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Intestine is responsible for nutrients absorption and plays a key role in defending 
against various dietary allergens, antigens, toxins, and pathogens. Accumulating 
evidence reported a critical role of intestine in maintaining animal and human 
health. Since the use of antibiotics as growth promoters in animal feed has 
been restricted in many countries, alternatives to antibiotics have been globally 
investigated, and polysaccharides are considered as environmentally friendly and 
promising alternatives to improve intestinal health, which has become a research 
hotspot due to its antibiotic substitution effect. Astragalus polysaccharide (APS), 
a biological macromolecule, is extracted from astragalus and has been reported 
to exhibit complex biological activities involved in intestinal barrier integrity 
maintenance, intestinal microbiota regulation, short-chain fatty acids (SCFAs) 
production, and immune response regulation, which are critical for intestine 
health. The biological activity of APS is related to its chemical structure. In this 
review, we outlined the source and structure of APS, highlighted recent findings 
on the regulation of APS on physical barrier, biochemical barrier, immunological 
barrier, and immune response as well as the latest progress of APS as an antibiotic 
substitute in animal production. We hope this review could provide scientific 
basis and new insights for the application of APS in nutrition, clinical medicine 
and health by understanding particular effects of APS on intestine health, anti-
inflammation, and animal production.
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1 Introduction

Intestine, one part of the digestive tract, is not only responsible for digestion and absorption 
of dietary nutrients, but also plays a key role in immune homeostasis, protecting the body from 
various dietary allergens, antigens, toxins, and pathogens. Nowadays, accumulating evidence 
reported a critical role of intestine health in animal and human health maintenance (1). Indeed, 
intestinal homeostasis disorder may result in impaired morphology and function of intestine, 
reduced digestion and absorption capacity, increased diarrhea rate, reduced feed intake, and 
growth retardation (2–4). Hence, intestinal health status is crucial for an optimal production result 
and sustainable animal production (5). With raise public attention to intestinal health, intestine 
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health has become a hot research topic in recent years (6). Intestinal 
barrier (physical barrier, biochemical barrier, and immunological 
barrier) composed of epithelial cells, microbiota, immune cells, and their 
secretions is key for intestinal health and involved in protecting body 
from the penetration of harmful entities (e.g., microorganisms, luminal 
antigens, and luminal proinflammatory factors) to maintain a stable 
internal environment (7). Moreover, dysfunction of intestinal barrier is 
believed to contribute to a broad range of diseases, such as inflammatory 
bowel disease (IBD), colorectal cancer, chronic liver disease, type 1 
diabetes, and obesity (8, 9).

Since the use of antibiotics as growth promoters in animal feed 
has been restricted in many countries, accumulating evidence 
reported that probiotics, vitamins, minerals, amino acids, or plant 
extracts, etc. have been used to regulate intestinal barrier. Notably, 
plant extracts are natural, and multi-compounds products formed 
through an extraction and separation process from plant and exert 
positive effects on the integrity of the intestinal barrier with high 
efficiency and no residue. Astragalus comes from a type of leguminous 
herb and known as Huang Qi in China. Astragalus have been widely 
used to replenish qi by soaking into the water in folk. Astragalus 
supplements contains polysaccharides, saponins, flavonoids, and etc. 
(10). Among these biologically active ingredients, Astragalus 
polysaccharide (APS), a water-soluble heteropolysaccharide extracted 
from the stem or dried root of astragalus, is the most abundant and 
important active substance in Astragalus (11). Chemical composition 
analysis indicates that APS is mainly composed of glucose, galactose, 
rhamnose, mannose, xylose, arabinose, glucuronic acid, and 
galacturonic acid (12). Growing pharmacological and clinical trials 
had shown that APS is used to protect and support the immune 
system (13). In addition, APS exerts anti-oxidation, anti-aging, anti-
fibrosis, anti-tumor, antiviral and antibacterial, blood sugar reduction, 
blood lipid reduction, anti-fibrosis, and radiation protection effects 
(14). Studies showed that traditional Chinese medicine (TCM) have 
applied as effective method to modify intestinal dysfunction, regulate 
structure and function of gut microbiota, reduce inflammation 
response, as well as cell repair intestinal barrier. Likewise, emerging 
evidence focused on the regulation of intestinal health by APS have 
indicated the beneficial effects and underlying mechanisms involved 
in intestinal barrier maintenance, intestinal microbiota regulation, 
immune response, and redox homeostasis (15–17).

In this review, we  firstly outlined the source and structure of 
APS. And then, we highlighted recent advancements on APS as a 
potential therapeutic intervention for intestinal disease associated 
with intestinal barrier dysfunction, intestinal microbiota disorder, 
intestinal inflammatory response, as well as intestinal oxidative stress 
response. We hope this review could provide scientific basis and new 
insights for the application of APS in nutrition, clinical medicine, and 
health by understanding particular effects of APS on intestine 
homeostasis and immune response.

2 Characteristics of Astragalus 
polysaccharide

Polysaccharides are polymers constituted of more than 10 
monosaccharides with condensation reaction (18, 19). Polysaccharides 
are widely present in plants, algae, animals and microorganisms 
(bacteria, fungi, and yeasts) and generally obtained from plants 

through extraction, separation, and purification (20). Growing 
evidences revealed that polysaccharides possess complex biological 
activities and a variety of biological functions involved in antioxidant, 
antitumor, antiviral, immune regulation activities and so on (21). Of 
note, polysaccharides are widely present in TCM and considered as 
one of the important bioactive ingredients in TCM (22). Additionally, 
polysaccharides can be  divided into homopolysaccharides and 
heteropolysaccharides according to the composition of 
monosaccharides. Homopolysaccharides refer to polysaccharides 
composed of only one monosaccharide, while heteropolysaccharides 
are polysaccharides composed of two or more monosaccharides. APS, 
a water-soluble heteropolysaccharide, is extracted from a common 
Chines herbal plant (Astragalus membranaceus) and considered as 
important bioactive components of Astragalus membranaceus (23).

Astragalus polysaccharide process complex biological activities 
including anti-inflammation, antioxidant, antiviral, anticancer, and 
immune functions (16, 24–27) and are applied as an additive with 
non-toxic side effects, low cost, and no residue. Indeed, polysaccharides 
are macromolecules with the chemical structures (primary, secondary, 
tertiary, and quaternary structures) which contribute to its biological 
activities (28, 29). Nevertheless, polysaccharide structural analysis 
indicated that polysaccharide structures are very complex and 
comprehensive structures were characterized by monosaccharide 
composition, Fourier transform infrared and nuclear magnetic 
resonance spectroscopy (NMR) analysis (29, 30). Although APS is 
formed by galactose, glucose, mannose, rhamnose, xylose, arabinose, 
glucuronic acid, and galacturonic acid with condensation reaction (12), 
but content and monosaccharide compositions of APS obtained from 
different original materials, different areas, and different extraction 
methods contribute to differentiated health benefits. The biological 
activities of APS are related to their chemical structure. Extraction, 
separation, and purification are essential steps for the APS structure 
determination, and then structural analysis performed by high 
performance liquid chromatography (HPLC), NMR, and other methods 
(12). To date, water extraction, enzymatic hydrolysis extraction, 
ultrasonic wave extraction, and microwave-assisted extraction are 
commonly used methods in APS extraction (31). A previous study 
reported that APS extracted by hot water was performed NMR analysis, 
structural analysis suggested that APS is a kind of glucan, the main 
chain is connected by α-1,4-glycoside bonds and the branch chain is 
α-1,6-glycoside bonds (12, 32). Nevertheless, four APSs were obtained 
with an ethanol precipitation procedure. Molecular weight and 
monosaccharide composition analysis indicated that ASP1 with 
molecular weight 257.7 kDa is consisted of glucose, ASP2 with 
molecular weight 40.1 kDa is consisted of arabinose, ASP3 with 
molecular weight 15.3 kDa is consisted of rhamnose, glucose, and 
galactose, and ASP4 with molecular weight 3.2 kDa is consisted of 
galactose and arabinose (33). Furthermore, HPLC method was 
performed to define the monosaccharide composition of APS, results 
indicated that APS was composed of fucose, arabinose, galactose, 
glucose, and xylose with molar ratios of 0.01:0.06:0.20:1.00:0.06 (34). 
Simultaneously, structure of APS determined by gas chromatography 
(GC) and Fourier transmission-infrared spectroscopy (FT-IR) suggested 
that ASP was composed of arabinose, mannose, glucose, mannose, and 
galactose and with a ratio of 0.0992:1.26:1.00:0.015 (35). In addition, a 
literature reported that monosaccharide formation of APS was defined 
by HPLC and other methods, and analysis showed that APS-I with 
molecular weight 1699.1 kDa was composed of arabinose and glucose 
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(1:3.45) and APS-II with molecular weight 1197.6 kDa was composed 
of rhamnose, arabinose and glucose (1:6.25:17.86) (36).

3 Effects of Astragalus polysaccharide 
on intestinal barrier

Intestinal barrier composed of physical barrier, biochemical 
barrier, and immunological barrier plays a key role in preventing the 
passage of harmful or unwanted substances from entering the internal 
environment which is a crucial for humans and animals health (37–
39). Dysfunction of intestinal barrier function would lead to intestinal 
diseases such as enteritis, IBD, celiac disease, irritable bowel syndrome 
(IBS), and colorectal cancer (40–42). A variety of factors, such as food 
antigens, pathogenic organisms, and toxins, have been reported to 
disorder intestinal barrier integrity, which in turn lead to a reduced 
animal growth performance and animal production quality (43). 
Schematic representation for effects of Astragalus polysaccharide on 
the intestinal health was presented in Figure 1.

3.1 Astragalus polysaccharide improves the 
intestinal physical barrier

The intestinal physical barrier is a single-cell layer composed of 
intestinal epithelial cells, intercellular junctions, and intestinal 

mucosa, which separates the intestinal luminal contents from the 
internal milieu (44, 45). Furthermore, the functionally specialized 
epithelial cells contain enterocytes, Paneth cells, goblet cells, tuft cells, 
enteroendocrine cells, and microfold cells (46, 47). Enterocytes 
account for >80% of epithelial cells are specialized to absorb and 
export luminal nutrients (48). Goblet cells secrete mucins to protect 
mucous membranes, enteroendocrine cells secrete peptide hormones 
and Paneth cells produce a number of antimicrobial peptides (49, 50). 
Additionally, intercellular junctional complexes including tight 
junctions (TJ), adherens junctions, gap junctions, and desmosomes 
provide contact or tightly bound between neighboring cells and play 
a critical role in the regulation of paracellular permeability and 
epithelial barrier integrity (42, 51). Notably, TJ composed of Occludin, 
Claudins, and Zonula occludens have been extensively studied and are 
responsible for intestinal barrier function (52). Accumulating studies 
suggested that TJ are crucial for the maintenance of epithelial barrier 
integrity by selectively transporting essential molecules and preventing 
harmful substances from entering into the internal environment (42, 
53, 54).

A variety of factors, such as reactive oxygen species (ROS), 
infection, cytokines, and pathogens, have been reported to disorder 
intestinal physical barrier. Oxidative stress occurs when an imbalance 
emerged between the ROS production and antioxidant system, which 
induced intestinal cells apoptosis and disturbed abundance and 
distribution of TJ proteins resulting in damage of the epithelial barrier 
(55–57). Furthermore, ROS significantly enhanced crypt depth (CD) 

FIGURE 1

Schematic representation for effects of Astragalus polysaccharide on the intestinal health (By Figdraw). APS could protect the intestine from damage 
by upregulating the intestinal tight junction protein and enhancing goblet cell number. APS improve the intestinal immune response mainly by 
regulating sIgA secretion, cytokines production, and immune cells proliferation and differentiation. APS protects the intestinal biochemical barrier by 
regulating composition and structure of gut microbiota and SCFAs levels. APS, Astragalus polysaccharide; SCFAs, Short-chain fatty acids; and sIgA, 
Secretory immunoglobulin A.
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and reduced villus height (VH) of the intestine and ratio of villus 
height/crypt depth (VH/CD) (58). Emerging studies had shown that 
APS could inhibit inflammation, repair the integrity of intestinal 
barrier, and ultimately improve digestion and absorption of nutrients. 
Indeed, a previous study demonstrated that lipopolysaccharide (LPS)-
challenged weaned piglets supplemented with 800 mg/kg APS 
enhanced superoxide dismutase (SOD) and total antioxidant capacity 
(T-AOC) in serum, and enhanced abundance of claudin and occluding 
in the jejunum (44). Similarly, BALB/c mice exposed to Salmonella 
typhimurium (S. t.). supplemented with 200 mg/kg APS improved 
intestinal barrier through enhancing mRNA expression of ZO-1, 
Occludin, and Claudin-1 in jejunum and attenuating inflammation 
response (59). Furthermore, immunosuppressed broilers 
supplemented with 900 mg/kg γ-irradiation APS alleviated 
cyclophosphamide (CPM)-induced intestinal mucosa damage and 
increased jejunal goblet cell number (60). Collectively, these studies 
have shown that APS could reduce the epithelial cells loss caused by 
inflammation and repair the integrity of intestinal barrier.

3.2 Astragalus polysaccharide improves the 
intestinal biochemical barrier

Intestinal microbial barrier refers to commensal microorganisms 
(bacteria, archaea, fungi, and viruses) colonized in the digestive tracts 
and have been reported to play potential role in protecting against 
external stimuli, modulating immunity, modulating the metabolism 
of lipids and bile acids as well as neuromodulation (38, 61–63). In 
general, gut bacteria mostly account for gut microorganisms and 
members of Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, 
Fusobacteria, and Verrucomicrobia have been identified as major 
bacterial phylum of gut microbiota (64, 65). Mounting studies 
suggested that intestinal microbiota maintain a symbiotic relationship 
with the host (66) and play a critical role in animal health maintenance 
and the pathogenesis of intestinal diseases, such as IBS, IBD, celiac 
disease, and colorectal cancer (67). Growing evidence demonstrated 
that gut microbiota not only provide essential capacities for the 
metabolism of nutrients, but also participate in regulating the integrity 
and function of the intestinal barrier in a homeostatic balance (68, 69). 
Therefore, gut microbiota homeostasis is vital for intestinal barrier 
integrity and the underlying mechanism are largely unknown (70–72). 
Gut microbiota provide essential capacities for the fermentation of 
non-digestible substrates like dietary fibers and endogenous intestinal 
endogenous intestinal mucus (73). Emerging evidence indicated that 
APS might improve intestinal barrier through promoting colonization 
of good bacteria, preventing pathogenic bacteria from invasion and 
growth, eliminating ROS and attenuating intestinal inflammation (56, 
74, 75). A previous study found that dietary diet supplemented with 
220 mg/kg APS enhanced the abundance of beneficial bacteria 
numbers (Lactobacilli and Bifidobacteria) and reduced E. coli 
abundance in the gut (76). Similarly, broiler supplemented with 
900 mg/kg γ-irradiation APS reduced abundance of Bacteroides, 
Faecalibacterium, and Butyricicoccus, enhanced the abundance of 
Ruminococcaceae UCG-014, Negativibacillus, Shuttleworthia, 
Sellimonas, and Mollicutes RF39_norank, and elevated butyrate 
concentration in cecum (77). Moreover, alcoholic fatty liver disease 
(AFLD) mice were given 22 mg/kg corresponding polysaccharide 
solution (APS with polysaccharide content of 62.73%) markedly 

enhanced Bacteroides S24-7 abundance, reduced abundance of 
Clostridiales and Lachnospiraceae, and reduced ratio of Firmicutes to 
Bacteroidetes (78), and ultimately elevated the abundance of beneficial 
bacteria and reduced the abundance of pathogenic bacteria.

Short-chain fatty acids (SCFAs) are organic linear carboxylic acids 
with two to six carbon atoms and are mainly produced by the gut 
microbiota via the fermentation of complex carbohydrates and fibers 
(79). Natural polysaccharides are favorable for the production of 
SCFAs (80, 81). Mounting evidence indicated that SCFAs play crucial 
roles in maintenance of intestinal health including regulation of 
intestinal barrier, intestinal epithelial cell growth and function, and 
inflammatory response modulation (82–84). SCFAs are mainly 
composed of acetic acid, propionic acid, and butyric acid, the main of 
which is butyric acid, which consumes oxygen, creating an anaerobic 
condition for the intestinal tract and prevent aerobic pathogens from 
invasion in the gut. Correspondingly, reduced SCFAs level in gut 
contributed to the enhanced intestinal permeability and intestinal 
diseases (85). APS as a natural polysaccharide has been reported to 
enhance SCFAs levels and modulate composition and function of gut 
microbiota (17). Type II diabetes mice supplemented with 600 mg/kg 
APS significantly enhanced fecal SCFAs level, G-protein-coupled 
receptor 41/43 expression, and TJ proteins (Occudin and ZO-1) 
abundance (86). Furthermore, APS enhanced secretion of glucagon-
like peptide-1 (GLP-1) in serum and improved intestinal microbial 
barrier, resulting in alleviation of diabetes symptoms in mice. 
Similarly, a basal diet with 800 mg/kg APS markedly enhanced the 
level of acetic acid, propionic acid, isobutyric acid, and butyrate in 
colon and enhanced the colonic microbial population and diversity 
(87). In addition, the literature also suggested that APS (200 mg/kg) 
attenuated the intestinal injury caused by necrotic enteritis in broiler 
through enhancing the concentrations of propionic acid, butyric acid, 
isobutyric acid, and hexanoic acid in the ileum (88). Collectively, APS 
exerts intestinal barrier protection through promoting the growth of 
beneficial microbiota, inhibiting colonization of pathogenic bacteria, 
and elevating level of SCFAs. The effects of APS on the intestinal 
biochemical barrier can be seen in Figure 1.

3.3 Astragalus polysaccharide improves the 
intestinal immunological barrier

Intestine is not only responsible for nutrient digestion and 
absorption, but is also the largest immune organ comprised around 
80% immune cells in the body (89, 90). The intestinal immune barrier 
is mainly composed of secretory immunoglobulin A (sIgA), gut 
associated lymphoid tissue (GALT), cytokines and other immune-
producing substances, which play a key role in fighting against 
pathogens or toxins (90, 91). sIgA constitutively localize in mucosal 
secretions and serve as the first line of defense in blocking 
microorganisms from attaching to, colonizing and invading epithelial 
cells (92). Moreover, mounting evidence demonstrated that sIgA play 
a crucial role in regulating TJ proteins expression, shaping commensal 
microbiota composition, and maintaining epithelial barrier integrity 
and immune homeostasis (92–94). GALT include Peyer’s patches 
(PPs), numerous isolated lymphoid follicles (ILF), mesenteric lymph 
nodes (MLN) and diffuse GALT would modulate cytokine/chemokine 
production and immune cell function (91, 95). Additionally, excessive 
cytokine production aggravates intestine inflammation and intestinal 
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barrier impairment (96). Interestingly, accumulating evidence 
reported that APS exerts the potentiality to promote the activities of 
immune cells (e.g., macrophages, natural killer cells, dendritic cells, T 
lymphocytes, B lymphocytes, and microglia) and regulates the 
production of cytokines and chemokines (16, 97, 98). A previous 
study was conducted to examine the effects of APS (in ovo injection) 
on number of immune cells, sIgA, and intestinal immune-related 
genes expression in broiler chickens. Results found that APS injection 
at 2 or 4 mg in ovo significantly enhanced VH and VH/CD ratio, 
increased IgA+ cells population and sIgA content, and enhanced 
mRNA expressions of interleukin (IL)-2, IL-4, interferon gamma 
(IFN-γ), and Toll-like receptor (TLR)-4 (99). Similarly, in ovo 
administration of Newcastle disease vaccine (NDV) conjugated with 
APS exerts beneficial effects on the intestinal mucosal immunity of 
chicks through enhancing the levels of slgA and the abundance of IgA+ 
cells in duodenal lamina propria and villi when compared with NDV 
treatment alone (100). Furthermore, broilers supplemented with 
300 mg/kg APS improved the intestinal mucosal immune barrier 
function of broilers by enhancing mRNA expression of Occludin, 
Claudin-1, ZO-1, and MUC2 in small intestine, and improved growth 
by enhancing concentration of immunoglobulins (Ig) A, IgM and IgG, 
and lowing concentrations of TNF-α, IL-1β, IL-6, and diamine oxidase 
(DAO) in serum (74). In addition, broilers administrated with 0.5, 1, 
or 2 mg APS in 0.5 mL saline enhanced VH/CD ratio, IgA+ cells 
population, sIgA levels when compared with vaccinated control group 
and one non-vaccinated negative control group (101) (Table 1).

4 Anti-inflammatory properties of APS

Currently, APS derived from natural sources has been reported to 
play an important role in regulating inflammatory response (106, 
107). TLRs and NoD-like receptors (NLRP) have been reported to 
play important role in pro-inflammatory cytokines expressions 
regulation (108). Emerging evidence revealed that APS could inhibit 
the expression of NOD-like receptor thermal protein domain 
associated protein 3 (NLRP3) inflammasome in colon tissue, and 
reduced production of IL-18 and IL-1β (109). Interestingly, a previous 
study revealed that APS alleviated inflammatory damage of the BPD 
cell model through inhibiting the activation of nuclear factor-κB 
(NF-κB) and reducing mRNA and protein expression levels of IL-8 
and intercellular adhesion molecule 1 (ICAM-1) in bronchopulmonary 
dysplasia (BPD) (110). It is speculated that APS may be  a safe 
alternative to glucocorticoid in the treatment of BPD. Furthermore, a 
rat model of pulmonary arterial hypertension (PAH) induced by 
injection of monocrotaline, which was intraperitoneally injected with 
APS (200 mg/kg, once every 2 days) for 2 weeks leading to reduced 
mRNA expression of pro-inflammatory mediators TNF-α, IL-1β, and 
IL-6 and inflammation alleviation (111). Correspondingly, APS could 
inhibit the activation of phosphorylation level of IκBα, thereby 
inhibiting the NF-κB signaling pathway and improving PAH induced 
by monocrotaline. IBD, a kind of intestinal disease, has become a 
global burden with rapidly increasing incidence and prevalence in 
both industrialized countries and developing countries (112–114). 
Although the etiology of IBD is still unknown, previous reports had 
shown that the imbalanced production of pro-inflammatory cytokines 
and anti-inflammatory cytokines contributed to intestinal tissue 
damage (115). Intriguingly, dextran sulfate sodium (DSS)-induced 

mice colitis daily intraperitoneal injection with 0.5 mL of APS 
(200 mg/kg) for 3 days remarkedly reduced phosphorylation level of 
NF-κB and downregulated the mRNA expression of TNF-α, IL-1β, 
IL-6, and IL-17 (116). These results demonstrated that APS function 
as a natural active ingredient to treat ulcerative colitis. In a 
LPS-challenged Caco-2 cells model, APS addition (100 or 200 μg/mL) 
in cell culture remarkedly downregulated mRNA expression of 
TNF-α, IL-1β, and IL-8 in a dose manner (117). Consequently, result 
indicated that APS exerts anti-inflammatory properties on 
LPS-infected Caco-2 cells and is regarded as a preventive therapy for 
LPS induced intestinal cells damage. In addition to APS, honey-
processed APS (HAPS) is a product that Radix Astragalus mixed with 
honey, which exhibits better efficacy pharmacological activity (118). 
Correspondingly, HAPS alleviated LPS-induced inflammatory 
responses in RAW264.7 cells by significantly reducing NO 
concentration and the expression of TNF-α, IFN-γ, IL-1β, and IL-22. 
These results indicated that anti-inflammatory activities of HAPS were 
more effective than those of APS (119). Furthermore, LPS-induced 
inflammatory lung injury mice orally administrated with 200 mg/kg 
APS for 14 consecutive days significantly reduced neutrophilic 
infiltration, phosphorylated NF-κB expression level and relative 
expressions of ICAM-1, Il-1β, Il-6, and TNF-α (120). Taken together, 
APS functions as an anti-inflammatory agent in animals and exerts its 
anti-inflammation mainly by inhibiting NF-κB signaling pathways 
and reducing expression of pro-inflammatory cytokines.

5 Effects of APS on animal production

The efficiency of animal production is closely related with the 
economic benefits of animal husbandry (121). Nowadays, the general 
use of antibiotics in animal feed is banned, alternatives to antibiotics 
are urgently needed in animal agriculture (122). Emerging evidence 
demonstrated that some polysaccharides could function as antibiotics 
alternatives to inhibit pathogens colonization and promote animal 
growth performance (123, 124). APS is a kind of polysaccharides and 
has been investigated for its effects on animal growth performance 
(74). A study reported that APS enhanced average daily gain (ADG) 
and feed conversion rate (FCR) through improving VH and VH/CD 
ratio, reducing immunological stress, as well as enhancing the 
intestinal barrier function in LPS-challenged piglets (125). 
Furthermore, 0.1% APS supplementation improved ADG and F/G 
ratio, enhanced apparent ileal digestibility (AID), and the contents of 
most essential amino acids and non-essential amino acids in the 
serum in early-weaned piglets (126). In addition, in ovo injection of 
2 mg APS per egg significantly enhanced VH and the ratio of VH/CD 
and improved intestinal morphology and development of chicks, 
resulting in marked increase on average daily feed intake (ADFI), 
body weight (BW), and FCR of layer chicks (127). Interestingly, recent 
studies revealed that APS could regulate lipid metabolism and 
adipogenesis (128). A previous study reported that in ovo injection of 
4.5 mg APS enhanced carcass percentage, reduced abdominal fat, as 
well as reduced educed triglycerides, total cholesterol, low-density 
lipoproteins, and very low-density lipoproteins in the plasma of 
broilers (129). When compared with control group, APS treatment 
improved meat quality and feed conversion rate by reducing fat 
metabolism. This result is attributed to induced expression of amylase 
by restraining the activity of other intestinal digestive enzymes (130). 
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TABLE 1 Effects of Astragalus polysaccharide on the intestinal health.

Source Application form Experiment object Main function Reference

Astragalus polysaccharide
Dietary supplementation with 

800 mg/kg
Weaned piglets

Improved the protein expression of 

Claudin and Occludin in the 

jejunum

(44)

Gamma-irradiated Astragalus 

polysaccharide purity 87.64%

Dietary supplementation with 

900 mg/kg
Arbor Acres broiler chicks

Enhanced the number of jejunal 

goblet cells
(60)

Astragalus polysaccharide
Dietary supplementation of 

200 mg/kg
BALB/c mice

Enhanced the gene expression of 

ZO-1, occludin and claudin-1 in the 

jejunum

(59)

Sulfated Astragalus 

polysaccharide purity 97%

Injected intramuscularly with 

8 mg/kg of BW
Arbor Acres broiler chicks Elevated VH (102)

Astragalus polysaccharides 

purity 80%

Dietary supplementation with 

200 mg/kg
Arbor Acres broiler chicks

Reduced CD and increased jejunum 

VH/CD ratio
(88)

Astragalus polysaccharide
5 mL compound solution by 

oral administration
Neonatal piglets Improved VH and the VH/CD ratio (103)

Astragalus polysaccharide 

purity 70%
0.6 g/L to drinking water Muscovy ducks

Improved VH and the VH/CD ratio 

in the small intestine
(104)

Gamma-irradiated Astragalus 

polysaccharide purity 87.64%
Basal diet with 600 mg/kg Ross-308 chicks

Enhanced VH, VH/CD ratios and 

GCs numbers
(105)

Astragalus polysaccharide 

purity 91.9%

Injected with 2 or 4 mg of APS 

in 0.5 mL physiological saline in 

ovo

Arbor Acres broiler eggs

Boosted IFN-γ, IL-2, IL-4 gene 

expression, TLR-4 genes, and the 

sIgA levels

(99)

Astragalus polysaccharide 

purity 70.23%

Dietary supplementation with 

300 mg/kg
Arbor Acres broilers chicks

Enhanced the levels of serum IgA 

and reduced the gene levels of 

TNF-α, IL-1β, and IL-6 and the 

activity of DAO

(74)

Astragalus polysaccharide

A concentrated solution (2 mg/

mL) was prepared in 0.9% 

physiological saline

SPF Leghorn fertilized eggs
Enhanced the levels of slgA and the 

abundance of IgA+ cells
(100)

Astragalus polysaccharide 

purity 70%

Oral administration of 0.5 mL 

(1, 2, and 4 mg/mL)
Hy-Line chickens

Promoted the growth of IgA+ cells in 

jejunum and the secretion of sIgA
(101)

Astragalus polysaccharide
Dietary supplementation with 

400 mg/kg
C57BL/6 J mice

Promoted the growth of beneficial 

bacteria Allobaculum and 

Lactobacillus

(56)

Astragalus polysaccharide 

purity 62.73%

Given 22 mg/kg corresponding 

solution
SPF Kunming mice

Enhanced the abundance of 

beneficial bacteria Bacteroides S24-7 

and decreased the abundance of 

Clostridiales and Lachnospiraceae

(78)

Astragalus polysaccharide
Dietary supplementation with 

220 mg/kg
Hy-Line chicks

Enhanced the concentrations of 

beneficial bacteria numbers 

(Lactobacilli and Bifidobacteria) and 

cut down the concentrations of 

harmful bacteria numbers (E. coli)

(76)

Astragalus polysaccharide 

purity 87.64%

Dietary supplementation with 

900 mg/kg
Arbor Acres broilers chicks

Reduced the abundance of 

Bacteroides, Faecalibacterium, 

Butyricicoccus, and increased OTUs

(77)

Astragalus membranaceus 

polysaccharide

Dietary supplementation with 

600 mg/kg
Db/db mice

Enhanced content of SCFAs, the 

expression of G-protein-coupled 

receptor 41/43, Occudin, and ZO-1

(86)

Astragalus polysaccharide 

purity 80%

Dietary supplementation with 

800 mg/kg
Weaned piglets Enhanced the levels of SCFAs (87)
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Furthermore, young broilers supplemented with 1 g/kg APS markedly 
enhanced BW and reduced FCR by enhancing activities of lipase, 
amylase and protease (131). In addition, 10 g/kg APS addition 
significantly enhanced BW, improved the intestinal morphology, 
enhanced VH and the ratio of VH/CD in jejunum, as well as reduced 
CD of the duodenum (132). In addition to the application of APS on 
livestock (pigs or broilers), APS has been reported to play potential 
role on the growth and development of fish (133). Sun and coauthors 
demonstrated that turbot (Scophthalmus maximus L.) supplemented 
with 150 mg/kg APS remarkably enhanced final body weight (FBW), 
specific growth rate (SGR), weight gain (WG), and ADFI by improving 
the activity of digestive enzymes (134). Consistently, crucian carps 
orally administrated with 100 mg/kg APS markedly enhanced body 
weight gain rate (BVGR), SGR and reduced the FCR (135). 
Additionally, 30 g/kg APS addition exerted beneficial effects on body 
protein composition, body weight gain, feed efficiency of white 
shrimp, and lipid metabolism (Litopenaeus vannamei) (136). 
Moreover, 0.01% APS in the diet of zebrafish significantly upregulated 
TJ protein 1b and Occludin1, improved intestinal permeability and 
promoted intestinal health. Furthermore, APS supplementation 
enhanced BW and reduced FCR (136).

Collectively, the improvement of APS on growth performance is 
attributed to intestinal villus morphology improvement, intestinal 
digestion and absorption as well as digestion enzymes activities 
improvement. Main functions of APS on animal growth performance 
were displayed in Table 2.

6 Conclusion

Astragalus polysaccharide is a natural bioactive component and 
possesses a variety of biological activities involved in anti-oxidation, 
anti-aging, anti-fibrosis, anti-tumor, antiviral and antibacterial, 
blood sugar reduction, blood lipid reduction, anti-fibrosis, and 
radiation protection effects. Furthermore, emerging evidence 
demonstrated that APS plays a potential role in intestinal epithelial 
barrier integrity maintenance, intestinal microbiota regulation, 
immune response, and redox homeostasis, which are critical for 
intestinal health, immune response, and animal’s growth 
performance. It can provide reference for further study on the effect 
of APS on intestinal barrier. In addition, it can be seen from the 
above numerous reports that Astragalus polysaccharide is widely 

TABLE 2 Main functions of APS on animal’s growth performance.

Source Application form Experiment object Main function Reference

Astragalus polysaccharide 

purity 80%

Basal diet supplemented with 

800 mg/kg
Weaned piglets

Enhanced the ADG and 

FCR
(125)

Astragalus polysaccharide 

contained 95% carbohydrate

Corn and soybean meal-based 

diet with 0.1%
Weaned piglets

Improved ADG and F/G 

ratio
(126)

Astragalus polysaccharide In ovo injection of 2 mg/egg Eggs
Enhanced the FI, BW, and 

FCR
(127)

Astragalus kahericus 

polysaccharide
4.5 mg in ovo injections Cobb broiler chicks

Improved carcass percentage 

and FCR
(129)

Astragalus membranaceus 

polysaccharide

Dietary supplementation with 

1,000 mg/kg APS
Juvenile broilers

Enhanced BW and reduced 

FCR
(135)

Astragalus polysaccharide
Basal diet supplemented with 

10,000 mg/kg
Avein breeder cocks Enhanced BW (132)

Gamma-irradiated Astragalus 

polysaccharides purity 87.64%

Basal diet supplemented with 

600 mg/kg
Ross-308 chicks

Enhanced ADG and reduced 

F/G ratio
(105)

Sulfated Astragalus 

polysaccharide purity 97%

Injected intramuscularly with 

8 mg/kg of BW
Arbor acres broiler chicks

Enhanced BWG and reduced 

F/G ratio
(102)

Astragalus polysaccharide 

purity 70.23%

Basal diet supplemented with 

300 mg/kg
Arbor acres broilers

Enhanced ADG and reduced 

F/G ratio
(74)

Astragalus polysaccharide

A concentrated solution (2 mg/

mL) was prepared in 0.9% 

physiological saline

SPF Leghorn fertilized eggs
Enhanced the body weight at 

1 day and final weight
(100)

Astragalus polysaccharide 

purity 50%

Basal diet supplemented with 

150 mg/kg
Scophthalmus maximus L.

Enhanced FBW, SGR, WG, 

and FI
(134)

Astragalus membranaceus 

polysaccharide

A dose of 100 mg/kg with oral 

administration
Crucian carps

Improved the BVGR, SGR, 

and FCR
(135)

Astragalus membranaceus 

polysaccharide

Basal diet supplemented with 

30,000 mg/kg
Litopenaeus vannamei

Improved the body protein 

level, body weight gain, and 

feed efficiency

(136)

Astragalus polysaccharide 

purity 60%

Basal diet supplemented with 

0.01%
Zebrafish

Enhanced BW and reduced 

FCR
(137)
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used in the intestine, and there will be some breakthroughs in the 
future. On the one hand, origin, extraction, separation and 
purification methods contribute to the activities of APS, thus these 
processes are needed to be  improved. On the other hand, the 
biological activities of APS are related to their chemical structure. 
APS is formed by galactose, glucose, mannose, rhamnose, xylose, 
arabinose, glucuronic acid, and galacturonic acid with condensation 
reaction, but accurate molecular structures of APS are largely 
unknown. Additionally, further understanding the regulatory role 
of APS in the interaction between microbiota and intestinal barrier 
are needed. In this context, analysis structure and further 
understanding the regulatory mechanical role of APS are crucial for 
the application of APS on intestinal health. APS might be  a 
therapeutic intervention for intestinal disease. Therefore, APS will 
be a potential research object with broad prospects.
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Glossary

AFLD Alcoholic fatty liver disease

APS Astragalus polysaccharide

BPD Bronchopulmonary dysplasia

CD Crypt depth

CPM Cyclophosphamide

DAO Diamine oxidase

DSS Dextran sulfate sodium

FCR Feed conversion rate

FT-IR Fourier transmission-infrared spectroscopy

GALT Gut associated lymphoid tissue

GC Gas chromatography

GLP-1 Glucagon-like peptide-1

HAPS Honey-processed Astragalus polysaccharide

HPLC High performance liquid chromatography

IBD Inflammatory bowel disease

IBS Irritable bowel syndrome

ICAM-1 Intercellular adhesion molecule 1

IFN-γ Interferon gamma

Ig Immunoglobulin

IL Interleukin

ILF Isolated lymphoid follicles

LPS Lipopolysaccharide

MLN Mesenteric lymph nodes

NDV Newcastle disease vaccine

NF-κB Nuclear factor-κB

NLRP NoD-like receptor

NLRP3 NOD-like receptor thermal protein domain associated protein 3

NMR Nuclear magnetic resonance spectroscopy

PAH Pulmonary arterial hypertension

PPs Peyer’s patches

ROS Reactive oxygen species

SCFAs Short-chain fatty acids

sIgA Secretory immunoglobulin A

SOD Superoxide dismutase

TCM Traditional Chinese medicine

T-AOC Total antioxidant capacity

TLR Toll-like receptor

TJ Tight junctions

VH Villus height

VH/CD Villus height/crypt depth

WG Weight gain.
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