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Background: Nephritis is a pivotal catalyst in chronic kidney disease (CKD) 
progression. Although epidemiological studies have explored the impact of 
plasma circulating metabolites and drugs on nephritis, few have harnessed 
genetic methodologies to establish causal relationships.

Methods: Through Mendelian randomization (MR) in two substantial cohorts, 
spanning large sample sizes, we  evaluated over 100 plasma circulating 
metabolites and 263 drugs to discern their causal effects on nephritis risk. 
The primary analytical tool was the inverse variance weighted (IVW) analysis. 
Our bioinformatic scrutiny of GSE115857 (IgA nephropathy, 86 samples) and 
GSE72326 (lupus nephritis, 238 samples) unveiled anomalies in lipid metabolism 
and immunological characteristics in nephritis. Thorough sensitivity analyses 
(MR-Egger, MR-PRESSO, leave-one-out analysis) were undertaken to verify the 
instrumental variables’ (IVs) assumptions.

Results: Unique lipoprotein-related molecules established causal links with 
diverse nephritis subtypes. Notably, docosahexaenoic acid (DHA) emerged as a 
protective factor for acute tubulointerstitial nephritis (ATIN) (OR1  =  0.84, [95% CI 
0.78–0.90], p1  =  0.013; OR2  =  0.89, [95% CI 0.82–0.97], p2  =  0.007). Conversely, 
multivitamin supplementation minus minerals notably increased the risk of ATIN 
(OR  =  31.25, [95% CI 9.23–105.85], p  =  0.004). Reduced α-linolenic acid (ALA) 
levels due to lipid-lowering drugs were linked to both ATIN (OR  =  4.88, [95% 
CI 3.52–6.77], p  <  0.001) and tubulointerstitial nephritis (TIN) (OR  =  7.52, [95% 
CI 2.78–20.30], p  =  0.042). While the non-renal drug indivina showed promise 
for TIN treatment, the use of digoxin, hydroxocobalamin, and liothyronine 
elevated the risk of chronic tubulointerstitial nephritis (CTIN). Transcriptome 
analysis affirmed that anomalous lipid metabolism and immune infiltration are 
characteristic of IgA nephropathy and lupus nephritis. The robustness of these 
causal links was reinforced by sensitivity analyses and leave-one-out tests, 
indicating no signs of pleiotropy.

Conclusion: Dyslipidemia significantly contributes to nephritis development. 
Strategies aimed at reducing plasma low-density lipoprotein levels or 
ALA supplementation may enhance the efficacy of existing lipid-lowering 
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drug regimens for nephritis treatment. Renal functional status should also 
be judiciously considered with regard to the use of nonrenal medications.

KEYWORDS

plasma circulating metabolites, nephritis, two-sample Mendelian randomization, 
therapeutic agents, bioinformatics

1 Introduction

Nephritis, a prevalent renal disorder, is pathologically categorized 
into glomerulonephritis and tubulointerstitial nephritis, among other 
types (1, 2). It is further classified by etiology, including drug-induced 
nephritis, IgA nephropathy, lupus nephritis, and more (3–5). With 
the global prevalence of chronic kidney disease (CKD) due to 
nephritis exceeding 10% (6), this condition poses a substantial and 
growing public health concern worldwide. Thus, there’s an escalating 
need for early identification and mitigation of risk factors within 
high-risk populations, essential for alleviating the impact on global 
public health.

In recent years, research has unveiled abnormal plasma metabolite 
levels in nephritis patients, notably associated with lipoprotein 
metabolism (7). Disruptions in lipid metabolism are recognized as a 
contributing factor in nephritis and its progression to chronic kidney 
disease (CKD) (8, 9). Specifically, variants in the apolipoprotein L1 
(APOL1) gene have been linked to APOL1 nephropathy (10). Notably, 
drugs tested in randomized controlled trials for nephritis primarily 
target immune and inflammatory pathways rather than lipid 
metabolism (11–14), often due to trial complexities, expenses, and the 
prolonged nature of nephritis (15–17). The causative link between 
plasma metabolites and nephritis risk, alongside the effectiveness of 
lipid-lowering drugs in treatment, remains uncertain.

Genome-wide association studies (GWAS) and Mendelian 
randomization (MR) stand as formidable tools in drug development 
and assessing disease risk (18, 19). GWAS offers cost-effective genetic 
data, and MR harnesses this information for causal inferences, 
mitigating environmental confounding to unveil genetic-disease 
associations (20, 21). Often called “nature’s randomized controlled 
trials,” MR investigates whether carriers of risk alleles exhibit distinct 
disease risks, delving into causal connections between risk factors, 
drug targets, and eventual outcomes (22–24).

In this investigation, we  employed Mendelian randomization 
(MR) analysis to examine potential causal links between plasma 
metabolites, particularly lipoproteins, lipid-lowering medications, and 
nephritis. Utilizing data from an extensive genome-wide association 
study (GWAS) encompassing hundreds of thousands of samples, 
we uncovered connections between circulating metabolites and the 
risk of nephritis. Remarkably, diverse types of nephritis displayed 
unique associations with specific circulating metabolites. Moreover, 
across two distinct European cohorts, we identified DHA as a risk 
factor for acute tubulointerstitial nephritis (ATIN). Our analysis also 
delved into the influence of lipid-lowering drugs on nephritis 
outcomes and probed the viability of drugs commonly used in other 
conditions for potential nephritis treatment. Further validation using 
transcriptome data underscored the pivotal role of lipid metabolism 
in nephritis pathogenesis.

2 Method

2.1 Data sources

The directed acyclic graph (DAG) of the MR part of this study is 
shown in Figure 1. Summary data for all cohorts used for Mendelian 
randomization (MR) analysis can be obtained by the “TwoSampleMR” 
R package, using the keyword “Treatment/medication code” to search 
for drug treatment cohorts. The GWAS summary statistics used in this 
two-sample MR survey are the largest to date, and the outcome cohort 
was extracted from the Finnish cohort in the summary data using the 
keyword “Nephritis.” The exposure sample cohort uses data from a 
different source than the outcome GWAS (Finnish cohort) to 
minimize sample overlap to ensure robustness. Specifically, exposure 
cohorts of 123 plasma circulating metabolites, plasma proteins, 
medications, and Omega-3 polyunsaturated fatty acid levels were 
derived from independent studies (25–30). The drug treatment 
cohorts of Simvastatin, Atorvastatin, and Multivitamins +/− minerals 
and the validation cohort of plasma metabolites are also from the 
British Biobank, which is different from the Finnish database. Detailed 
descriptions of the cohorts are in Table 1. All these datasets were 
subjected to Mendelian randomization analysis following the 
procedures described in Figure  2. Furthermore, kidney-related 
datasets GSE115857 (IgA nephropathy, 86 samples) and GSE72326 
(lupus nephritis, 238 samples) were retrieved from the GEO database 
to further investigate the lipid metabolism and immunological 
features of nephritis.

2.2 Mendelian randomization

The Inverse variance weighting (IVW) method was employed as 
the primary decision-making approach in all Mendelian 
randomization (MR) analyses conducted in this study, although a total 
of five MR methods were used, including Weighted median regression, 
IVW, Mendelian randomization-Egger (MR Egger), Simple mode, and 
Weighted mode (31). Because the method can indeed satisfy the 
causal estimation of instruments with instrumental variable 
assumptions reported elsewhere (21). Additionally, MR-Egger 
regression and MR-PRESSO were utilized to assess the potential 
presence of horizontal pleiotropy among instrumental variables.

2.3 Sensitivity analysis

Subsequently, all exposure instrumental variables (IVs) used in 
the sensitivity analysis showed significant correlation with the 
exposure in Mendelian randomization (MR) (p < 5E-8), ensuring the 
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relevance assumption in MR. To maintain the independence 
assumption in MR, we  selectively chose IVs with linkage 
disequilibrium (LD) < 0.01 after clustering in 10,000 kb windows. 
Subsequently, downstream sensitivity analysis was conducted on these 
IVs that met the first two MR assumptions. The sensitivity analysis 
employed a penalization approach, implementing a systematic leave-
one-out method to assess potential pleiotropy for each single 

nucleotide polymorphism (SNP) and to test adherence to the 
exclusion restriction assumption. The random-effect inverse-variance 
weighted (IVW) method was regarded as the primary analysis (31), 
and MR-Egger, weighted median, weighted mode, simple mode, and 
MR-pleiotropy residual sum and outlier (MR-PRESSO) were further 
employed as complementary methods (32). Additionally, 
heterogeneity among instrumental variables was assessed using the 

FIGURE 1

Directed acyclic graph.

TABLE 1 Data source.

Outcome/Exposure Author Year Case Control Total PMID Ancestry

Outcome

Tubulo-interstitial nephritis, not specified as 

acute or chronic (TIN)

Unknown 2018 1,118 201,028 202,146 Unknown European

Chronic tubulo-interstitial nephritis (CTIN) Unknown 2018 620 201,028 201,648 Unknown European

Glomerulonephritis (GN) Unknown 2018 4,613 214,179 218,792 Unknown European

Acute tubulo-interstitial nephritis (ATIN) Unknown 2018 11,216 201,028 212,244 Unknown European

Exposure

Plasma circulating metabolites/nephritis Kettunen 2016 24,925 27,005,778 European

Plasma circulating metabolites/nephritis Borges CM 2020 115,078 Unknown European

Plasma protein Deming 2017 3,146 28,247,064 European

Simvastatin Ben Elsworth 2018 410,506 52,427 162,933 Unknown European

Atorvastatin Ben Elsworth 2018 449,082 13,851 462,933 Unknown European

Multivitamins +/− minerals Ben Elsworth 2018 360,727 99,624 460,351 Unknown European

Fenofibrate Aslibekyan S 2012 793 23,149,075 European

Serum vitamin D-binding protein levels Moy KA 2014 1,380 24,740,207 European

Vitamin B6/B12, folic acid Keene KL 2014 1725 25,147,783 European

Omega-3 polyunsaturated fatty acid Dorajoo R 2015 644 717 1,361 26,584,805 Singaporean 

Chinese
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Q-statistic (p < 0.05). MR-Egger regression, along with Mendelian 
randomization pleiotropy residuals and outliers (MR-PRESSO), was 
utilized to evaluate horizontal pleiotropy. Evidence of horizontal 
pleiotropy was based on MR-Egger intercept values significantly 
deviating from zero (p < 0.05). The pleiotropy test assessed the 
presence of pleiotropic effects, with p-values > 0.05 considered 
indicative of no pleiotropy. Because this article is an “exploratory 
study,” which means discovering as many potentially positive things 
as possible, multiple testing correction is not performed. All analyses 
were performed using the “TwoSampleMR” and “MR-PRESSO” 
packages in R 4.2.3.

2.4 Analysis of lipid metabolism 
characteristics in IgA nephropathy and 
lupus nephritis

The “limma” package was used to identify differentially expressed 
genes between pathological and normal samples (FDR < 0.05, fold 
change >1.5). Subsequently, lipid metabolism-related genes were 
obtained from previous studies, which were used to obtain 
differentially expressed lipid metabolism-related genes. Furthermore, 
the DAVID tool1 (33) was employed for Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment 
analysis, and terms with high count values were visualized using the 
“ggplot2” package to generate bubble plots.

1 https://david.ncifcrf.gov/tools.jsp

2.5 Analysis of immunological 
characteristics in IgA nephropathy and 
lupus nephritis

Three immune cell infiltration calculation methods, Cibersort2 (34), 
QuantiSEQ3 (35), EPIC4 (36), and one immune score cell calculation 
method, ESTIMATE5 (37), were employed to evaluate the immunological 
characteristics of IgA nephropathy and lupus nephritis. The Kruskal-
Wallis test was used to identify differences in immune cell infiltration 
and immune scores between pathological and control samples (p < 0.05).

3 Result

3.1 Plasma metabolites MR analysis

In their genome-wide association study, Kettunen et al. investigated 
123 circulating metabolites in 24,925 individuals (25), enabling the use 
of Mendelian randomization (MR) to unveil the widespread causal 
impact of circulating metabolites on various diseases. Employing the 
inverse variance weighted (IVW) method as the primary approach in 
MR analysis, a total of 26 genetically predicted circulating metabolites 
were found to be  associated with the risk of nephritis (Figure  3). 
Notably, various forms of high-density lipoprotein (HDL), including 

2 https://cibersortx.stanford.edu/

3 https://icbi.i-med.ac.at/software/quantiseq/doc/

4 http://epic.gfellerlab.org

5 https://sourceforge.net/projects/estimateproject/

FIGURE 2

Work process.
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M.HDL.C (odds ratio (OR): 2.091, 95% confidence interval (CI): 1.204, 
3.631), M.HDL.FC (OR: 2.165, 95% CI: 1.211, 3.870), HDL.C (OR: 
1.549, 95% CI: 1.062, 2.259), and M.HDL.L (OR: 2.073, 95% CI: 1.032, 
4.163), were identified as risk factors for chronic tubulointerstitial 
nephritis (CTIN). Additionally, phenylalanine (Phe) (OR: 1.906, 95% 
CI: 1.100, 3.303) was found to be a risk factor for tubulo-interstitial 
nephritis, not specified as acute or chronic (TIN), while Creatinine 
(Cre) was identified as a protective factor for CTIN (OR: 0.493, 95% CI: 
0.244, 0.996) and a high-risk factor for glomerulonephritis (GN) (OR: 
1.378, 95% CI: 1.063, 1.834). It is worth noting that different subtypes 
of nephritis seemed to correspond to different types of lipoproteins, 
except for acute tubulointerstitial nephritis (ATIN), where the risk 
factors were related to fatty acid moieties and proportions 
(Supplementary Figure S1A). For instance, HDL was identified as a risk 
factor for CTIN (Supplementary Figure S1B), while LDL and IDL were 
risk factors for GN (Supplementary Figure S2A). Among the 123 
circulating metabolites, only phenylalanine was found to be  a risk 
factor for TIN (Supplementary Figure S2B).

3.2 Sensitivity analysis

The MR-PRESSO global heterogeneity test showed no horizontal 
pleiotropy for all instrumental variables (P Global Test >0.05) 

(Supplementary Table S1). Cochran Q statistics indicated no 
heterogeneity in the associations between the 26 circulating metabolic 
traits and the disease (Supplementary Table S2) (Q pval >0.05). 
However, using the MR-Egger intercept, all risk factors representing 
GN, except for Crea, exhibited horizontal pleiotropic effects 
(Supplementary Table S3).

Single MR analysis revealed CH2.in.FA as the most highly 
correlated independent risk factor for ATIN 
(Supplementary Figure S3A). In CTIN, M.HDL.L, M.HDL.FC, 
M.HDL.C, and Crea showed correlation coefficients exceeding 0.7 
(Supplementary Figure S3D). Crea was also the most highly correlated 
independent risk factor for GN (Supplementary Figure S3B), and Phe 
exhibited a high independent correlation within TIN 
(Supplementary Figure S3C).

Leave-one-out test results indicated that prominent risk factors 
did not have any SNP independently driving the corresponding MR 
results (Supplementary Figure S4). No evidence of directional 
pleiotropy was observed in the funnel plots (Supplementary Figure S5). 
Numerous SNPs exhibited the highest independent correlation with 
GN risk, including rs2731672, rs4939884, rs6507939, rs6507939, 
rs9987289, rs1800961, rs4939883, rs9987289, rs1461729, rs2126259, 
and rs2126259 (B > 1, p < 0.05), among others. Additionally, the B 
coefficient for the rs10265221 instrumental variable representing Crea 
reached 0.86 (Supplementary Table S4).

FIGURE 3

Mendelian randomization of 123 plasma circulating metabolites with nephritis.
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FIGURE 4

Mendelian randomization results of inverse variance weighted (IVW) estimates of associations between 249 plasma circulating metabolites and 
nephritis.

3.3 Additional database validation

We conducted Mendelian randomization studies on a cohort of 
115,078 samples from another MR Base. Consistent with the previous 
results, different types of nephritis appeared to correspond to different 
types of lipoproteins. Specifically, VLDL, LDL, and IDL were the 
primary risk factors for GN, while VLDL was the main risk factor for 

ATIN. Notably, polyunsaturated fatty acids (PUFA) and 
Docosahexaenic Acid (DHA) were newly discovered protective factors 
for ATIN. For TIN without specific subtyping, HDL emerged as a 
more reliable risk factor for TIN compared to LDL (Figure 4).

Based on the study by Deming et al., we also examined the impact 
of 56 proteins in the plasma of 818 individuals on the outcome of 
nephritis (27) (Supplementary Table S5). The results revealed only one 
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risk factor, APOH, for TIN (OR = 1.239985889, LOWER1.139454911, 
UPPER1.34938644). This may be attributed to the limitations of the 
sample size (818 individuals) and the depth of proteomic sequencing 
(56 proteins). Overall, these findings collectively suggest that the content 
of lipoproteins in the plasma is a risk factor for developing nephritis.

3.4 Lipid-lowering drugs in nephritis 
treatment

In independent cohorts, docosahexaenoic acid (DHA), an 
Omega-3 polyunsaturated fatty acid, consistently emerged as a risk 
factor for acute tubulointerstitial nephritis (ATIN). Investigating 
relevant medications within the OMEGA-3 category in the MRbase 
database becomes essential. Our analysis indicates that reducing 
lipoprotein-associated phospholipase A2 (Lp-PLA2) via statin therapy 
can prevent ATIN, while an increase in Lp-PLA2 protects against 
tubulointerstitial nephritis (TIN). Lowering low-density lipoprotein 
cholesterol (LDL-C) with statins was deemed preventive against 
glomerulonephritis (GN) (Supplementary Figure S6A). However, 
fenofibrate, the second most commonly used lipid-lowering drug, 
showed no nephritis risk association (Supplementary Table S6).

Excessive niacin and B-complex vitamin supplementation raised 
nephritis risk. High vitamin B12 levels in plasma increased the 
likelihood of Chronic Tubulointerstitial Nephritis (CTIN), while 
elevated vitamin B levels post-ischemic stroke showed the same trend. 
Interestingly, multivitamin supplementation without appropriate 
mineral intake increased ATIN risk (Supplementary Figure S6B). 
Alterations in plasma Omega-3 polyunsaturated fatty acid levels were 
assessed. Decreased α-Linolenic acid (ALA) percentages in plasma 
contributed to ATIN, GN, and TIN. Dysregulation of Eicosapentaenoic 
Acid (EPA) correlated negatively with ATIN risk. Importantly, 
increased DHA content served as a protective factor for TIN but a risk 
factor for CTIN (Supplementary Figures S6C–E).

In summary, among the various factors analyzed, Multivitamins+/
minerals-plasma levels emerged as the highest risk factor for ATIN, 

followed by decreased ALA percentage, also a top risk factor for 
TIN. Reduction in LDL-C emerged as a protective factor against GN, 
reducing the significance of other exposure factors (Figure 5).

3.5 Potential risks of other medications in 
nephritis

To explore the possibility that other commonly used drugs in 
clinical practice could trigger nephritis, we extracted genome-wide 
association data for 263 drugs from the MR base database using the 
keyword “Treatment/medication code.” Using the IVW method, 
we assessed the causal impact of these medications on nephritis 
outcomes. Most of the drug use was associated with an increased 
likelihood of developing nephritis, with exceptions observed for 
Co-amilofruse, Seretide 50 evohaler, Paracetamol, and Indivina 
1 mg/2.5 mg tablet (Figure 6). Drugs that are causally linked to the 
risk of nephritis are often used to treat other conditions, such as 
Thyroid, Diabetes, Respiratory and Vitamin deficiency. Specifically, 
Methotrexate and Insulin products emerged as potential high-risk 
factors for various forms of nephritis. Furthermore, the usage of 
Digoxin was identified as a high-risk factor for CTIN, followed by 
Hydroxocobalamin product and Liothyronine. In the case of GN, 
the use of Calcichew d3 tablet was associated with a high-risk 
profile, followed by Beclometasone and Folic acid product 
(Figure 6).

3.6 Transcriptomics reveals lipid 
metabolism in kidney diseases

Publicly available datasets from GEO (GSE115857–86 samples, 
GSE72326–238 samples) were analyzed for IgA nephropathy and 
lupus nephritis. Differential analysis identified 936 and 1,063 
differentially expressed genes for IgA nephropathy and lupus nephritis, 
respectively. (Supplementary Figures S7A,D).

FIGURE 5

Inverse variance weighting (IVW) estimated risk associations between lipid-lowering medications and changes in plasma omega-3 polyunsaturated 
fatty acid levels and nephritis.
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We assessed 28 and 47 differentially expressed genes related to 
lipid metabolism in IgA nephropathy and lupus nephritis, respectively, 
based on our previous research involving 776 lipid metabolism-related 
genes. Functional enrichment analysis (DAVID 6.8) showed that these 
genes predominantly localized to the endoplasmic reticulum 
membrane and were associated with functions like heme binding, iron 
ion binding, and monooxygenase activity. They played roles in fatty 
acid metabolic processes, long-chain fatty acid metabolic processes, 
Metabolic pathways, the PPAR signaling pathway, and insulin 
resistance (Supplementary Figure S7G).

Abnormal lipid metabolism pathways in lupus nephritis mirrored 
those in IgA nephropathy. Differentially expressed molecules were 
primarily located at the endoplasmic reticulum membrane, engaged 
in lipid metabolic processes, and exhibited oxidoreductase activity 
(involving the CH-CH group of donors). These genes were linked to 
Metabolic pathways, Glycerophospholipid metabolism, and Fatty acid 
metabolism pathways (Supplementary Figure S7H).

3.7 Immune infiltration characteristics of 
IgA nephritis and lupus nephritis

In recent years, immune checkpoint inhibitors (ICIs) have been 
effective in cancer treatment and managing kidney diseases, including 
nephritis induced by immune deposits (38, 39). New algorithms and 
“next-generation” sequencing enable computational assessment of 

immune infiltration differences between nephritis and healthy kidney 
tissue (34–37). Using CIBERSORT, EPIC, QUANTISEQ, and 
ESTIMATE methods, immune infiltration disparities in IgA 
nephropathy and lupus nephritis were revealed. Both conditions 
showed abnormal B cell and CD4-positive T cell infiltration 
(Supplementary Figures S8A,B), consistently observed with other 
algorithms (Supplementary Figures S8C–F). IgA nephropathy 
exhibited abnormal infiltration of NK cells, monocytes, and activated 
dendritic cells (Supplementary Figures S8A,C,E), while lupus nephritis 
displayed abnormal Treg cells, M0 macrophages, and M1 macrophages 
infiltration (Supplementary Figures S8B,D,F).

4 Discussion

In this study, we utilized a two-sample Mendelian randomization 
(MR) approach to investigate causal connections between plasma 
metabolites and nephritis. Bioinformatics analysis of transcriptomics 
data revealed distinct lipid metabolism and immune traits in IgA 
nephropathy and lupus nephritis.

The MR analysis of plasma circulating metabolites in two cohorts, 
Kettunen (24,925 samples) and Borges CM (115,078 samples), 
demonstrated that different types of lipoproteins are causally 
associated with distinct types of nephritis. Specifically, HDL-related 
circulating metabolites showed a tendency to be causally associated 
with CTIN, consistent with previous reports (40, 41). While 

FIGURE 6

Inverse variance weighting (IVW) estimated the risk association between potential non-nephritic medications and nephritis.
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randomized controlled trials did not show evident causal relationships 
between LDL and IDL in GN, reports indicated a negative correlation 
between LDL-C and renal function as well as kidney disease (42, 43). 
Unfortunately, current evidence does not support a causal relationship 
between VLDL-related circulating metabolites and ATIN. Lp-PLA2 is 
one of the isoforms in the phospholipase superfamily and is secreted 
into plasma by macrophages, T cells and mast cells (44). Lp-PLA is 
currently a recognized marker of cardiovascular disease, but it plays 
different roles in inflammation and atherosclerosis depending on the 
lipoprotein bound in plasma (45). The results of this study show that 
the decrease in Lp-PLA2 caused by statins is a protective factor for 
ATIN, and the increase in Lp-PLA2 caused by statins is also a 
protective factor for TIN. This may be  caused by intra-group 
differences in TIN (Tubulo-interstitial nephritis, not specified as acute 
or chronic), because the summary data we  obtained failed to 
distinguish ATIN and TIN in the TIN group. In addition, the clinical 
manifestations of TIN with different causes will be different (46–49), 
and different types of nephritis will also have different pathological 
characteristics and clinical outcomes (50–53). Therefore, compared 
with TIN, the conclusion that decreased Lp-PLA2 is a protective factor 
for ATIN is more reliable, while the conclusion that increased 
Lp-PLA2 is a protective factor for TIN needs to be treated with caution.

In the mentioned cohorts, an intriguing negative link between 
DHA and ATIN led to deeper exploration of Omega-3 fatty acid drugs 
(e.g., statins, niacin, fenofibrate) in nephritis. Surprisingly, 
multivitamin supplementation without minerals was tied to higher 
ATIN risk, warranting further investigation. Statins, commonly 
employed in CKD treatment for reducing cardiovascular disease risk 
(54), showed interesting associations in our study. Specifically, statin-
induced ALA reduction was found to increase the risk of ATIN and 
GN, while statin-induced LDL reduction exhibited a protective effect 
against GN. Previous studies have identified ALA as a predictive 
biomarker for chronic kidney disease (CKD) (55), although its ability 
to slow the progression of IgA nephropathy remains inconclusive (56). 
In contrast, LDL has been suggested to play a role in CKD progression 
in certain observational and mechanistic studies (42, 57), and some 
reports even propose lower LDL levels to enhance the therapeutic 
benefits of statins in treating patients with chronic kidney disease (58). 
Based on these findings, we  recommend cautious ALA 
supplementation with statins in CKD for optimized efficacy.

In recent years, numerous drugs have been discovered to possess 
potential for treating other diseases (59, 60), a phenomenon termed 
“new uses of old drugs” (61). Therefore, driven by curiosity about 
whether drugs used for other diseases are beneficial in treating 
nephritis, we further explored the causal relationship between 263 
other drugs and nephritis. Among the 26 positive results, digoxin, 
hydroxocobalamin, and liothyronine were identified as the only three 
high-risk factors for CTIN. Among these, Digoxin is commonly 
believed to reduce the risk of CKD through its treatment of 
cardiovascular diseases (62, 63). However, our research results provide 
support for the notion that excessive use of Digoxin is, in fact, one of 
the high-risk factors for CKD (64). Additionally, thyroid hormones 
regulated by liothyronine and thyroid diseases are often closely related 
to CKD (65–67). In an MR study concerning drugs, concluding 
without considering hidden co-founders and pathway analysis is risky. 
Therefore, the findings of these drugs must be treated with caution. 
They can only serve as a basis for subsequent research and cannot 
be directly used for clinical recommendations and guidance.

The aforementioned findings indicate that lipoproteins and fatty 
acids in circulating metabolites are potential risk factors for nephritis, a 
conclusion supported by proteomic data analysis (68, 69). For instance, 
Chen et  al. conducted quantitative proteomic analysis on 59 IgA 
nephropathy cases and 19 normal controls, identifying novel molecular 
subtypes (70). They highlighted specific alterations in fatty acid 
β-oxidation, the TCA cycle, glycolysis, and oxidative phosphorylation 
among these subtypes, findings consistent with those of Dong et al. (71). 
The gut microbiome, proteomic and metabolomic landscape of renal 
diseases offers insights into pathogenesis, treatment, and prevention, yet 
transcriptomic studies remain scarce (50, 72–75). Scientists are also 
promoting the discovery of new treatments and targets for various types 
of nephritis (76–79). Indeed, integrating transcriptomics with other 
omics can further advance the discovery of novel mechanisms and 
biomarkers for renal diseases (80). Therefore, we  leveraged 
transcriptomic data from IgA nephropathy and lupus nephritis to 
elucidate their lipid metabolism and immune features, as dysregulation 
of immune regulatory molecules or immune function is also considered 
a contributing factor to nephritis onset and progression (38). 
Dysregulation of lipid oxidation, uptake, and biosynthesis is deemed a 
predisposing factor for CKD, a notion supported by an early pioneering 
study (9, 81). Additionally, IgA nephropathy and lupus nephritis exhibit 
aberrant B-cell and CD4 T-cell infiltration. Mechanistic and 
observational studies suggest that modulation through B cells and CD4 
T cells can effectively suppress the development of IgA nephropathy and 
lupus nephritis, findings consistent with our study results (82–87).

Compared to other Mendelian randomization studies on kidney 
diseases, the strength of our research lies in the direct use of clinically 
diagnosed outcomes as the outcome variables, including Acute 
tubulo-interstitial nephritis, Chronic tubulo-interstitial nephritis, 
Glomerulonephritis, and Tubulo-interstitial nephritis. Instead of 
relying on traditional measures of kidney function such as glomerular 
filtration rate or creatinine clearance, we have utilized these clinically 
relevant diagnostic outcomes, enabling a clearer delineation of the 
causal relationships between exposure factors and diseases. Moreover, 
the robust sensitivity analysis ensures the reliability of the 
instrumental variables, as described in the Methods section.

4.1 Study limitations

This study used summary statistics data from MR base, limiting our 
ability to explore U-shaped relationships between exposure factors and 
nephritis. The availability of larger sample sizes was restricted, affecting 
statistical power for some instrumental variables. In addition, in order to 
explore more potential positive exposure factors, this study did not 
correct the results, which may lead to false positives. Not only that, when 
analyzing the causal association between exposure factors (Omega-3 
polyunsaturated fatty acid) and nephritis outcomes, a cohort of European 
ancestry was not available, and the different ancestry of the exposure and 
outcome samples may lead to biased results. Although this result meets 
the criteria for a test of heterogeneity, this result needs to be interpreted 
with caution. Moreover, due to the inability to obtain complete original 
data, bidirectional causal MR analysis was not performed, and it was also 
impossible to further clarify the pathological stratification of outcome 
variables to obtain more valuable clinical significance. Nevertheless, the 
study identified the studied exposure factors as causal factors 
for nephritis.
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5 Conclusion

Our MR study supports a causal link between plasma metabolites, 
especially DHA, and nephritis. Lipid-lowering drugs offer potential as 
nephritis treatments, possibly in combination with other medications 
for enhanced outcomes. Non-nephritic drugs like Indivina and 
co-amilofruse show promise for TIN treatment. However, caution is 
needed with drugs like Digoxin, hydroxocobalamin, and liothyronine, 
depending on the patient’s renal function. Additionally, 
transcriptomics data analysis confirms abnormal lipid metabolism 
and immune features in nephritis, advancing our understanding of its 
pathogenesis and potential for targeted therapies.
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