potential biases stemming

from additional confounding factors. For instance, due to

limitations in the NHANES database, not all cardiac metabolic

factors are available, leading to an incomplete assessment of cardiac

metabolic risk factors.

Conclusions

Our research suggests an inverse relationship between

magnesium intake and hepatic steatosis in the majority of

Americans. In women, whites, and non-hypertensive individuals,

the relationship followed an inverted U-curve, with turning

points at 126, 124.5, and 125 mg/day, respectively. The

impact of magnesium intake on CAP values varies before

and after these turning points. These findings inform clinical

nutritional interventions and personalized magnesium intake,

underscoring the significance of magnesium research in developing

pharmacological approaches to reverse liver steatosis.
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