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Background: Previous studies showed the conflicting associations between

circulating micronutrient levels and systemic lupus erythematosus (SLE).

Therefore, we aimed to clarify the causal association between circulating

micronutrient levels and the risk of SLE by two-sample Mendelian randomization

(MR) analysis.

Methods: 56 single nucleotide polymorphisms (SNPs) significantly associated

with 14 circulating micronutrients (vitamin A, B6, B9, B12, C, D and E,

phosphorus, calcium, magnesium, copper, iron, zinc, and selenium) in published

genome-wide association studies (GWAS) were used as instrumental variables

(IVs). And summary statistics related to SLE were obtained from the IEU

OpenGWAS database. We used the MR Steiger test to estimate the possible

causal direction between circulating micronutrients and SLE. In the MR analysis,

inverse variance weighting (IVW) method and the Wald ratio was as the main

methods., Moreover, the MR-Pleiotropy residuals and outliers method (MR-

PRESSO), Cochrane’s Q-test, MR-Egger intercept method and leave-one-out

analyses were applied as sensitivity analyses. Additionally, we conducted a

retrospective analysis involving the 20,045 participants from the Third National

Health and Nutritional Examination Survey (NHANES III). Weight variables were

provided in the NHANES data files. Univariate and multivariate logistic regression

analyses were performed to determine the associations between circulating

micronutrients and SLE.

Results: The MR estimates obtained from the IVW method revealed potential

negative correlations between circulating calcium (OR: 0.06, 95% CI: 0.01–0.49,

P = 0.009), iron levels (OR: 0.63, 95% CI: 0.43–0.92, P = 0.016) and the risk of

SLE. The results remained robust, even under various pairs of sensitivity analyses.

Our retrospective analysis demonstrated that the levels of vitamin D, serum total

calcium, and serum iron were significantly lower in SLE patients (N = 40) when

compared to the control group (N = 20,005). Multivariate logistic regression

Frontiers in Nutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2024.1359697
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2024.1359697&domain=pdf&date_stamp=2024-08-05
https://doi.org/10.3389/fnut.2024.1359697
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2024.1359697/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/


fnut-11-1359697 August 3, 2024 Time: 12:37 # 2

Huang et al. 10.3389/fnut.2024.1359697

analysis further established that increased levels of vitamin D and serum total

calcium served as protective factors against SLE.

Conclusion: Our results provided genetic evidence supporting the potential

protective role of increasing circulating calcium in the risk of SLE. Maintaining

adequate levels of calcium may help reduce the risk of SLE.

KEYWORDS

circulating micronutrients, minerals, vitamins, systemic lupus erythematosus,
Mendelian randomization

1 Introduction

Systemic lupus erythematosus (SLE) is a chronic, debilitating,
multi-system autoimmune disease characterized by wide-ranging
clinical manifestations (1), with high morbidity and mortality
(2). The global prevalence and fatality rates of SLE have
been documented as 13-7713.5/100,000 and 0.01–2.71/100,000,
respectively (3). Recently, dietary interventions in preventing
autoimmune diseases have garnered increasing interest among
researchers. Circulating micronutrients primarily obtained through
dietary intake can notably influence physiological functions in
the conditions of both overabundance and deficiency. Despite
extensive research, the circulating micronutrients associated with
SLE remain only partially understood.

Micronutrients are typically nutrients that cannot be
synthesized by the body and generally consist of water-soluble
vitamins, fat-soluble vitamins, trace elements, and trace minerals.
In the past two decades, many studies have indicated that
circulating micronutrients play a significant role in developing
immunoinflammatory diseases, but the findings are still confusing
(4–10). In numerous studies of patients with SLE, vitamin D
deficiency was more common compared to those without SLE
(11–13). However, two prolonged follow-up studies showed that
vitamin D supplementation during adolescence had no preventive
effect on the development of SLE in adulthood and adult women
(9, 14). As an essential trace element, iron has been reported to be
involved in a diversity of biological processes. Nevertheless, there
are still limited findings on the role of iron in the pathogenesis
of SLE. It was observed from two recent studies that sufficient
iron status was inversely associated with the risk of developing
SLE (15, 16). In contrast, a case report conducted by Oh VM
illustrated that iron supplementation resulted in the manifestation
of SLE-like symptoms in a woman of childbearing age suffering
from iron deficiency anemia (17). Given that most of these studies
are observational studies and prone to confounding factors and
reverse causation. Therefore, a more detailed elucidation of
the potential causal relationship and causal direction between
circulating micronutrients and SLE is urgently necessary.

Mendelian randomization (MR) leverages genetic variations
associated with exposure as unconfounded instrumental variables
(IVs) to evaluate the causal relationship between exposure and
outcome (17). This method limits both bias and reverse causality,
which commonly occurs in observational epidemiological studies
(18). In theory, MR operates on a similar principle to naturally

occurring randomized controlled trials (RCTs) and serves as a
pivotal approach to strengthening causal inference in situations
where conducting RCTs is impractical or unethical (19). Given
the multiple advantages of MR in inferring the causal relationship
between exposure and outcome, our study utilized a two-sample
MR analysis to investigate potential causal relationships between
genetically predicted 14 circulating micronutrients (including
vitamins and minerals) and the risk of SLE.

2 Materials and methods

2.1 Study design

This study adhered to the guidelines stipulated by the
Strengthening the Reporting of Observational Studies in
Epidemiology using Mendelian randomization (STROBE-MR)
(20). The STROBE-MR checklist for the reporting of MR studies
was showed in Supplementary Table 1. We utilized the two-sample
MR method to investigate the potential causal relationships
between circulating micronutrients and the risk of SLE. Given that
our study harnessed data extracted from pre-existing published
literature, it circumvented the need for further ethical approval or
informed consent. The architecture of our study was based on the
three core assumptions underpinning MR (Figure 1).

2.2 Selection of genetic instrumental
variables

A systematic search of PubMed was conducted to identify
observational studies published on circulating micronutrients
in relation to SLE. This resulted in an initial list of such
micronutrients, comprising vitamin A, vitamin B6, vitamin
B9, vitamin B12, vitamin C, vitamin D, vitamin E, sodium,
phosphorus, calcium, magnesium, copper, iron, zinc, and selenium
(4). Although several MR studies have evaluated the role of
vitamin B9 (21), vitamin B12 (21), vitamin D (22), and iron
status (16) in SLE, the Genome-Wide Association Study (GWAS)
data for both exposures and outcomes used in our research
exhibit slight variations. As a result, we have undertaken a
replication of these analyses. Following this, we explored the
GWAS catalog and PubMed for published GWAS centered on
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FIGURE 1

A schematic representation of our study design. SNPs, single nucleotide polymorphisms; SLE, systemic lupus erythematosus; MR, Mendelian
randomization.

circulating micronutrients in European populations (the search was
last updated in September 2023). Owing to the lack of relevant
studies on sodium, it was excluded from our analysis. Ultimately,
our research encompassed GWAS of 14 different circulating
micronutrients: vitamin A (23), vitamin B6 (24), vitamin B9 (25),
vitamin B12 (25), vitamin C (26), vitamin D (27), vitamin E
(28), phosphorus (29), calcium (30), magnesium (31), copper (32),
iron (33), zinc (32), and selenium (32). In this research, Single
Nucleotide Polymorphisms (SNPs) linked to these 14 circulating
micronutrients were designated as instrumental variables (IVs)
adhering to the following standards: (1) The SNP demonstrates
significant association with circulating micronutrient (P < 5e-08)
and lacks linkage disequilibrium (r2 < 0.001, KB = 10,000) (34); (2)
The SNP with a minor allele frequency (MAF) of ≥ 5% (35); (3)
The SNP showing no evidence of reverse causality, as determined
by the Steiger filtering test (36); (4) In cases where the SNP is not
found in the results dataset, a closely associated SNP (r2 > 0.8) is
chosen as a proxy in the 1000 Genomes database. If proxy SNP
was unavailable, it was excluded from the analysis (37). (5) The
chosen SNP is confirmed to be unassociated with confounding
factors through inspection via the PhenoScanner database1 (P< 5e-
08,r2 = 0.8) (38). Furthermore, we calculated the R2 to denote the
variance explained by the SNP and the F-statistic to signify potential
weak IV bias in MR analysis. The R2 was calculated as follows (39):
R2 = 2 × Beta2

× (1-EAF) × EAF/SD2, and the F-statistic was
calculated as (40): F = (Beta)2/(SE)2, where Beta is the per allele
effect size of the association between each SNP and phenotype,
EAF is the effect allele frequency, SE is the standard error, SD
is the standard deviation. The IV is deemed strong when the
F-statistic ≥ 10 (40). Ultimately, we identified 56 SNPs correlated
with 14 circulating micronutrients, serving as IVs. The summary

1 http://www.phenoscanner.medschl.cam.ac.uk/(1-3)

statistics of these SNPs utilized for MR analysis are presented in
Table 1 and Supplementary Table 2.

2.3 SLE data source

The GWAS summary data (GCST90018917) for SLE were
sourced from a recent large-scale GWAS in the IEU OpenGWAS
database. This dataset comprises 647 cases of European ancestry
(from Finland and the UK) and 482,264 control subjects of
European ancestry. Then, cases of non-European ancestry (from
Japan) have been excluded.

2.4 Statistical analysis

Following the harmonization of SNPs in both exposure and
outcome using identical alleles, a two-sample MR analysis was
conducted. When the MR estimate contained only one single
SNP, the Wald ratio method was adopted as the primary analysis
method (41); when the number of SNPs was ≥ 2, we employed the
inverse variance weighted (IVW) method as the primary analysis
method (42). When the number of SNPs was ≥ 3, the MR-Egger
and Weighted median methods were applied for supplementary
approaches to test the robustness of the primary analysis (43, 44).
Furthermore, an MR analysis was conducted separately for each
SNP associated with exposures. In addition, to ensure that the
MR effects were oriented in the correct direction (from exposure
to SLE), we conducted the MR Steiger test to confirm that each
instrumental variable (IV) explained more variance in the exposure
than in the outcome (36).

The degree of heterogeneity amongst the IVs was evaluated
using Cochrane’s Q test (45). When P < 0.05, it signifies the
presence of heterogeneity. In cases of observed heterogeneity, the
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TABLE 1 Circulating micronutrient-associated SNPs used as instrumental variables in the Mendelian randomization analyses.

Exposure SNPs EA OA EAF Beta SE P-value MR Steiger test
(P-value)

Vitamins

Vitamin A rs10882272 C T 0.35 −0.03 0.004 7.80E-12 9.65E-14

rs1667255 C A 0.31 0.03 0.004 6.35E-14 4.04E-13

Vitamin B6 rs4654748 C T 0.50 −1.45 0.280 8.30E-18 3.17E-07

vitamin B9 rs1801133 G A 0.67 0.11 0.008 6.65E-53 8.74E-43

rs652197 C T 0.18 0.07 0.010 5.73E-13 2.96E-10

rs76630415 G T 0.21 −0.04 0.007 2.40E-08 1.04E-06

Vitamin B12 rs1131603 C T 0.06 0.19 0.017 4.30E-28 1.55E-25

rs1141321 C T 0.63 0.06 0.007 1.40E-16 2.17E-16

rs12272669 A G 0.00 0.51 0.086 3.00E-09 2.48E-08

rs1801222 G A 0.59 0.11 0.007 1.10E-52 2.37E-48

rs2270655 G C 0.94 0.07 0.016 3.50E-05 1.30E-04

rs2336573 T C 0.03 0.32 0.021 1.10E-51 1.69E-47

rs34324219 C A 0.88 0.21 0.012 8.80E-71 6.86E-58

rs3742801 T C 0.29 0.05 0.008 5.30E-08 1.73E-07

rs41281112 C T 0.95 0.17 0.016 9.60E-27 5.76E-23

rs602662 A G 0.60 0.16 0.008 4.10E-96 1.40E-79

Vitamin C rs10051765 C T 0.34 0.04 0.007 3.64E-09 2.95E-07

rs10136000 A G 0.28 0.04 0.007 1.33E-08 5.87E-08

rs117885456 A G 0.09 0.08 0.012 1.70E-11 1.12E-09

rs13028225 T C 0.86 0.10 0.009 2.38E-30 6.66E-27

rs174547 C T 0.33 0.04 0.007 3.84E-08 1.06E-05

rs2559850 A G 0.60 0.06 0.006 6.30E-20 6.69E-20

rs56738967 C G 0.32 0.04 0.007 7.62E-10 8.98E-06

rs6693447 T G 0.55 0.04 0.006 6.25E-10 1.56E-09

rs9895661 T C 0.82 0.06 0.008 1.05E-14 5.65E-13

Vitamin D rs10741657 A G 0.40 0.03 0.002 2.05E-46 4.88E-44

rs10745742 T C 0.40 0.02 0.002 1.88E-14 4.17E-15

rs12785878 T G 0.75 0.04 0.002 3.80E-62 6.05E-61

rs17216707 T C 0.79 0.03 0.003 8.14E-23 3.73E-15

rs3755967 T C 0.28 −0.09 0.002 1.00E-200 0.00E+00

rs8018720 C G 0.82 −0.02 0.003 4.72E-09 3.86E-07

Vitamin E rs964184 G C 0.21 0.04 0.010 7.80E-12 7.53E-05

Minerals

Phosphorus rs2970818 T A 0.09 0.05 0.008 4.38E-09 8.73E-09

rs9469578 C T 0.92 0.06 0.009 1.11E-11 2.34E-10

rs947583 T C 0.29 0.04 0.005 3.45E-12 1.32E-10

Calcium rs10491003 T C 0.09 0.03 0.005 1.60E-06 2.05E-06

rs1550532 C G 0.31 0.02 0.003 4.60E-08 1.22E-08

rs1570669 G A 0.66 0.02 0.003 4.00E-08 1.07E-07

rs7336933 G A 0.15 0.02 0.004 1.60E-07 9.71E-08

rs7481584 G A 0.30 0.02 0.003 9.20E-10 1.39E-10

rs780094 T C 0.42 0.02 0.003 3.70E-11 9.17E-10

(Continued)
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TABLE 1 (Continued)

Exposure SNPs EA OA EAF Beta SE P-value MR Steiger test
(P-value)

Magnesium rs11144134 C T 0.08 0.01 0.001 8.20E-15 5.76E-26

rs13146355 A G 0.44 0.01 0.001 6.30E-13 2.53E-06

rs3925584 T C 0.55 0.01 0.001 5.20E-16 1.23E-08

rs4072037 T C 0.54 0.01 0.001 2.00E-36 8.49E-22

rs448378 A G 0.53 0.00 0.001 1.25E-08 1.12E-04

ars7965584 A G 0.71 0.01 0.001 1.10E-16 4.56E-11

Copper rs1175550 G A 0.23 0.20 0.032 5.03E-10 1.23E-09

rs2769264 G T 0.19 0.31 0.034 2.63E-20 1.14E-19

Iron rs1800562 A G 0.07 0.33 0.016 2.72E-97 1.89E-69

rs7385804 T G 0.67 −0.07 0.007 6.65E-20 7.52E-79

rs8177240 T G 0.67 −0.07 0.007 6.65E-20 8.91E-18

rs855791 G A 0.55 0.18 0.007 1.32E-139 3.21E-18

Zinc rs1532423 A G 0.43 0.18 0.026 9.00E-12 1.39E-11

rs2120019 T C 0.81 0.29 0.033 1.50E-18 1.35E-17

Selenium rs921943 T C 0.29 0.25 0.023 9.40E-28 1.05E-25

SNPs, single nucleotide polymorphisms; OA, other allele; EA, effect allele; SE, standard error. ars7965584 was not available in the outcome dataset, and rs11105470 was found to replace it in
the 1000 Genomes database.

random effects IVW method is deployed to ascertain the causal
relationship between exposure and outcome, thereby mitigating
bias from heterogeneous IVs. The MR-Egger intercept detected
horizontal pleiotropy in the IVs, with P < 0.05 indicating its
presence (44). The MR-Pleiotropy Residual Sum and Outlier
method (MR-PRESSO) was employed to identify outlying SNPs
and rerun the analysis after outlier removal (46). Finally, the leave-
one-out analysis was implemented to ascertain the MR analysis’s
robustness and determine whether a specific SNP drove any
association (47).

In this study, P < 0.05 was considered statistically significant.
All analyses were performed using R software, with the
“TwoSampleMR” and “MR-PRESSO” packages facilitating the
two-sample MR analysis.

2.5 External validation in the NHANES III
cohort

We utilized the NHANES III (1988–1994) data as the external
validation dataset for this study. The NHANES III participants
were restricted to adults aged 17 years and older. After excluding
5 participants with unknown SLE status, a total of 20,045
participants with the completed household interview and physical
examination were included in the analysis. The participant’s
SLE status was determined by the item in the questionnaire:
“Doctor ever told you had: lupus?” The other variables including
age, gender, and race were also derived from the household
interview data, while BMI was calculated using the formula:
BMI = weight (kg)/[height (m)]2. The serum levels of the 6
circulating micronutrients (vitamin A, vitamin C, vitamin D, serum
calcium, iron, and selenium) were obtained from the laboratory
examination data.

Considering the complex survey design, the weight variables
were provided in the NHANES data files and t-tests, chi-square
tests, and rank-sum tests were utilized to compare demographic
disparities between the SLE group (N = 40) and the control
group (N = 20,005). In the univariate regression analysis, we first
constructed a preliminary rude model using only age, gender,
race, and BMI. Then 6 circulating micronutrients were individually
analyzed based on this rude model. Finally, variables with a
significance level of P < 0.10 in above univariate regression analysis
were included in the next multivariate regression analysis, which
aimed to identify the most significant factors associated with SLE.
And both the multivariate and univariate regression analyses were
adjusted for the same covariates.

3 Results

3.1 The causal relationship of 14
circulating micronutrients on SLE in the
European populations

The MR estimates obtained from the IVW method revealed
potential negative correlations between circulating calcium (OR:
0.06, 95% CI: 0.01–0.49, P = 0.009), iron levels (OR: 0.63, 95% CI:
0.43–0.92, P = 0.016) and the risk of SLE (Figure 2). Concurrently,
the weighted median method also derived similar results regarding
the causal relationship between circulating iron level and the risk
of SLE (OR: 0.60, 95% CI: 0.39–0.92, P = 0.020). The directional
consistency of the causal relationship between circulating calcium
level and the risk of SLE was maintained in the weighted median
analysis (OR: 0.08, 95% CI: 0.00–1.18, P = 0.066) and IVW analysis,
albeit without statistical significance (Supplementary Table 3).
However, we did not observe significant correlations between
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FIGURE 2

A forest plot showing the associations between genetically determined circulating micronutrients and systemic lupus erythematosus, based on
Mendelian randomization analysis. IVW, inverse variance weighted; OR, odds ratio; CI, confidence interval.

vitamin A, vitamin B9, vitamin B12, vitamin C, vitamin D, vitamin
E, phosphorus, magnesium, copper, zinc, selenium and the risk of
SLE, as detailed in Supplementary Table 3.

3.2 Sensitive analysis

As indicated in Supplementary Table 4, both Cochrane’s Q
test and the MR-Egger intercept suggest no heterogeneity and
horizontal pleiotropy present in our MR analyses (P > 0.05). In
the MR-PRESSO analyses, the rs1697421 (P = 0.01), rs17265703
(P = 0.005) and rs1801725 (P = 0.005) were identified as outliers.
Then, no outlier SNPs were detected after removing and re-testing
(P > 0.05) (Supplementary Table 4). When conducting the MR
analyses using individual SNPs for either circulating calcium or
iron levels, the results aligned with those obtained through the
MR-PRESSO method (Supplementary Figure 1). The scatter plots,
funnel plots, and leave-one-out plots all showed that the MR
analysis results for the relationship between circulating calcium
and iron levels with the risk of SLE remained robust, even under
various pairs of sensitivity analyses (Supplementary Figures 2–4).
Furthermore, as shown in Supplementary Table 5, the F-statistics
for all 56 SNPs exceed 10, indicating no weak instrumental bias in
our MR analyses.

3.3 Validation analysis in the NHANES III
cohort

To further validate the findings in our MR analysis, we
compared and analyzed the levels of circulating micronutrients
in the serum of patients with SLE and those without SLE which
sourced from a large cohort, known as the NHANES III cohort.

A total of 20,045 participants were ultimately included in
this study. The demographic characteristics of the NHANES III
participants by SLE status are presented in Supplementary Table 6.
After applying appropriate weighting for the analysis, we observed
that the mean age of the SLE group [52.06 (13.72)] was significantly
higher than that of the control group [57.80 (13.92)] (P < 0.01).
However, there were no significant differences observed in other
demographic characteristics, including BMI, gender, and race. In
the comparative analysis of 6 circulating micronutrients between
the two groups, the SLE group exhibited significantly lower levels
of vitamin D (P < 0.01), serum total calcium (P = 0.01), and serum
iron levels (P = 0.04) (Supplementary Table 7). Consistent with
the results of univariate Logistic regression analyses, multivariate
Logistic regression analyses also found that vitamin D (OR: 0.98,
95% CI: 0.97–1.00, P = 0.01) and serum total calcium (OR: 0.03,
95% CI: 0.00–0.58, P = 0.02) had a protective effect against SLE
(Supplementary Table 8).

4 Discussion

The precise etiology of SLE remains unclear. Recently, the
potential of dietary interventions in preventing autoimmune
diseases has garnered increasing interest among researchers. While
there have been prior causal analyses involving single exposure,
such as vitamin D, vitamin B, and iron status with SLE, to the best
of our knowledge, this is the first comprehensive study to explore
the causal associations between multiple circulating micronutrients
and SLE. Our MR analyses showed the causal association between
genetically predicted reductions in circulating calcium, iron and
susceptibility to SLE in European populations. However, in the
external validation analysis using the NHANES III cohort, only
circulating calcium emerged as a protective factor for SLE.
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In the present study, for the first time, we support a causal
association between circulating calcium and SLE, and circulating
calcium can serve as a potential protective factor against SLE.
An earlier observational case-control study supported our results
by finding a correlation between serum total calcium levels and
activity of SLE (48). The researchers also observed that the
serum calcium levels in SLE patients were significantly lower than
those of healthy individuals (48). A retrospective analysis likewise
discovered a significant reduction in the serum calcium levels of
SLE patients when compared to those of healthy controls (49).
Furthermore, a significant proportion of patients with SLE, as
identified by numerous cross-sectional studies, exhibit insufficient
levels of calcium intake, seldom reaching the recommended dietary
allowance (15, 50). Calcium is an essential trace metal required for
biological growth, and calcium signaling regulates many immune
tolerance and inflammation pathways. Studies have found that the
disruption of B-cell tolerance is a core key to the onset of SLE,
and calcium signaling plays an important role in the development
and fate of B cells (two key aspects of immune tolerance) through
specific activation of transcription programs (51). Additionally,
calcium signaling transmission can regulate the activation of the
cGAS-STING axis, thus participating in innate immunity and
autoimmune regulation through Type I interferon (52). Calcium
exists in the blood in three forms (the ionic form, the form bound
primarily to albumin, and the form bound to anions), with Ca2+

being the physiologically active form of calcium. Nonetheless,
contemporary clinical laboratory routines continue to measure
overall serum calcium levels to represent the calcium status of the
body. Thus, serum calcium may serve as a potential biomarker for
the onset and progression of SLE.

In the MR analysis, an elevation in serum iron levels is
associated with a decreased risk of SLE, the findings congruent
with those derived from recent MR investigations (16). However,
our validation analysis in the NHANES III cohort revealed that,
after adjusting for demographic characteristics, there was no
significant association between serum iron and SLE, as indicated
by the univariate analysis using Logistic regression. In fact,
the association between serum iron and SLE is not clear, with
inconsistent conclusions reported. A recent substantial cohort
study conducted in China revealed that the risk of developing
SLE is notably higher in patients with iron deficiency anemia
(53). Another case-control study conducted in Bangladesh also
revealed similar results (54). However, in two additional small-
scale case-control studies, no substantial difference was observed
in the serum iron levels between patients with SLE and their
control counterparts (55, 56). There are also indeed conflicting
research findings regarding the association between serum iron
and the mechanisms of inflammation induction. Prior studies
have established that iron serves as a crucial micronutrient
required for the proliferation of B cells and the production
of antigen-antibodies (57). Iron homeostasis is critical in the
incidence and progression of autoimmune inflammatory diseases
(58). Research has demonstrated a substantial correlation between
iron homeostasis and immune inflammation. Iron deficiency
could potentially influence the expression of cytokines such as
IL-6, IL-1, TNF-α, and IFN-γ, contributing to tissue damage
(59). However, Wang et al. discovered that an overabundance
of iron could stimulate the generation of pro-inflammatory
cytokines via poly(rC)-binding protein 1 (Pcbp1), consequently

leading to the direct induction of autoimmune diseases (60).
Therefore, further investigation through large-scale experimental
epidemiological studies is needed to explore the association
between serum iron and SLE.

The strengths of this study are as follows: First, we built the
causal relationship between multiple circulating micronutrients
and the risk of SLE in European populations and validate in the
NHANES III cohort. This comprehensive analysis can provide a
more global understanding of them. Second, the exposure and
outcome of our study come from different regions of the same
lineage, the overlap of samples is relatively light, and the bias
of population stratification is small. Finally, we excluded SNPs
that may have a reverse causality and overcame the limitations of
observational studies (confounding factors, recall bias).

There are also some limitations in this study. First, although
multiple MR methods were used to prevent confounding caused by
pleiotropy, residual bias cannot be eliminated. We cannot be sure
that the SNPs chosen concerning circulating micronutrients will
not affect SLE-related outcomes through other causal pathways.
Second, there are significant gender differences in SLE, but we
cannot stratify the outcome data due to the lack of individual-level
data in the summary statistics.

In conclusion, by a two-sample MR analysis and an
external validation analysis, our results provided genetic evidence
supporting the potential protective role of circulating calcium levels
in the risk of SLE. Our findings will provide a crucial scientific basis
for dietary intervention in the development and progression of SLE.
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