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Prediction and visualization map 
for physicochemical indices of 
kiwifruits by hyperspectral 
imaging
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Soluble solid content (SSC), firmness, and color (L*, a*, and b*) are important 
physicochemical indices for assessing the quality and maturity of kiwifruits. 
Therefore, this research aimed to realize the nondestructive detection and 
visualization map for the physicochemical indices of kiwifruits at different 
maturity stages by hyperspectral imaging coupled with the chemometrics. To 
further improve the detection accuracy and working efficiency of the models, 
competitive adaptive reweighted sampling (CARS) and successive projection 
algorithm were employed to choose feature wavelengths for predicting the 
physicochemical indices of kiwifruits. Multiple linear regression (MLR) was 
designed to develop simplified detection models based on feature wavelengths 
for determining the physicochemical indices of kiwifruits. The results showed 
that 32, 18, 26, 29, and 32 feature wavelengths were extracted from 256 full 
wavelengths to predict the SSC, firmness, L*, a*, and b*, respectively, with the 
CARS algorithm. Not only was the working efficiency of the CARS-MLR model 
improved, but the prediction accuracy of the CARS-MLR model for determining 
the physicochemical indices was also at its relative best. The residual predictive 
deviations of the CARS-MLR model for determining the SSC, firmness, L*, a*, 
and b* were 3.09, 2.90, 2.32, 2.74, and 2.91, respectively, which were all above 
2.3. Compared with the model based on the full spectra, the CARS-MLR model 
could be  used to predict the physicochemical indices of kiwifruits. Finally, 
the visualization map for the physicochemical indices of kiwifruits at different 
maturity stages was generated by calculating the spectral response of each pixel 
on the kiwifruit samples with the CARS-MLR model. This made the detection for 
the physicochemical indices of kiwifruits more intuitive. This study demonstrates 
that hyperspectral imaging coupled with the chemometrics is promising for the 
nondestructive detection and visualization map for the physicochemical indices 
of kiwifruits, and also provides a novel theoretical basis for the nondestructive 
detection of kiwifruit quality.
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1 Introduction

As one of the post-ripening fruits, kiwifruit is usually picked 
unripe during actual harvesting to prolong its storage time. If picked 
too early, kiwifruits will retain their flesh firmness, thereby affecting 
the taste. Harvesting too late will lead to over-ripeness, making it 
difficult to store kiwifruits (1). Soluble solid content (SSC), firmness, 
and color (L*, a*, and b*) are essential parameters for assessing 
kiwifruit quality and ripeness. Therefore, nondestructive detection of 
the SSC, firmness, and color of kiwifruits at different maturity stages 
can be useful for determining the appropriate harvesting time and 
post-harvest quality grading.

Although traditional methods for measuring the physicochemical 
indices of fruits are characterized by relatively high accuracy, they 
have their fair share of disadvantages. For example, they may destroy 
the detected objects, the detection is inefficient and time-consuming, 
and large-scale detection is difficult to realize (2, 3). Nondestructive 
detection methods based on hyperspectral imaging have been widely 
used in the field of fruit quality detection (4–9), which are fast and 
non-contaminating compared with traditional detection methods. 
The hyperspectral imaging technique can not only quickly and 
nondestructively capture the spectral information of the object of 
interest but also obtain its image information (10). By integrating 
spectral and image information, this technique can rapidly and 
nondestructively detect the internal and external quality of fruits. 
Compared with near-infrared spectroscopy, hyperspectral imaging 
can obtain the spectral information of the entire object of interest, 
which helps construct a more stable prediction model (11). In 
addition, the image information obtained by hyperspectral imaging 
can be  used to visualize the distribution of the physicochemical 
indices of fruits, making the detection of these indices more intuitive. 
However, hyperspectral images are characterized as high 
dimensionality data, which will influence the detection efficiency. Fan 
et  al. (12) employed hyperspectral imaging technology to 
quantitatively predict SSC and firmness in Korla pears. Partial least 
square regression (PLSR) models based on variables extracted from 
the combination of competitive adaptive reweighted sampling (CARS) 
and successive projection algorithm (SPA) demonstrated outstanding 
prediction performance. The correlation coefficients and root mean 
square errors of the prediction set (RMSEP) were 0.88 and 0.49 for 
SSC, and 0.87 and 0.72 for firmness. Xie et al. (13) proposed a method 
of using hyperspectral imaging to quantitatively predict the color (L*, 
a*, and b*) and firmness of bananas. The constructed partial least 
squares prediction model performed relatively well. The coefficient of 
determination in the prediction set was 0.80 for L*, 0.97 for a*, 0.77 
for b*, and 0.76 for firmness. Su et al. (14) combined hyperspectral 
imaging and deep learning to quantitatively predict strawberry SSC 
and identify strawberry ripeness. Wang et al. (15) investigated the 
feasibility of evaluating the apple quality and ripeness using 
hyperspectral imaging; the results showed that the constructed model 
could achieve nondestructive detection and spatial distribution of 
apple quality and ripeness. No study has been reported on quantitative 
prediction and distribution visualization of multiple physicochemical 
indices of kiwifruits using hyperspectral imaging.

Therefore, this study constructed a model for predicting the 
physicochemical indices of kiwifruits at different maturity stages 
based on hyperspectral imaging and chemometrics. To improve the 
detection accuracy and efficiency of the prediction model, we used 

CARS and SPA algorithms to select feature wavelengths for the 
physicochemical indices of kiwifruits, to construct a simplified 
prediction model. The distributions map of the physicochemical 
indices of kiwifruits at different maturity stages were visualized using 
the pseudo-color technique, making the detection of such indices 
more intuitive. This study provides a reference for the accurate 
prediction of the physicochemical indices of kiwifruits in 
actual production.

2 Materials and methods

2.1 Kiwifruit samples

The “Guichang” kiwifruit samples used in this study were 
obtained from the commercial orchard in Xiuwen County, Guizhou 
Province, China. To improve the detection range of the 
physicochemical indices of kiwifruits, we randomly picked samples 
from kiwifruit trees at different locations in four batches from 
September to October 2019. Samples were picked at different 
maturity stages (unripe stage: picked on September 17, with the SSC 
ranging from 4.63 to 5.73 °Brix; semi-ripe stage: picked on September 
28, with the SSC ranging from 5.90 to 7.30 °Brix; ripe stage: picked 
on October 7, with the SSC ranging from 6.50 to 9.20 °Brix; over-ripe 
stage: picked on October 19, with the SSC ranging from 9.20 to 12.20 
°Brix). Fifty samples free of defects and damages were selected from 
each batch, totalling 200 samples. Before the experiment, the dust on 
the surface of the samples was wiped off with soft paper. The samples 
were sequentially numbered to obtain the hyperspectral images and 
measure the physicochemical indices.

2.2 Instruments and equipment

The following instruments and equipment were used: 
GaiaField-F-V10 Hyperspectral Imaging System (Jiangsu Dualix 
Spectral Imaging Technology Co., Ltd.); ATAGO PAL-α Refractometer 
(Atago, Japan); TD4Z-WS Centrifuge (Hunan Cenlee Scientific 
Instruments Co., Ltd.); GY-4 Sclerometer (Hangzhou Lvbo Instrument 
Co., Ltd.); Ci7800 Spectrophotometer [X-Rite (Shanghai) Color 
Instrument Trading Co. Ltd.].

Figure 1 shows the configuration diagram of the hyperspectral 
imaging system, of which the wavelength ranges from 390 nm to 
1,030 nm. The spatial resolution of hyperspectral images is 0.2 mm/
pixels. The parameters of the instrument are detailed in the 
reference (16).

2.3 Hyperspectral images acquisition and 
correction

We placed the numbered kiwifruit samples on an electric 
transportation plate and scanned them one by one to obtain their 
original hyperspectral images. Due to the uneven intensity distribution 
of the light source in the dark box and certain differences in sample 
shapes, there were noise signals in the acquired original hyperspectral 
images. After acquiring the hyperspectral images of all the samples, 
we acquired black-and-white calibrated images with the same system 
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parameters, and performed reflectance correction for the original 
hyperspectral images of all the samples as follows (formula 1):

 
R

R R
R Rref

original black

white black

=
−
−  

(1)

where Rref is the calibrated image, Roriginal is the original image, and 
Rwhite and Rblack are the white and black calibrated images, respectively.

2.4 Measurement of physicochemical 
indices

After acquiring the hyperspectral images of all the samples, 
we measured the color values (L*, a*, and b*) of kiwifruits at the 
equatorial positions using a spectrophotometer. The aperture plate 
diameter of the spectrophotometer was 10 mm. After the 
spectrophotometer was calibrated, we  placed the samples in the 
observer of the spectrophotometer, and then gently closed the color 
sample holder to determine the color values.

The reference firmness of the samples was determined using a 
sclerometer. The probe diameter of the sclerometer was 7.9 mm, and 
the depth at which the probe was pressed into the kiwifruit flesh was 
roughly 10 mm. The skin of the samples near the equator was peeled 
before the measurement. The probe was aligned with the flesh of the 
fruit and then pressed slowly and uniformly to the mark. Each sample 
was tested thrice. The average of the tested values was used as the 
reference firmness of the samples.

The reference SSC of the kiwifruit samples was determined by a 
refractometer with a range of 0.0–85 °Brix and an accuracy of ±0.2 
°Brix. Juice was extracted from the samples and then centrifuged at 
3000 r/min for 5 min before the determination. The sample juice was 
smeared on a mirror, followed by multiple consecutive measurements 
until the last three measurements were the same. Afterwards, this 
measurement was taken as the reference SSC of the samples.

2.5 Modeling and assessment

A PLSR detection model was constructed to predict the 
physicochemical indices of kiwifruits based on the full-band data and 
the reference values of the indices. CARS (17) and SPA (18) were used 
to select feature wavelengths. SPA adopts an easy projection procedure 
in a vector space to select subsets of wavelengths with minimum 
colinearity. CARS employs the absolute values of regression 
coefficients of PLSR model as a parameter for evaluating the 
importance of every wavelength. Based on the selected characteristic 
spectra and the reference values, we then constructed a simplified 
multiple linear regression (MLR) model to predict the physicochemical 
indices of kiwifruits. The linear regression equation between the 
independent variable X (X1, X2, X3,.., Xm) and the dependent variable 
Y (each physicochemical index) is given as follows (formula 2):

 Y X Xm m= + +…+ +β β β ε0 1 1  (2)

Assuming that the observations are {(Yi, Xi1,.., Xim), i = 1, 2,.., n}, 
the MLR prediction model is as follows (formula 3):

 

Y X X X
Y X X X

Y

m m

m m

1 0 1 11 2 12 1 1

2 0 1 21 2 22 2 2

= + + +…+ +
= + + +…+ +

…

β β β β ε
β β β β ε

nn n n m nm nX X X= + + +…+ +









β β β β ε0 1 1 2 2  

(3)

where βi denotes the coefficient of the ith independent variable, 
and εi denotes the error term.

The coefficient of determination (R2
C) and its root mean square 

error (RMSEC) for the calibration set, the coefficient of determination 
(R2

P) and its root mean square error (RMSEP) for the prediction set, 
and the residual prediction deviation (RPD) were used as the key 
indicators to determine the prediction model performance 
(formulas 4–8). The prediction model is more effective if R2

C and R2
P 

are closer to 1, RMSEC and RMSEP are closer to 0, and the RPD value 
is larger. For the model, 1.4 ≤ RPD < 1.8 indicates a poor prediction 
effect; 1.8 ≤ RPD < 2.0 indicates a good prediction effect; RPD ≥ 2.0 
indicates an excellent prediction effect (19).
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FIGURE 1

Configuration diagram of hyperspectral imaging system.
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where nC and nP are the numbers of samples in the calibration and 
prediction set, respectively; yact and ymean are the reference and mean 
values of the physicochemical indices, respectively; ycal and ypre are the 
predicted values of the physicochemical indices in the calibration and 
prediction set, respectively; SD is the standard deviation of the 
reference values of the physicochemical indices in the prediction set.

3 Results and discussion

3.1 Statistics of the physicochemical 
indices

Figure  2 shows the statistical results for the physicochemical 
indices of kiwifruits at different maturity stages. It can be seen that the 
mean SSC of kiwifruits at different maturity stages increased with 
their gradual maturity, while the mean firmness of kiwifruits at 
different maturity stages showed the opposite trend of change. The 
color values of kiwifruits at different maturity stages changed relatively 
little, among which a* and b* followed the same trend.

Before a model for predicting the physicochemical indices of 
kiwifruits is constructed, all the samples need to be  divided into 
calibration and prediction sets based on the acquired reflectance 
spectral data and measured physicochemical values. Whether the 
ranges of physicochemical values in the calibration set are larger than 
those in the prediction set is usually taken as the basis for evaluating 
the advantages and disadvantages of dividing the sample sets. The 

joint x-y distance method based on spectral data and physicochemical 
values (SPXY) (20) was used to divide 200 kiwifruit samples into 140 
calibration sets and 60 prediction sets. The statistics of the sample sets 
divided using the SPXY algorithm are presented in Table 1. It can 
be seen that the value ranges of all physicochemical indices in the 
calibration set were wider than those in the prediction set.

3.2 Spectral preprocessing

Due to the influence of the particle size and surface scattering of 
the samples (21, 22), some noise is included in the acquired original 
spectra. To improve the prediction accuracy and stability of the 
detection model, this study used standard normal variation (SNV) to 
eliminate the noise in the original spectra (16). Figure 3 presents the 
original spectra of all the samples and the relative reflectance spectra 
after SNV preprocessing. The selected region of interest (ROI) is the 
entire sample. As can be seen in Figure 3, the waveforms of all spectral 
curves exhibited the same trend, with a more pronounced absorption 
peak near the 675 nm wavelength. This is possibly caused by 
chlorophyll absorption. Another absorption peak occurred near 
980 nm, which may be related to the absorption of water in kiwifruits. 
Comparing Figure  3, we  can observe that the relative reflectance 
spectra after SNV preprocessing were smoother than the original 
spectra, indicating that SNV preprocessing can eliminate part of the 
noise in the original spectra.

3.3 Feature wavelength extraction

Two techniques, SPA and CARS, were used to extract feature 
wavelengths to improve the computational efficiency of the model. By 
comparing these two techniques, we  selected the better feature 
wavelength extraction method for the prediction of the 
physicochemical indices of kiwifruits.

FIGURE 2

Physicochemical indices of kiwifruit samples at different maturity stages.
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3.3.1 Extraction of feature wavelengths by SPA
When the SPA method was used to select feature wavelengths, the 

number of effective feature wavelengths was usually determined based 
on the lowest root mean squared error (RMSE) of the model. Firstly, 
the RMSE value decreased with the increase in the number of effective 
wavelengths. Then, when the number of effective wavelengths in the 
model increased to a certain value, the decreasing tendency of the 
RMSE value was no longer evident. In this study, the RMSE values no 
longer decreased when the number of effective wavelengths was 
greater than 10, 8, 13, 9, and 14 for the prediction of SSC, firmness, L*, 
a*, and b*, respectively. Therefore, we extracted 10, 8, 13, 9, and 14 
wavelengths as the feature wavelengths for predicting SSC, firmness, 
L*, a*, and b*. The proportion of the feature wavelengths by SPA in the 
total of 256 wavelengths is 3.91, 3.13, 5.08, 3.52, and 5.47%, 
respectively. The selected feature wavelengths are presented in Table 2.

3.3.2 Extraction of feature wavelengths by CARS
When the CARS method was used to select feature wavelengths, 

the number of Monte Carlo sampling runs and the group amount for 
cross-validation were 50 and 5. For predicting SSC, firmness, L*, a*, 
and b*, the root mean square error of cross validation (RMSECV) at 
different sampling runs exhibited a consistent trend, i.e., first 
decreasing and then increasing. The smallest RMSECV was obtained 
at the 22nd, 28th, 24th, 23rd, and 22nd sampling runs, respectively. 
This optimal wavelength subset contained 32, 18, 26, 29, and 32 
feature wavelengths for the prediction of SSC, firmness, L*, a*, and b*. 
The proportion of the feature wavelengths by CARS in the total of 256 
wavelengths is 12.50, 7.03, 10.16, 11.33, and 12.50%, respectively. The 
selected feature wavelengths are given in Table 2.

3.4 Modeling results

In this study, we first constructed a PLSR model for predicting the 
physicochemical indices of kiwifruits based on 256 full-band variables 
and measured reference values. Then, we established a simplified MLR 
model for predicting the physicochemical indices of kiwifruits by 
taking the feature wavelengths selected by SPA and CARS as 
independent variables and the reference values of such 
physicochemical indices as dependent variables. The prediction results 
for the physicochemical indices of kiwifruits by PLSR and MLR 
models are listed in Table  3. These results indicate that, for the 
prediction of each physicochemical index of kiwifruits, the R2

C, R2
P, 

and RPD values of the CARS-MLR model were higher than those of 
the SPA-MLR model, and the RMSEC and RMSEP of the CARS-MLR 
model were lower than those of the SPA-MLR model. This indicates 
that the CARS algorithm was a better feature wavelength selection 
method compared to the SPA algorithm. By comparing the PLSR 
model based on full wavelengths and the CARS-MLR model based on 
feature wavelengths in Table 3, we can see that for the prediction of 
each physicochemical index of kiwifruits, the R2

C, R2
P, and RPD values 

of the latter model were higher than those of the former model. 
Moreover, the RMSEC and RMSEP of the CARS-MLR model were 

TABLE 1 Statistics of partitioning sample sets using the SPXY algorithm.

Number of 
samples

Index Min Max Mean  ±  SD

Calibration set 

(140)

SSC (°Brix) 4.80 11.50 8.13 ± 1.90

Firmness 

(kg·cm−2)
12.01 24.01 18.07 ± 3.38

L* 37.04 45.92 41.62 ± 2.50

a* 6.82 11.57 9.21 ± 1.30

b* 15.23 25.44 20.12 ± 2.83

Prediction set 

(60)

SSC (°Brix) 5.10 11.40 8.02 ± 1.95

Firmness 

(kg·cm−2)
12.34 23.98 17.20 ± 3.16

L* 37.59 45.33 41.58 ± 2.25

a* 6.88 11.52 9.66 ± 1.29

b* 15.71 25.43 20.76 ± 2.82

FIGURE 3

Reflectance spectra of kiwifruits.
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also lower than those of the PLSR model, indicating an improvement 
in both the operational efficiency and detection performance of the 
CARS-MLR model. In addition, the RPD values of the CARS-MLR 
model for predicting SSC, firmness, L*, a*, and b* were 3.09, 2.90, 
2.32, 2.74, and 2.91, respectively. These values were all greater than 2.0, 
further indicating the excellent prediction effect of the CARS-MLR 
model. The results of the CARS-MLR model for each physicochemical 
index of kiwifruits are given in Figure 4. It can be seen from Figure 4 
that the linear relationship between the predicted and measured 
values of the physicochemical index were relatively favorable for all 

samples except for a few deviating from the regression line, indicating 
that the CARS-MLR model can accurately predict the physicochemical 
index of kiwifruits. The CARS-MLR model formulas (9–13) for 
predicting each physicochemical index of kiwifruits are given 
as follows:

 

Y X X X
X

SSC = − − + −
+ +
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TABLE 2 Feature wavelengths for predicting the physicochemical indices of kiwifruits selected by SPA and CARS.

Index Methods Band Num Wavelength (nm)

SSC
CARS 32

393, 400, 407, 428, 430, 432, 439, 446, 453, 460, 600, 614, 878, 883, 891, 899, 904, 907, 920, 922, 925, 938, 

941, 946, 948, 956, 959, 972, 988, 993, 996, 1012

SPA 10 428, 432, 439, 446, 458, 580, 614, 656, 1017, 1025

Firmness
CARS 18 397, 402, 421, 432, 556, 590, 626, 824, 889, 904, 946, 954, 964, 972, 975, 985, 1009, 1012

SPA 8 393, 397, 400, 402, 404, 409, 411, 442

L*
CARS 26

400, 402, 404, 428, 522, 592, 595, 597, 626, 629, 631, 634, 636, 639, 698, 715, 721, 814, 824, 928, 1006, 1009, 

1017, 1020, 1022, 1028

SPA 13 393, 400, 402, 407, 411, 484, 525, 573, 653, 696, 711, 907, 998

a*
CARS 29

402, 423, 430, 435, 453, 458, 489, 597, 617, 624, 626, 666, 683, 746, 789, 791, 794, 822, 827, 855, 904, 920, 

956, 975, 977, 983, 998, 1001, 1004

SPA 9 407, 458, 520, 556, 678, 706, 852, 876, 964

b*
CARS 32

411, 416, 418, 423, 430, 439, 449, 463, 520, 551, 553, 592, 595, 597, 617, 619, 622, 624, 626, 646, 746, 768, 

786, 804, 806, 922, 951, 969, 988, 996, 1020, 1022

SPA 14 411, 421, 425, 449, 522, 549, 590, 619, 863, 870, 938, 964, 1017, 1028

TABLE 3 Prediction results for the physicochemical indices of kiwifruits 
by the PLSR and MLR models.

Model Index Calibration set Prediction set

RC
2 RMSEC RP

2 RMSEP RPD

PLSR

SSC 0.94 0.44 0.85 0.76 2.58

Firmness 0.90 1.06 0.84 1.25 2.53

L* 0.79 1.15 0.79 1.03 2.18

a* 0.90 0.40 0.83 0.52 2.46

b* 0.91 0.86 0.88 0.98 2.88

SPA-MLR

SSC 0.75 0.94 0.88 0.68 2.89

Firmness 0.87 1.23 0.81 1.38 2.29

L* 0.72 1.31 0.79 1.01 2.23

a* 0.78 0.61 0.81 0.55 2.34

b* 0.85 1.08 0.87 1.02 2.75

CARS-

MLR

SSC 0.95 0.41 0.89 0.63 3.09

Firmness 0.91 1.02 0.88 1.09 2.90

L* 0.81 1.07 0.81 0.97 2.32

a* 0.90 0.40 0.86 0.47 2.74

b* 0.92 0.77 0.88 0.97 2.91
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where YSSC, YFirmness, YL*, Ya*, and Yb* are the predicted values for 
each physicochemical index of kiwifruits. Xinm represents the SNV 
preprocessed spectral value at the wavelength of i nm.

3.5 Distribution visualization of 
physicochemical indices

Hyperspectral imaging can acquire spectral information for each 
pixel in a test sample (23) and then use this information to generate 
visualization maps of reference values for physicochemical indices. In 
this manner, it is more intuitive to detect the reference values of the 
physicochemical indices of kiwifruit at different maturity stages. In 

FIGURE 4

Prediction results for physicochemical indices of kiwifruits by CARS-MLR model.
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this study, we inputted the spectral information of each pixel in the 
ROI of kiwifruit samples into the CARS-MLR model to predict the 
SSC, firmness, L*, a*, and b* of each pixel of kiwifruits, and used the 
pseudo-color technique to visualize the distributions of these five 
indices at different maturity stages (24, 25). These distributions are 
shown in Figure 5. It can be observed from the visualized images that 
the color distributions of SSC and firmness of kiwifruits at different 
maturity stages differed significantly. In particular, the color 
distribution of SSC gradually became yellow (i.e., SSC gradually 
increased), whereas that of firmness gradually turned green (i.e., the 
firmness values gradually decreased) as kiwifruits gradually ripened, 
which was consistent with the results of the actual chemical 
experiments (26). The changes in the color distributions of L*, a*, and 
b* of kiwifruits at different maturity stages were relatively small, and 
consistent with the statistical results of the physicochemical indices of 
kiwifruits described in Subsection 3.1.

4 Conclusion

A rapid detection model for the physicochemical indices (SSC, 
firmness, L*, a*, and b*) of kiwifruits at different maturity stages was 
developed using hyperspectral imaging and chemometrics, making it 
possible to visualize the distributions of the physicochemical indices 
of kiwifruits. Compared with the full-band detection model, the 
CARS algorithm was used to select 32, 18, 26, 29, and 32 feature 
wavelengths from 256 full-band wavelengths for the prediction of SSC, 
firmness, L*, a*, and b*, respectively, which improved the detection 
efficiency of the prediction model. Furthermore, the constructed 
CARS-MLR model exhibited the best performance in predicting the 
physicochemical indices. For this optimal CARS-MLR model, the 
prediction set R2

P was 0.89, 0.88, 0.81, 0.86, and 0.88, the RMSEP was 

0.63, 1.09, 0.97, 0.47, and 0.97, and the RPD was 3.09, 2.90, 2.32, 2.74, 
and 2.91, respectively. The results indicated that the physicochemical 
indices of kiwifruits at different maturity stages can be rapidly and 
accurately detected. Based on the optimal detection model, the 
pseudo-color technique was used to visualize the distributions of the 
physicochemical indices of kiwifruits at different maturity stages, 
which made detecting these physicochemical indices more intuitive. 
The combination of hyperspectral imaging and chemometrics led to 
the rapid detection and distribution visualization of the 
physicochemical indices of kiwifruits, which laid a theoretical 
foundation for the development of nondestructive detection 
equipment for fruit quality and ripeness.
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