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Introduction: Cardiovascular disease (CVD) is the leading cause of death in 
women, with increased risk following menopause. Dietary intake of beetroot juice 
and other plant-based nitrate-rich foods is a promising non-pharmacological 
strategy for increasing systemic nitric oxide and improving endothelial function 
in elderly populations. The purpose of this randomized, placebo-controlled, 
double-blind, crossover clinical trial was to determine the effects of short-term 
dietary nitrate (NO3

−) supplementation, in the form of beetroot juice, on resting 
macrovascular endothelial function and endothelial resistance to whole-arm 
ischemia–reperfusion (IR) injury in postmenopausal women at two distinct 
stages of menopause.

Methods: Early-postmenopausal [1–6  years following their final menstrual 
period (FMP), n =  12] and late-postmenopausal (6+ years FMP, n  =  12) women 
consumed nitrate-rich (400  mg NO3

−/70  mL) and nitrate-depleted beetroot 
juice (approximately 40  mg NO3

−/70  mL, placebo) daily for 7  days. Brachial artery 
flow-mediated dilation (FMD) was measured pre-supplementation (Day 0), and 
approximately 24  h after the last beetroot juice (BR) dose (Day 8, post-7-day BR). 
Consequently, FMD was measured immediately post-IR injury and 15  min later 
(recovery).
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Results: Results of the linear mixed-effects model revealed a significantly 
greater increase in resting FMD with 7  days of BRnitrate compared to BRplacebo (mean 
difference of 2.21, 95% CI [0.082, 4.34], p  =  0.042); however, neither treatment 
blunted the decline in post-IR injury FMD in either postmenopausal group. Our 
results suggest that 7-day BRnitrate-mediated endothelial protection is lost within 
the 24-h period following the final dose of BRnitrate.

Conclusion: Our findings demonstrate that nitrate-mediated postmenopausal 
endothelial protection is dependent on the timing of supplementation in relation 
to IR injury and chronobiological variations in dietary nitrate metabolism.

Clinical trial registration: https://classic.clinicaltrials.gov/ct2/show/NCT03644472
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1 Introduction

Cardiovascular disease (CVD) risk exponentially rises after 
menopause (1, 2), in part due to reductions in vascular function (3–5). 
Estrogen plays a pivotal role in maintaining homeostatic nitric oxide 
(NO) bioavailability in estrogen-replete premenopausal women (6, 7). 
Previous epidemiological data demonstrate that premenopausal 
women are protected from ischemic coronary artery disease compared 
with age-matched men; however, this protection is lost postmenopause 
(8). A major mechanism proposed to underlie menopause-induced 
vascular dysfunction is hypoestrogenemia and its NO-mediated 
vasodilator, vasoprotective, and antioxidant effects (9–12). The close 
association between CVD risk and estrogen deficiency highlights the 
clinical importance of cardiovascular health for 
postmenopausal longevity.

The presence of endogenous estrogen might not only affect basal 
endothelial function, but additionally, it can influence endothelial cell 
resistance and resilience following periods of tissue ischemia and 
subsequent reperfusion (i.e., ischemia–reperfusion (IR) injury) (13–
17). Endothelial IR injury, which occurs during myocardial infarction, 
cardiac, and limb surgery, is defined by a temporary period of blood 
flow restriction and subsequent reperfusion, resulting in the 
production of damaging reactive oxygen and nitrogen species (RONS) 
(15). Premenopausal women in the late follicular phase of the 
menstrual cycle, when estradiol concentration is high, exhibit greater 
endothelial resistance to whole-arm IR injury compared to the early 
follicular phase when estradiol concentrations are low (14). The 
inverse association between serum estradiol and endothelial resistance 
is also supported by recent evidence from our laboratory, 
demonstrating that early-postmenopausal women, within 1–6 years of 
their final menstrual period (FMP), exhibit attenuated endothelial 
resistance to IR injury compared to premenopausal women despite 
comparable resting endothelial function (13). These findings support 
a role for the importance of endogenous estrogen-mediated 
endothelial protection.

It has long been hypothesized that estrogen therapy could be a 
primary prevention strategy to reduce CVD risk in postmenopausal 
women by mimicking the estrogen-replete premenopausal 
environment (18). However, evidence supports that the overall health 
risks of hormone therapy (HT, estrogen + progestin) exceed the 

vascular benefits in this population (19, 20). Additionally, the timing 
hypothesis emphasizes that hormone therapy has a more favorable 
effect in lowering future CVD events, in recently postmenopausal 
women compared to their more estrogen-deficient, chronologically 
older, late-postmenopausal (6+ years since the FMP) counterparts (18, 
21, 22). The postmenopausal-stage variations in endothelial 
responsiveness to HT suggest that further investigation into 
non-pharmacological CVD targeted interventions for women in the 
later stage of menopause is necessary.

Nutraceutical interventions using nitrate-rich beetroot juice (BR) 
have emerged as a promising therapeutic strategy to increase systemic 
NO bioavailability and improve endothelial function in older, healthy, 
and high CVD-risk populations (23, 24). The entero-salivary pathway 
is a potential backup system to maintain homeostatic NO levels when 
the oxygen supply is limited. While endogenous NO production 
occurs via the L-arginine-NO synthase (NOS) pathway, the alternative 
exogenous dietary nitrate (NO3

−)–nitrite (NO2
−)–NO pathway relies 

on nitrate-rich foods such as arugula, spinach, and beetroot to 
enhance systemic NO bioavailability (25, 26). Within the entero-
salivary circulation, nitrate-reducing bacteria in the oral cavity 
facilitate the reduction of nitrate to nitrite (26). Subsequently, the 
conversion of nitrite to NO is favored under ischemia-induced acidic 
conditions (i.e., low pO2 and pH) (24), such as occurs during IR 
injury. Therefore, nitrate-rich beetroot juice supplementation may 
represent an efficacious nutraceutical approach to increase NO 
bioavailability and subsequent endothelium-dependent vasodilation 
(23, 27).

Previously, we  showed that early-postmenopausal endothelial 
resistance to IR injury significantly improved approximately 100 min 
after a single dose of nitrate-rich beetroot juice (BRnitrate). Whether 
macrovascular protection against IR injury is maintained 24 h 
following short-term BRnitrate supplementation in postmenopausal 
women remains unexplored.

Accordingly, to extend our previous acute supplementation work, 
the primary aim of this investigation was to determine whether 7-day 
dietary nitrate supplementation confers postmenopausal stage-
dependent variations in resting macrovascular function and 
endothelial resistance to whole-arm IR injury. In this double-blind, 
placebo-controlled, randomized crossover trial, we hypothesized that 
the effects of 7-day BRnitrate supplementation would be maintained 24 h 
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after the final dose (28) and would (1) increase resting endothelial 
function, (2) enhance endothelial resistance to IR injury, and (3) 
increase NO plasma metabolite concentrations to a greater extent in 
early-postmenopausal compared to late-postmenopausal women.

2 Materials and methods

2.1 Participants

Study participants were recruited from the Penn State campus and 
the greater surrounding State College, PA community, and provided 
written informed consent to participate in this registered clinical trial 
(NCT03644472). Out of the 54 women who were screened, 25 women 
completed all portions of the study. All procedures were approved by 
the Office of Research Protections at The Pennsylvania State University 
in agreement with the guidelines set forth by the Declaration 
of Helsinki.

Both early-postmenopausal [1–6 years following their final 
menstrual period (FMP)] and late- postmenopausal (>6 years 
following their FMP) women were recruited and staged based on the 
STRAW+1- criteria (29). Eligible participants did not have overt 
chronic disease as confirmed by a physician-reviewed medical history 
questionnaire and venous blood chemistry (hematological, liver, and 
kidney function). Eligible participants met the following criteria: 
resting brachial blood pressure < 130/80 mmHg, body mass index 
between 18.5 and 35 kg/m2, fasting plasma glucose <100 mg/dL or 
HbA1c <6.0%, fasting plasma low-density lipoprotein <160 mg/dL, 
non-smoker, not taking any cardiovascular medications or hormone 
therapy, and had not donated blood or blood products in the past 
3 months. Following the determination of participant eligibility, 
volunteers were asked to complete four experimental study visits that 
consisted of vascular assessments and the IR injury protocol pre- and 
post-7-day nitrate-rich (BRnitrate) and nitrate-depleted (BRplacebo) 
supplementation.

2.2 Overview of study design

Participants arrived at the Clinical Research Center (CRC) at The 
Pennsylvania State University between 7 am and 9 am having met the 
pre-testing requirements for all study visits: 12 h fasting from food and 
caffeine, 48 h without alcohol and dietary supplements, 24 h refraining 
from vigorous exercise, and 2 weeks without antioxidant supplements. 
Participants were asked to limit dietary nitrate intake throughout the 
7-day supplementation period and were provided with a list of high-
nitrate foods to avoid (leafy green vegetables, beetroot, watermelon, 
etc.). Participants were asked to record their diet 24 h prior to testing. 
After voiding and 10 min of seated rest, blood pressure and heart rate 
were measured in triplicate with a 1-min rest separating 
measurements. Participants were asked to refrain from using anti-
bacterial mouthwash on experimental days and throughout 
supplementation as to preserve nitrate-reducing commensal 
bacterium in the oral cavity (30). Participants rested for an additional 
10 min in a supine position after which brachial–ankle pulse-wave 
velocity was measured in triplicate with a 1-min rest between 
measurements (VP2000, Colin Medical). A baseline venous blood 

draw was taken from the left arm. Participants then walked to another 
room for vascular ultrasound assessments. After at least 10 min of 
supine rest, a baseline vascular assessment was conducted using 
brachial artery imaging with Doppler ultrasound to measure resting 
macrovascular function (see below for procedure details). 
Subsequently, participants consumed either NO3

−-rich (BRnitrate, 
300 mg NO3

− in 70 mL/6.4 mmol Beet-It Organic, James White Juice 
Company) or NO3

−-depleted (BRplacebo, 40 mg NO3
− per 

70 mL/0.38 mmol nitrate-depleted Beet-It Organic, James White Juice 
Company) beetroot juice in random order, for 7 days. All vascular 
assessments were conducted on the same arm (right arm), in a dark, 
quiet, temperature-controlled (21°C) room, while following current 
guidelines (31). Eligible participants were randomly assigned in a 
1-to-1 ratio to one of two randomization sequences by CRC nurse 
staff. The randomization sequence was generated electronically1 and 
stratified by the postmenopausal stage. The randomization schedule 
consisted of one block of 14 sequences for each postmenopausal stage. 
Blinding was achieved using identical-tasting interventions, and 
participants, as well as investigators, were kept unaware of the 
treatment sequences. The crossover design consisted of two treatment 
periods with a washout period of at least 2 weeks between them to 
minimize carryover effects. To best monitor adherence to the 7-day 
supplementation protocol, participants were asked to bring all the 
empty BR bottles to the post-supplementation visit.

Twenty four hours after consuming the last bottle of juice (Day 8), 
participants returned to the CRC. Resting seated blood pressure (left 
arm) and heart rate were measured followed by brachial–ankle pulse 
wave velocity. A venous blood sample was taken approximately 24 h 
following 7-day juice consumption. After at least 10 min of supine rest, 
a vascular assessment was conducted (see below for detailed 
procedures). Immediately following the vascular assessment, a rapid 
pneumatic cuff (Hokanson) was placed around the upper, right arm 
(as close to the axilla as possible) and inflated to 250 mmHg for 20 min 
followed by 15 min of reperfusion to induce temporary endothelial IR 
injury (15). The vascular assessments were repeated immediately after 
the reperfusion portion of the IR injury protocol (post-IR timepoint) 
and again 15 min later (30 min post-IR injury, recovery timepoint) to 
assess endothelial resistance and resilience, respectively (13). The final 
blood sample was taken at the end of all experimental visits 
(approximately 27–28 h after the last BR dose). A minimum 14-day 
washout period separated each week of supplementation. An overview 
of the study flow CONSORT diagram (Figure 1) and a schematic of 
the experimental protocol (Figure 2) are provided.

2.3 Plasma nitrate and nitrite analysis

Venous blood samples were collected into sodium heparin tubes 
(6-mL sodium heparin tubes, BD Vacutainer, Franklin Lakes, NJ, 
United States) and immediately centrifuged at 3,000 rcf (3,000 g) and 
4°C for 4 min. Plasma was aliquoted and stored in a − 80°C freezer for 
later analysis. The ENO-20 analyzer was used to measure plasma 
NO3

− and NO2
− concentrations (sensitivity of 0.1 pmol for NO3

− and 
NO2

−) according to the manufacturer’s protocol.

1 http://www.randomization.com

https://doi.org/10.3389/fnut.2024.1359671
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org
http://www.randomization.com


Delgado Spicuzza et al. 10.3389/fnut.2024.1359671

Frontiers in Nutrition 04 frontiersin.org

2.4 Dietary nitrate intake

Dietary nitrate intake was estimated from 24-h dietary recalls. 
Participants completed a total of four 24-h dietary recalls, which 

included two recall days (Day 0, i.e., 24 h prior to the baseline visit, and 
Day 7, i.e., 24 h prior to post-7-day supplementation visit) from each 
7-day supplementation period for each treatment condition (two diet 
recalls from BRplacebo and two diet recalls from BRnitrate). Briefly, a 

FIGURE 1

The CONSORT flow diagram is a summary of the randomized, double-blind, placebo-controlled, crossover design study to assess the influence of 
7-day nitrate-rich and nitrate-depleted (placebo) beetroot juice supplementation on endothelial function at rest and after ischemia–reperfusion injury. 
Treatment period one (7  days); washout (2  weeks or more); and treatment period two (7  days). (A), nitrate-depleted beetroot juice and (B), nitrate-rich 
beetroot juice.
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nitrate food composition database for plant- (32) and animal-based 
(33) foods that also includes government analyses as part of national 
monitoring programs was used to quantify daily dietary nitrate 
consumption (mg/d). The estimated quantity of the plant- and animal-
based foods consumed (g/d) was multiplied by the median nitrate 
value (mg/g) of each food. A 50% reduction in the assigned nitrate 
value was applied to the cooked plant-based foods to account for the 
effect of cooking (32); however, due to the limited number of eligible 
studies that detailed processing methods at the time of the database 
creation, the impacts of processing/cooking on nitrate content from 
animal-based foods were not included in the database (33). The total 
plant- and animal-based nitrate consumed per day was calculated by 
summing the nitrate values of each individual derived food (mg/d). 
To mitigate the potential influence of baseline dietary nitrate (mg/day 
0) on post-supplementation FMD (day 8), baseline dietary nitrate 
intake was used as a covariate. Nitrate content from BRnitrate (400 mg/d 
x 7 days) supplementation was not included in the analysis; only 
dietary nitrate (mg/d) from the background diet was included.

2.5 Ankle–brachial pulse wave velocity

After 10 min of supine rest, brachial–ankle pulse wave velocity 
(PWV) was measured in triplicate separated by 1 min using the 
VP2000 (Colin Medical) (34). According to the manufacturer’s 
instructions, blood pressure cuffs were placed securely around the 
participant’s upper arms and ankles, ECG electrodes were placed on 
the inner right and left wrists, and the phonocardiogram sensor on the 
proper rib-cage location. The automatic measurement was initiated 
and lasted approximately 45 s to 1 min.

2.6 Macrovascular function

2.6.1 Experimental protocol
The endothelial macrovascular function was assessed by brachial 

artery flow-mediated dilation. Following 10 min of supine rest, the 
participant’s right arm was extended 80–90 degrees from their torso. 
Subsequently, a rapid inflation/deflation pneumatic cuff was placed 

around the forearm distal to the olecranon process. A multifrequency 
linear array probe attached to a high-resolution ultrasound machine 
(Phillips IU22) was used to capture longitudinal B-mode images of the 
brachial artery in the distal portion of the upper arm. Simultaneously, 
Doppler velocity was recorded at an insonation angle of 60 degrees 
and the sample volume was adjusted to the vessel size. Resting brachial 
artery diameter and blood velocity were recorded for at least 60–120 s. 
The pneumatic cuff was inflated to 250 mmHg for 5 min, and arterial 
lumen diameter and blood velocity were continuously measured 
during the occlusion period. Once the cuff was rapidly deflated, 
imaging continued for 3 min. Placement of the ultrasound transducer 
was marked on the participant’s arm to minimize differences in 
baseline arterial diameter between measurements. The same 
sonographer conducted all FMD tests and has a coefficient of variation 
(CV) of 16.9% for relative FMD and 1% for brachial artery baseline 
diameter. These values are in line with recommended expert 
values (31).

2.6.2 Data analysis
The analysis of FMD data was conducted using live commercial 

edge-detection software (FMD Studio, Cardiovascular Suite 4, 
Quipu, Pisa, Italy) to analyze artery diameter, blood velocity, and 
shear rate. The optimal region of interest was analyzed by the same 
sonographer and was chosen based on image quality and clear 
distinction between the artery walls and lumen. FMD was 
calculated as the percent increase from baseline to peak diameter 
during reactive hyperemia using the following equation: 

Peak diameter baseline diameter
baseline diameter

×− 100  on FMD Studio. To 

account for baseline diameter differences between postmenopausal 
groups, allometrically scaled FMD (Adjusted, Adj. FMD) was calculated 
as ln lnpeak diameter baseline diameter  � � � � � (35, 36).

2.6.2.1 Arterial hemodynamics
Shear rate (s−1, SR), defined as the frictional force exerted by blood 

flow, was calculated using the following formula: 

mean blood velocity cm
s

arterial diameter mm
×

�
�
�

�
�
�

� �
4  on FMD Studio (Cardiovascular  

Suite 4, Quipu, Pisa, Italy). Oscillatory shear index (OSI, a.u.) was 

FIGURE 2

Schematic of the experimental protocol to assess the effects of 7-day beetroot juice supplementation on (1) resting endothelial function; (2) 
endothelial resistance against ischemia–reperfusion (IR) injury; and (3) recovery (resilience) from IR injury. Treatment period one (7  days); washout 
(2  weeks or more); and treatment period two (7  days). Created with BioRender.com.
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calculated as baseline (during the 60s baseline FMD protocol) using 

the following equation: 
negative SR

negative SR + positive SR

sec

sec sec

�

� �

1

1 1

� �
� � � ��

��
�
��

..  

The shear rate area under the curve (SR AUC), defined as the area 
from the start of cuff inflation to the time of peak diameter, was 
calculated using FMD Studio (37). The blood flow is reported as a 30-s 
average proceeding cuff inflation and calculated by multiplying the 
cross-sectional area (πr2) of the artery with resting blood velocity. Peak 
blood flow, a surrogate measure of macrovascular reactive hyperemia, 
is reported as the highest 3-s average post-cuff release. RH blood flow 
AUC and velocity AUC, indirect measures of microvascular function, 
were calculated within the first minute following cuff release using the 
trapezoid method (Microsoft Corporation, Microsoft Excel 
Version 2,108).

2.6.2.2 Ischemia–reperfusion injury protocol
Whole-arm endothelial IR injury was induced by placing a 

pneumatic cuff around the upper portion of the arm (as close to the 
axilla as possible) to sufficiently occlude the brachial artery. The cuff 
was inflated to 250 mmHg for 20 min. Post-cuff deflation, reperfusion 
occurred for 15 min and FMD was repeated immediately following 
reperfusion. The upper arm IR injury model is a non-invasive, well-
established procedure employed in our laboratory and others to study 
human endothelial-mediated vascular IR injury (13, 15).

2.7 Statistical analyses

SPSS software (IBM Corp., version 28) was used to examine all 
data elements and perform statistical analyses. Non-normal data were 
log-transformed and considered normally distributed if the Shapiro–
Wilk test statistic was not significant (p > 0.05). To investigate the effect 
of 7-day BR supplementation on resting FMD and Adj. FMD, and the 
absolute change in FMD from baseline to endpoint, the mixed model 
procedure (linear mixed-effects model, LMM) was used. Treatment, 
menopause stage, and the treatment by menopause stage interaction 
were modeled as fixed effects, the participant was included as a 
repeated factor, and the baseline outcome value and baseline dietary 
nitrate intake (24 h intake prior to the initiation of supplementation, 
Day 0) were included as covariates. To investigate the effect of 7-day 
BR supplementation on post-IR and recovery time points, the LMM 
was used with adjustment for baseline and habitual dietary nitrate 
intake (24-h intake prior to the initiation of supplementation, Day 0). 
Plasma [nitrate and nitrite] and brachial–ankle pulse wave velocity 
were evaluated using the mixed model procedure with adjustment for 
baseline plasma [nitrate and nitrite] and baseline brachial–ankle pulse 
wave velocity, respectively. Covariance structure selection was based 
on optimizing the fit statistics based on the Bayesian Information 
Criterion. Statistical significance was set at p < 0.05. For primary and 
secondary analyses, between-treatment differences at the post-7-day, 
post-IR, and recovery timepoints were assessed by the presence of 
main effects for treatment and a menopausal stage by treatment 
interaction. When a main effect for treatment or menopausal stage by 
treatment existed, the conservative Bonferroni correction method was 
used to adjust for multiple comparisons for all outcomes (i.e., 
unadjusted FMD, vascular hemodynamics, and resting blood 
pressure); however, as recommended per Atkinson and colleagues (35, 

36), the Fisher’s least significant difference correction method was 
used to adjust for multiple comparisons for allometrically scaled FMD 
(Adj. FMD) data only. To account for missing blood samples and 
dietary recalls completely at random, the missing value analysis 
(MVA) procedure was conducted on the imbalanced plasma nitrate, 
nitrite, and dietary nitrate intake data sets (missing values for all data 
sets were < 5%) to confirm MVA p < 0.05 prior to imputing missing 
values using the series mean. Data are presented as least-squared 
means and standard deviations (SD), unless otherwise specified. 
Based on a previous study in our laboratory, 10 subjects provided 80% 
power, and an effect size of 0.5, to detect meaningful physiological and 
clinically relevant differences in FMD (≥ 1% increase, (38) following 
short-term dietary nitrate supplementation).

3 Results

3.1 Participants

Of the 27 participants that were randomized, 13 women (Early, 
n  = 6; Late, n  = 7) received the placebo intervention first and 14 
women (Early, n = 6; Late, n = 8) received the nitrate-rich intervention 
first. Two participants did not continue with the study protocol due to 
not liking the taste of the supplement; their data were not included in 
the analysis. Following washout (2 weeks) and crossover, 11 women 
(Early, n = 6; Late, n = 5) received the nitrate-rich intervention first and 
14 women (Early, n = 6; Late, n = 8) received the placebo intervention 
second. A total of 25 participants completed the entirety of the study 
protocol. One participant was removed from data analysis due to 
excessive participant movement and/or poor video quality during the 
FMD measures (Figure  1). The baseline characteristics for 24 
postmenopausal women are presented by randomization sequence in 
Table  1. Results of the one-way ANOVA confirmed significant 
menopausal-stage (group) differences in years since menopause (Early 
Postmenopausal: 4 ± 2 years; Late Postmenopausal: 14 ± 5 years, 
p < 0.001) and chronological age (Early Postmenopausal: 56 ± 4 years; 
Late Postmenopausal: 63 ± 4 years, p < 0.001), providing supporting 
evidence that women were appropriately categorized into early- and 
late-postmenopausal stages.

3.2 Arterial stiffness

Results of the LMM revealed no significant interaction or main 
effects for brachial–ankle PWV pre- and post-7-day supplementation, 
suggesting that treatment did not affect brachial–ankle PWV in either 
postmenopausal group.

3.3 Effects of BRplacebo and BRnitrate on resting 
seated blood pressure and heart rate

No significant interaction or main effects of group or treatment 
were observed for resting seated systolic (SBP), diastolic (DBP) blood 
pressure, or heart rate (HR).
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3.4 Dietary nitrate intake

There were no significant main or group*treatment interaction 
(p = 0.21) effects for dietary nitrate intake, suggesting that menopausal 
stage [Early PM: 73.55 ± 0.85 mg NO3

−, CI 95% (51.37,105.21), Late 
PM: 103 ± 0.85 mg NO3

−, 95% CI (72.68, 148.71), p = 0.17] and 
treatment [BRplacebo: 86.83 ± 0.72 mg NO3

−, CI 95% (64.52, 116.75), 
BRnitrate: 88.06 ± 0.72 mg NO3

−, CI 95% (65.43,118.39), p = 0.93] did not 
affect dietary nitrate intake. Stratification of dietary nitrate by plant- 
and animal-based foods resulted in an average intake of 
43.98 ± 95.59 mg NO3

−/day (9.03 ± 14.56% contribution) and 
9.02 ± 12.18 mg NO3

−/day (1.87 ± 1.9% contribution), respectively.

3.5 Plasma nitrate and nitrite

Results of the LMM revealed a significant main effect of treatment 
(p < 0.001) for plasma [nitrate] (Figure 3); however, no significant 
group*treatment interaction was present. Pairwise comparisons 
showed significantly higher plasma nitrate concentration after 7-day 
supplementation with BRnitrate and resulted in a mean difference of 
342.4 ± 85.7 μM [CI 95% (169.5, 515.3), p < 0.001] between treatment 
conditions at the post-7-day timepoint. Plasma [nitrate] was 
significantly higher at the end timepoint with BRnitrate compared to 
BRplacebo. Pairwise comparisons resulted in a mean difference of 

314.6 ± 80.7 μM [CI 95% (146.8, 482.4), p < 0.001] between treatment 
conditions at the end timepoint. No significant interaction or main 
effects were found for plasma nitrite concentration data across 
timepoints (Figure 3). In Figure 3, data are presented as mean ± SD by 
menopausal stage; however, no significant main effect of group or 
group*treatment interaction was present.

3.6 Effects of BRplacebo and BRnitrate on resting 
macrovascular function and endothelial 
resistance

Results of the LMM revealed no significant interaction effects 
for resting adj. FMD (p = 0.89, Figure 4; Table 2), post-IR adj. FMD 
(p = 0.57, Figure  5; Table  2), or recovery adj. FMD (p = 0.63, 
Figure 4; Table 2), suggesting that treatment did not affect resting 
endothelial function or endothelial resistance to IR injury, in either 
postmenopausal group, 24 h after the final dose of 7-day BR 
supplementation. However, our results (Figure 5; Table 2) revealed 
a significant main effect of the menopausal stage for post-IR adj. 
FMD (Earlyplacebo: 3.96 ± 2.28%; Lateplacebo: 1.76 ± 2.18%, Earlynitrate: 
4.19 ± 2.00%, Latenitrate: 2.54 ± 2.13%, p = 0.019, Table 2) even after 
adjusting for 24-h habitual nitrate intake prior to testing and 
baseline adj. FMD. The same results were true for unadjusted FMD 
(Table 2).

TABLE 1 Baseline participant characteristics from the initial screening visit are presented as mean ±  SD by randomization sequence for 12 early- and 12 
late-postmenopausal women.

Early-postmenopausal Late-postmenopausal

Characteristics Placebo-nitrate-
rich

Nitrate-rich-
Placebo

Placebo-nitrate-
rich

Nitrate-rich-
Placebo

n 6 5 6 8

Age (y) 56 ± 3 55 ± 5 64 ± 4 63 ± 5

Years since menopause 3 ± 2 4 ± 1 15 ± 5 13 ± 5

Body mass (Kg) 66.2 ± 10.2 68.0 ± 11.1 61.9 ± 8.4 60.0 ± 4.7

Height (cm) 166.3 ± 5.7 167.3 ± 6.2 162.0 ± 5.2 161.2 ± 3.9

BMI (Kg/m2) 24 ± 3 25 ± 4 26 ± 7 23 ± 1

Resting systolic BP (mmHg) 114 ± 11 110 ± 10 118 ± 8 116 ± 14

Resting diastolic BP (mmHg) 69 ± 12 64 ± 6 64 ± 6 68 ± 8

Resting HR (beats/min) 62 ± 7 63 ± 5 61 ± 7 64 ± 8

Total cholesterol (mg/dL) 214 ± 14 198 ± 46 207 ± 30 225 ± 20

LDL (mg/dL) 116 ± 18 125 ± 41 111 ± 30 127 ± 22

HDL (mg/dL) 73 ± 14 54 ± 6 79 ± 16 80 ± 20

Triglycerides (mg/dL) 79 ± 31 90 ± 28 80 ± 27 83 ± 44

Fasting glucose (mg/dL) 89 ± 7 90 ± 4 92 ± 9 94 ± 5

Hematocrit (%) 42 ± 1 40 ± 4 41 ± 3 40 ± 2

Hemoglobin (g/dL) 14 ± 0 13 ± 2 13 ± 1 13 ± 1

Physical activity (MET-week) 2,575 ± 2,994 3,261 ± 4,530 3,257 ± 2,582 2,567 ± 1,967

Parturition number 2 ± 1 3 ± 1 2 ± 1 2 ± 2

PWV (cm/s) 1,245 ± 95 1,209 ± 150 1,434 ± 270 1,469 ± 145
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3.7 Effects of BRplacebo and BRnitrate on the 
absolute change in macrovascular 
endothelial function

Our findings revealed a significant main effect of treatment 
(p = 0.042, Figure 4D) for the absolute difference (delta) in resting 
FMD pre- and post-7-day supplementation, even after adjusting for 
24 h habitual dietary nitrate intake prior to testing and baseline 
FMD. Figure 4D illustrates that the mean difference in resting FMD 
was 2.21 ± 5.18% [95% CI (0.082, 4.34), p = 0.042] between BRnitrate 
[2.04 ± 3.66%, CI 95% (0.54, 3.55)] and BRplacebo [−0.17 ± 3.66%, CI 
95% (−1.68, 1.34)] treatment conditions. No significant main or 
group*treatment interaction effects were present for the absolute 
change in FMD between baseline and post-7-day timepoints 
(Figure  4D), post-7-day and post-IR timepoints (Figure  5C), and 
post-IR and recovery timepoints (Figure 5D).

3.8 Effects of BRplacebo and BRnitrate on 
macrovascular shear patterns

A significant group*treatment interaction effect was present for 
oscillatory shear rate index (OSI) post-IR (p = 0.035, data not shown); 
however, no significant pairwise comparisons were observed. 
Additionally, a significant group*treatment interaction was observed 

for the negative shear rate at the recovery timepoint compared to 
post-IR (p = 0.02, data not shown); however, no significant pairwise 
comparisons were revealed. No significant interaction or main effects 
were observed for the positive shear rate. All indirect measures of 
microvascular function and macrovascular blood flow were 
non-significant (p > 0.05, data not shown).

4 Discussion

In the present study, we aimed to investigate whether the vascular 
protective effects of 7-day supplementation with BRnitrate would 
be maintained 24 h after the final dose (Day 8) and whether this short-
term nutraceutical intervention confers menopausal-stage-dependent 
effects on endothelial function (1) pre-IR (2) post-IR, and (3) plasma 
NO metabolite concentrations. First, we  demonstrate that 7-day 
BRnitrate supplementation (400 mg NO3

− per 70 mL x 7 days) improved 
the absolute change in resting FMD to a greater extent than BRplacebo. 
Second, we show that despite a clinically significant increase in resting 
FMD prior to the IR protocol, 7-day BRnitrate supplementation did not 
improve endothelial resistance in either postmenopausal group 24 h 
after the last dose. Our findings highlight that nitrate-mediated 
postmenopausal endothelial protection may be dependent on the 
timing of supplementation in relation to IR injury and 
chronobiological variations in dietary nitrate metabolism.

FIGURE 3

Plasma nitrate (left) and nitrite (right) concentrations at baseline (Day 0), 24  h following the last dose of BR (post-7-day, Day 8), and at the end of the 
experimental visits for BRnitrate and BRplacebo in (A) 12 early-postmenopausal and (B) 12 late-postmenopausal women. Results of the LMM are represented 
as mean ±  SD. +p  <  0.05, from nitrate-depleted (placebo) beetroot juice.
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4.1 The protective effects of dietary nitrate 
supplementation on endothelial resistance 
to IR injury

In the current study, we found that nitrate-mediated endothelial 
protection against IR injury was not maintained 24 h after the last dose 
of 7-day BRnitrate supplementation in healthy, normotensive women at 
two distinct stages of postmenopause. Previously, we showed that 
early-postmenopausal women exhibit an exaggerated decline in FMD, 
in response to the same IR injury protocol, compared to 
premenopausal women, despite both groups demonstrating 
comparable basal FMD values (13). The timing hypothesis emphasizes 
that pharmaceutical and exercise interventions are less efficacious in 
reducing CVD risk in estrogen-deficient late-postmenopausal women 
compared to recently postmenopausal women (18, 39). In contrast to 
this hypothesis, preliminary data from our laboratory suggest that a 
single, but higher dose of BRnitrate (600 mg NO3

− per 140 mL, approx. 
100 min absorption period) significantly improved endothelial 
resistance to IR in both early-postmenopausal (27) and late-
postmenopausal stages, with resistance in the late-postmenopausal 
group, potentially attributed to enhanced resting endothelial function 
prior to the IR protocol (data not published). To extend our previous 

acute supplementation work, we investigated whether the vascular 
protective effects of 7-day supplementation with BRnitrate are 
maintained 24 h after the final dose and whether short-term BRnitrate 
confers postmenopausal-stage effects on (1) endothelium-dependent 
vasodilation pre- and post-IR and (2) plasma NO metabolite 
concentrations. We hypothesized that menopause-induced endothelial 
dysfunction would be  harder to reverse as time since menopause 
increases. However, contrary to our hypothesis, our results suggest 
that, regardless of postmenopausal stage, short-term BRnitrate 
supplementation is sufficient to induce a clinically meaningful (≥1% 
increase in FMD which is equivalent to a 13% reduction in CVD risk) 
(38) improvements in resting FMD, regardless of postmenopausal 
stage. Furthermore, despite this clinically meaningful increase in 
resting FMD prior to the IR protocol, the decline in post-IR FMD was 
similar between treatment conditions (Figure 5; Table 2). Collectively, 
these findings suggest that 1 week of once-daily BRnitrate consumption 
did not enhance endothelial protection against IR in either 
postmenopausal group.

These results are potentially explained by the lack of a significant 
increase in plasma [nitrite] concentration following 7 days of BRnitrate and 
may be due to chronobiological variations in dietary nitrate metabolism 
and/or the transient half-life (20–45 min) of peak plasma [nitrite] (40, 

FIGURE 4

Brachial artery flow-mediated dilation at baseline and 24  h following the last dose of BR (post-7-day) for BRnitrate and BRplacebo in (A) 12 early-
postmenopausal and (B) 12 late-postmenopausal women. Results of the LMM are represented as mean ±  SD. Individual data (C) not grouped by 
postmenopausal stage (closed circles, placebo; closed squares, nitrate-rich) and (D) the absolute delta between baseline FMD and post-7-day FMD for 
both treatment conditions (open circles, early-postmenopausal BRplacebo; open squares, early-postmenopausal BRnitrate, closed circles, late-
postmenopausal BRplacebo; closed squares, late-postmenopausal BRnitrate), *p  <  0.05, from nitrate-depleted (BRplacebo) beetroot juice.
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41). Additionally, previous studies have shown a significant reduction in 
plasma and saliva [nitrate and nitrite] within 48 h following 7 days of a 
high-nitrate diet. These data support the idea that the vascular benefits 
of chronic and/or short-term high dietary nitrate intake may largely 
be due to the continual acute effects on NO conversion. Together, our 
findings imply that nitrate-mediated endothelial protection against IR 
insult may depend on the daily therapeutic dose (due to chronobiological 
variations in nitrate metabolism) and the timing of inorganic dietary 
nitrate consumption in relation to IR.

4.2 The effects of 7-day dietary nitrate 
supplementation on endothelial resistance 
to IR injury

There is a general consensus about the principal pathways and 
primary mechanisms involved in the conversion of exogenous dietary 
nitrate to circulating nitrite and NO. In the present study, plasma 
nitrate significantly increased across timepoints with BRnitrate 
supplementation in both groups, but not with BRplacebo. These results 

TABLE 2 The effects of 7-day supplementation with nitrate-rich and nitrate-depleted BR on brachial artery flow mediated dilation measured 24  h 
following the last BR dose (post-7  day), immediately after IR-injury (post-IR), and 15  min later to assess recovery in 12 early- and 12 late-
postmenopausal women.

Early-postmenopausal Late-postmenopausal

Variables
Placebo Nitrate Placebo Nitrate

Baseline Baseline Baseline Baseline

Baseline 

diameter (mm)
3.48 ± 0.44 3.47 ± 0.35 3.18 ± 0.36 3.25 ± 0.24

FMD (%) 5.72 ± 1.83 5.13 ± 3.25 4.81 ± 2.81 3.72 ± 2.16

Adjusted FMD 

(%)
5.71 ± 1.75 5.08 ± 3.07 4.77 ± 2.69 3.70 ± 2.07

Time to peak (s) 41.6 ± 8.1 53.2 ± 11.0 59.5 ± 23.1 48.3 ± 19.0

Shear rate AUC 

(10−3)
19.2 ± 5.6 19.6 ± 9.9 20.7 ± 9.2 21.5 ± 11.6 p-values

Variables Post-7 day Post-7 day Post-7 day Post-7 day Treatment Group Group*Treatment

Baseline 

diameter (mm)
3.46 ± 0.40 3.50 ± 0.40 3.20 ± 0.31 3.19 ± 0.34 0.54 0.05 0.77

FMD (%) 5.94 ± 3.70 6.95 ± 2.44 4.25 ± 1.93 5.99 ± 2.61 0.08 0.13 0.63

Adjusted FMD 

(%)
5.88 ± 3.53 6.92 ± 2.32 4.24 ± 1.86 5.02 ± 3.91 0.31 0.070 0.89

Time to peak (s) 43 ± 9.2 50.3 ± 10.1 46.2 ± 11.7 42.1 ± 10.3 0.87 0.63 0.23

Shear rate AUC 

(10−3)
17.7 ± 2.6 19.7 ± 5.3 18.9 ± 8.8 22.6 ± 14.0 0.55 0.86 0.95

Variables Post-IR Post-IR Post-IR Post-IR Treatment Group Group*Treatment

Baseline 

diameter (mm)
3.68 ± 0.51 3.54 ± 0.39 3.35 ± 0.32 3.24 ± 0.35 0.2 0.046 0.98

FMD (%) 3.99 ± 2.35 4.21 ± 2.08 1.79 ± 2.22 2.59 ± 2.16 0.29 0.021 0.54

Adjusted FMD 

(%)
3.96 ± 2.28 4.19 ± 2.00 1.76 ± 2.18 2.54 ± 2.13 0.3 0.019 0.57

Time to peak (s) 42.1 ± 7.6 47.4 ± 19.3 40.7 ± 9.2 41.4 ± 9.3 0.31 0.54 0.81

Shear rate AUC 

(10−3)
15.7 ± 4.6 12.4 ± 2.6 20.8 ± 8.5 14.6 ± 5.4 0.45 0.82 0.57

Variables Recovery Recovery Recovery Recovery Treatment Group Group*Treatment

Baseline 

diameter (mm)
3.48 ± 0.41 3.35 ± 0.37 3.23 ± 0.35 3.11 ± 0.30 0.004 0.06 0.86

FMD (%) 6.41 ± 2.95 7.08 ± 2.09 5.45 ± 2.56 5.54 ± 3.10 0.53 0.19 0.64

Adjusted FMD 

(%)
6.37 ± 2.82 7.06 ± 1.98 5.43 ± 2.44 5.51 ± 3.00 0.54 0.19 0.63

Time to peak (s) 45.5 ± 14.4 35.1 ± 9.2 49.7 ± 12.0 55.1 ± 23.7 0.84 0.44 0.66

Shear rate AUC 

(10−3)
16.4 ± 3.8 18.2 ± 6.2 19.2 ± 3.1 17.7 ± 6.2 0.88 0.44 0.94

Results of the LMM, with appropriate adjustments for baseline and post-7-day measures, are presented as mean ± SD.
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imply that the BRplacebo treatment contained minimal nitrate 
(approximately 40 mg nitrate per 70 mL BRplacebo) and that participants 
complied with the 7-day supplementation protocol (Figure 3). Due to 
chronobiological variations in nitrate metabolism, normalizing nitrate 
load to body mass or adjusting the nitrate load to a pre-set 
physiologically efficacious plasma threshold for each participant (40) 
may be necessary to observe significant increases in plasma [nitrite] 
and NO-mediated vasodilation in this population.

Unexpectedly, we observed a similar increase in plasma nitrite 
after 7 days of juice consumption in both treatment conditions. 
Significant variations in [nitrite] attained in the plasma per unit 
amount of nitrate administered are impacted by gut bacteria capacity 
(42, 43), high thiocyanate consumption (co-consumption with dietary 
nitrate can reduce the capacity of nitrate to nitrite conversion) (44), 
and age- and menopause-induced biological variations in oxidative 
distress and NO sequestration (43). It is possible that the antioxidant 
capacity (45, 46) of BRplacebo [closely matched to the total polyphenols 
in BRnitrate: 2126.28 ± 113.9 μg FAE/mL (47, 48)] reduced systemic NO 
sequestration to a similar extent as BRnitrate, thus leading to reduced 
plasma [peroxynitrite] (45, 46, 49) and higher plasma [nitrite] in both 
treatment conditions. Additionally, both treatments minimally 
increased plasma [nitrite] (by approximately 50 nM, Figure 3) to the 
homeostatic plasma nitrite level (110  ± 36 nM NO2

−, 55–210 nM 

NO2
−) that is commonly observed in healthy adults (46, 50, 51); 

therefore, BR juice may restore oxidative eustress regardless of 
[nitrate] and may primarily be driven by betanin antioxidant capacity 
(52). Moreover, only BRnitrate induced a clinically significant 
improvement in resting FMD (Figure  4; Table  2). These findings 
suggest that the synergistic interplay between nitrate and other 
biologically active phytonutrients in BR is imperative for inducing 
clinically meaningful enhancements in resting FMD; however, 
regardless of dietary nitrate concentration, BR remains a promising 
nutraceutical to increase plasma NO metabolites in postmenopausal 
women (51).

4.3 Endothelial resistance is dependent on 
the timing of dietary nitrate 
supplementation in relation to IR insult

The performance-enhancing effects of dietary nitrate are 
attributed to both nitrite and NO-mediated enhancements in 
mitochondrial efficiency (53) and/or enhanced muscle blood flow 
(54). Previous studies have observed a significant increase in plasma 
[nitrite] relative to the increase in plasma [nitrate] [Δ(nitrite)/
Δ(nitrate) ratio] when using similar or lower BRnitrate doses 

FIGURE 5

The effects of 7-day nitrate-rich (squares) and nitrate-depleted (circles) BR supplementation on brachial artery flow-mediated dilation measured 24  h 
following the last BR dose (post-7  day), immediately following the IR injury protocol (post-IR), and 15  min later (Recovery). Results of the linear mixed-
effects model are presented as mean ±  SD for (A) 12 early-postmenopausal and (B) 12 late-postmenopausal women. The absolute delta between 
(C) post-7-day and post-IR time points and (D) post-IR and recovery time points for early-postmenopausal (open circles and squares) and late- 
postmenopausal (closed circles and squares) women.
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(3.1–4.2 mmol) than employed in the current study (54, 55). However, 
interestingly, neither postmenopausal group achieved the 
recommended performance enhancing Δ[nitrite]/Δ[nitrate] ratio 
(1.0–1.2) following short-term supplementation with BRnitrate. Prior 
evidence from our laboratory and others demonstrates that peak 
plasma [nitrite] (23, 27) and the performance-enhancing Δ[nitrite]/
Δ[nitrate] ratio is achieved 1–3 h post-nitrate consumption (with 
4.2–8.4 mmol NO3

−) and returns to baseline concentration 
approximately 10 h later (40). Additionally, between-day changes in 
body posture (56), oral temperature, and pH (57) have been reported 
to influence dietary nitrate metabolism in healthy adults. Therefore, it 
is possible that 7-day BRnitrate sufficiently increased peak plasma 
[nitrite] in the 24 h following the last BR dose, prior to the post-
supplementation blood draw and vascular assessments. While further 
mechanistic evidence is warranted, nitrate-mediated improvements in 
endothelial resistance may be  confounded by the timing of 
supplementation in relation to IR, such that an acute dose 1–3 h before 
IR may elicit greater endothelial protection in postmenopausal 
women (27).

4.4 The effect of 7-day BRnitrate on 
macrovascular hemodynamics

Previous findings from our laboratory demonstrate increased 
peripheral macrovascular retrograde and oscillatory shear in post-
menopausal compared to perimenopausal women (27). Findings from 
the present study demonstrated no significant effects of 7-day BRnitrate 
supplementation on the oscillatory shear rate. These results could 
be explained by the similar increase in plasma [nitrite] with both 
treatment conditions. Furthermore, previous studies have found 
reductions in retrograde and oscillatory shear following 4 weeks of 
daily combined inorganic nitrate and nitrite (~4.03 mmol 
NO3

− + ~0.29 mmol NO2
− per 178–237 mL) supplementation in older 

men and women (58). Therefore, it is possible that a longer 
supplementation duration and/or addition of dietary nitrite in the 
supplement is necessary to see clinical improvements in 
postmenopausal macrovascular shear patterns.

4.5 Experimental considerations

One key advantage of this study lies in the utilization of an 
authentic nitrate-depleted supplement (BRplacebo) to evaluate the effects 
of dietary nitrate on endothelial resistance against IR injury (54, 55, 
59). However, this method constrains our comprehension of the 
potential synergistic role between dietary nitrate and other bioactive 
elements present in the supplement. Additionally, a strength of this 
study was the use of a comprehensive plant- and animal-based foods 
dietary nitrate–nitrite database to quantify and control for 24-h 
dietary nitrate consumption prior to pre- and post-supplementation 
visits. One limitation in the study design is performing two FMD 
assessments (15 min apart) before the IR protocol. Nevertheless, any 
crossover design adopted in this study likely accounted for any 
potential protective effects of ischemic preconditioning. Although 
hormone concentrations were not measured in our subject pool, the 
inclusion of such measurements alongside self-reported menopausal 

status could have facilitated a more accurate classification of 
participants into the relevant postmenopausal stages. Additionally, the 
incorporation of a perimenopausal reference group and/or third 
treatment arm (ex. nitrate-free water) would have permitted further 
characterization of menopause-induced endothelial dysfunction and 
would have enabled comparisons of plasma NO metabolites following 
7-day BR supplementation. Furthermore, measuring circulating 
oxidative stress biomarkers, albeit systemic and not endothelium-
specific, would have provided greater mechanistic insight into the 
antioxidant potential of short-term beetroot juice supplementation.

5 Conclusion

We demonstrate that 7-day nitrate-rich beetroot juice 
supplementation improved endothelial function to a clinically 
significant level in postmenopausal women with no difference 
between early and late menopause. This finding is of particular 
importance given that prior evidence and the timing hypothesis suggest 
that pharmaceutical interventions are less effective at reversing 
endothelial dysfunction in women beyond 6 years since menopause. 
However, despite a clinically meaningful increase in basal endothelial 
function prior to the IR protocol, short-term BRnitrate supplementation 
did not enhance endothelial resistance against IR injury in either 
postmenopausal group. Our findings reinforce the notion that the 
vascular benefits of chronic and/or short-term high dietary nitrate 
intake may be  largely due to the continual acute effects on NO 
conversion. Therefore, further investigation into the optimal daily 
therapeutic dose of dietary nitrate, chronobiological variations in nitrate 
metabolism, and the timing of supplementation in relation to IR insult 
is needed to better understand the effects of nitrate-mediated 
endothelial protection in postmenopausal women.
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