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Natural feed additives and 
bioactive supplements versus 
chemical additives as a safe and 
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This review highlights the possible hazard of mycotoxins occurrence in 
foods and feeds in regards to foodborne diseases. The possible management 
of the risk of contamination of foods and feeds with mycotoxins by using 
natural feed additives, protecting against deleterious effects of mycotoxins or 
inhibiting the growth of fungi and mycotoxin production, is deeply investigated 
in the available literature and some effective measures for safe utilization of 
mycotoxin contaminated feed/food are proposed. The biological methods of 
decontamination, degradation or biotransformation of mycotoxins are deeply 
analyzed and discussed. Some natural antagonists against target fungi are also 
reviewed and a comparison is made with conventional fungicides for ensuring 
a safe prevention of mycotoxin contamination. The most common and useful 
chemical methods of mycotoxins decontamination of agricultural commodities 
or raw materials are also investigated, e.g., chemical additives inactivating or 
destroying and/or adsorbing mycotoxins as well as chemical additives inhibiting 
the growth of fungi and mycotoxin production. The practical use and safety of 
various kind of feed/food additives or herbal/biological supplements as possible 
approach for ameliorating the adverse effects of some dangerous mycotoxins 
is deeply investigated and some suggestions are given. Various possibilities 
for decreasing mycotoxins toxicity, e.g., by clarifying the mechanisms of their 
toxicity and using some target antidotes and vitamins as supplements to the 
diet, are also studied in the literature and appropriate discussions or suggestions 
are made in this regard. Some studies on animal diets such as low carbohydrate 
intake, increased protein content, calorie restriction or the importance of dietary 
fats are also investigated in the available literature for possible amelioration 
of the ailments associated with mycotoxins exposure. It could be concluded 
that natural feed additives and bioactive supplements would be  more safe 
and practical approach to combat foodborne mycotoxicoses as compared to 
chemical additives.
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FIGURE 3

Macroscopic appearance of kidney with spontaneous mycotoxic 
nephropathy in Bulgaria. Enlarged and marbled appearance of kidney 
in pig of 6–8  month age (above) and normal kidney in pig of the 
same age (below) (10).

1 Introduction

Mycotoxins are secondary toxic fungal metabolites, which are 
well known contaminants of feed and various food commodities and 
can pose a serious hazard for animals or humans. Contaminated 
foods and feeds with some mycotoxins can provoke many health 
ailments in animals/humans, especially in developing countries with 
lower standards of food quality (1). The invasion of cereals by fungi 
mainly happens in the field conditions or during the storage. In most 
cases the production of mycotoxins by fungi is unavoidable due to 
some environmental conditions such as excessive raining at harvest 
time or bad storage conditions of grain or feed/food. The mycotoxin 
contamination of food/feed is often reported to be at a high level. A 
single fungus or several fungi can produce several mycotoxins 
leading to multiple mycotoxin contamination in a single food 
commodity, which pose a serious hazard for health of animals/
humans (2, 3). Nowadays, above 400 types of natural mycotoxins are 
known, but only 10–12 are found to present a serious health hazard 
for humans or animals, e.g., ochratoxin A (OTA), aflatoxins (AFs) 
as aflatoxin B1 (AFB1) and aflatoxin M1 (AFM1) are the most 
dangerous ones, fumonisins (FUMs) as fumonisin B1 (FB1) is the 
most dangerous one, deoxynivalenol (DON), nivalenol (NIV), 
zearalenone (ZEA), T-2 and HT-2 toxins, patulin (PAT) and ergot 
alkaloids, because all these mycotoxins often contaminate human 
food or animal feed in high levels provoking some human/animal 
ailments (1, 4, 5). Some mycotoxins are also reported to contaminate 
animal/chicks products, e.g., eggs, milk and meat, when such 

mycotoxins are ingested by animals/chicks via contaminated 
feed (6).

The common health problems, which appear when animals are 
exposed to mycotoxins via the feeds are: poor feed conversion, feed 
refusal, decreased weight gain, foodborne ailments, increased 
secondary microbial infections due to impairment of immunity 
(Figure 1) (7), and some problems with reproductive and productive 
capacities (Figure 2) (3, 8, 9). This happens, because mycotoxins can 
exert various harmful toxic effects (1) such as neurotoxic (FB1 and 
DON), hepatotoxic (mainly AFB1 and OTA), nephrotoxic (OTA and 
FB1) (Figure 3) (11, 12), immunosuppressive (mainly AFB1, T-2 toxin 
and OTA), carcinogenic (mainly AFB1, FB1 and OTA) (Figure 4) (10, 
13–15), oestrogenic (mainly ZEA and slightly DON) (Figure 5) (2), 
genotoxic or teratogenic effects (mainly AFB1, OTA and T-2) 
(Figure 6) (15–17).

Low mycotoxin contamination levels, which are in the accordance 
with European regulations (18–22), have been found in many food/

FIGURE 1

(A) Diphtheroid accretions on colon mucosa of a pig given 3  ppm 
ochratoxin A for 17-days and sick by secondary salmonellosis. 
(B) Haemorrhagic dysentry in pig 47  days after commencing a diet 
containing 1  ppm ochratoxin A (7).

FIGURE 2

Eggs several times smaller than normal size, weighing 15.8  g and 
25.8  g, respectively (from right to left) and varying in size spots and 
defects on the shell from laying hens exposed to 5  ppm OTA. Left—a 
normal-sized egg from the control group of laying hens (8).
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feed samples (1), but such multiple mycotoxin contamination in low 
levels might still exert harmfull effects on animals and humans due to 
additive or synergistic interactions between some mycotoxins. Such 
multiple mycotoxin exposure and mycotoxin interaction is often 
responsible for many foodborne ailments. In this regard, the 
significance of low content of some target co-occuring mycotoxins in 
food commodities or feeds for appearance of some foodborne diseases 
should be additionally studied (1). The adequate risk assessment and 
possible health hazard for some animals or humans should 

be additionally elucidated in order to undertake suitable preventive 
measures in such cases. Natural feed additives as a safe approach to 
combat deleterious effects of mycotoxins and foodborne 
mycotoxicoses would be a useful tool in the same circumstances and 
could contribute for ensuring safe foods or feeds.

According to FAO, nearly a quarter of the world’s crops are 
contaminated with mycotoxins each year, which is responsible for 

FIGURE 4

(A) Rabdomyoma in the breast muscle (yellow arrow) of female chick exposed to 5  ppm OTA and 25  ppm PHE via the feed, which was slaughtered at 
the end of the 24th month of the experiment. Large neoplasia in the region of breast muscle, which protruded significantly above the surface. 
(B) Adenocarcinoma in the liver of male chick exposed to 5  ppm OTA via the feed, which died at the end of the 10th month of the experiment. Large 
grey-white neo-plastic foci in the diaphragmatic surface of the liver, which protruded significantly above the surface. (C) Carcinoma in the region of 
ureters (yellow arrows) of male chick exposed to 5  ppm OTA via the feed, which died at the end of the 20th month of the experiment. Large grey-white 
neoplastic foci are seen along the ureters and protruded significantly above its surface. (D) Neoplastic tissue proliferation (fibroma and fibroadenoma) 
in kidney with spontaneous mycotoxic porcine nephropathy (10, 13).

FIGURE 5

A rectal prolapse in spontaneous case of fusariotoxicosis in pig 
from Bulgaria due to oestrogenic effect of mycotoxin zearalenone 
(ZEA) (2).

FIGURE 6

A potent teratogenic effect in newborn mice whose mothers were 
exposed to 20  ppm OTA (corresponding to about 2.8  mg / kg b.w. 
per day) and 6  ppm OTB in the feed given from day 7 up to day 12 of 
the pregnancy—astomia, anophthalmia (on left), normal fetus (in the 
centre) and spina bifida, e.g., facial cleft and maxillary hypoplasia (on 
right) (16).
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subsequent annual losses of nearly 1 billion tons of food production 
(23). Moreover, a lot of people worldwide, especially in developing 
countries, are exposed to deleterious effects of mycotoxins via the 
crops, meat, dairy products, coffee, spices, wine, beer and others. 
That’s why, the social and economic impact of mycotoxins contributes 
to various kind of losses, because of diseases or death of animals/
humans, health problems, increased costs for veterinary service or 
medical care, decrease in growth and animal performance, decrease 
in animal produce and livestock production, increased expenses for 
control and preventive measures, increased research costs and costs 
for mycotoxins detoxification, feed/food losses due to scrapping, waste 
products due to mycotoxin content and many others (4). Having in 
mind, that mycotoxin contamination is the main cause for the above 
mentioned loses, e.g., condemnation of grain or food commodities, 
natural feed additives could serve for safe utilization of mycotoxin 
contaminated feed/food proposing a helthy solution of such 
problems (2).

The purpose of the review paper is to elucidate the possible 
management of the risk of contamination of foods and feeds with 
mycotoxins by using natural feed additives. It will be  deeply 
investigated in the available literature in order to propose some 
effective measures for safe utilization of mycotoxin contaminated 
feed/food. The most common and useful chemical or biological 
methods of mycotoxins decontamination of agricultural commodities 
or raw materials will be also investigated. The practical use of feed/
food additives or probiotics as possible methods for ameliorating the 
adverse effects of some dangerous mycotoxins will be reviewed and 
discussed. The efficacy and safety of natural feed additives or biological 
supplements will be compared with chemical feed additives in regard 
to possible use as a practical approach to combat foodborne 
mycotoxicoses. The most dangerous mycotoxins in agricultural 
commodities and their possible hazard in regards to foodborne 
ailments will be also elucidated.

2 Chemical additives as a method of 
mycotoxin decontamination or 
detoxification

2.1 Chemical additives inactivating and/or 
destroying mycotoxins

A lot of chemical substances are reported to inactivate or destroy 
mycotoxins, e.g.: some bases (such as ammonia or sodium hydroxide), 
acids (such as propionic or formic acids), chlorinating agents (such as 
chlorine dioxide, sodium hypochlorite or gaseous chlorine), reducing 
agents (such as bisulphite), oxidizing compounds (such as hydrogen 
peroxide or ozone) and some other chemicals such as formaldehyde 
(24–26). However, it should be underlined, that most of the chemical 
methods for decontamination of mycotoxins can decrease the nutrient 
quality of the treated foods or feeds. Also, the usage of chemicals only 
for decreasing of mycotoxin content in juices is not desirable. 
Additionally, the residues of some chemicals or their toxic compounds 
have unacceptable side effects (25, 26). Therefore, their extensive use 
for mycotoxin decontamination of animal feeds, except ammoniation, 
is limited and considered as impractical and even as potentially 
dangerous for largescale use in practice (27). However, such chemical 
additives could be very fruitful for ensuring a reduction of mycotoxin 

content in fruits, but can also lead to deterioration on the nutritional 
qualities of the fruits (28). In this regard, some additional studies are 
necessary to fully understand the possible degradation of products, 
which are treated with target chemicals designed for destroying of 
mycotoxins, in addition to clarification of the required conditions and 
feasibility when such additives are applied in industrial scale.

Some chemicals such as 0.25% concentration of formic acid can 
destroy OTA only whithin 3 h treatment, 1% propionic or sorbic acids 
whithin 24 h treatment and 0.5% benzoic acid whithin 24 h 
treatment (29).

The chemicals such as sulfur dioxide, hydrogen peroxide, 
potassium permanganate, ozone, ammonia, and others are found to 
be very helpful in degradation of PAT. Some of the same chemicals are 
also allowed in processing of foods within EU (30, 31). Among them 
the ozone was found to have the greatest potential for PAT degradation 
in liquid food, but unfortunately it was reported to be very dangerous 
to human health (32).

The ozone exposure as a gaseous substance is often used for 
decreasing the content of PAT and Alternaria mycotoxins in some 
fruits (33). The ozone treatment at such a low level as 0.19 mg/L has 
been found to be enough to eliminate above 98% of PAT (31). Some 
other studies also report such a potent degradation of PAT by ozone 
treatment (34–36).

The hydrogen peroxide, which is another potent oxidizing 
substance, can oxidize AFs into less toxic compounds and is often 
used for detoxification of peanuts contaminated with AFs, whereas 
monomethylamine and calcium hydroxide are often used for 
detoxification of corn and oil-seeds contaminated with FUMs (37).

Similarly, the fruits spraying by a defined solution of hydrogen 
peroxide is used to decrese the contamination levels of PAT and 
Alternaria mycotoxins (38).

Sodium bisulphite is also a chemical substance, which is helpful 
for detoxifying of dried figs and corn containing the high levels of AFs 
or DON (2, 26). Such treatment includes soaking of the respective 
fruits in a defined solution of sodium bisulfite for target periods 
of time.

It is also found, that sodium chloride (salt) when used at the time 
of the cooking of unshelled peanuts under pressure can reduce 
contamination levels of AFs (2).

The treatment (washing) with sodium hypochlorite solution for 
different periods of time is another chemical method which is helpful 
in reducing the content of Alternaria mycotoxins and PAT in 
fruits (39).

In principle, ammoniation and ozonation include chemicals, 
which could be used in the practice to decontaminate peanuts and 
feeds containing high levels of AFs or FUMs, but such chemicals are 
forbidden in European Community (EC) for treatment of human food 
commodities (2, 26). When OTA or FUMs contaminated grain is 
treated with ammonia, the content of FUMs and OTA was found to 
decrease strongly and the mold growth was found to be inhibited (40). 
Unfortunately, further studies found that the ammoniation process 
can provoke some unwanted decrease in the nutritional value of the 
feeds or food commodities, including a reduction of sulphur and 
lysine containing amino acids (2). Also, a subsequent aeration after 
the treatment with amonia is required for feedstuffs in order to 
be accepted by animals.

In another experimental study, it was found that the treatment of 
barley or grain by 5% NH3 or 0.5% NaOH at high temperature can 
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destroy the bigest part of OTA, but usually the same are rarely used, 
because are not practical (39, 41).

2.2 Mycotoxin-adsorbing chemical 
additives

A good strategy for reducing mycotoxin exposure is the usage of 
mycotoxin-adsorbing feed additives, which can decrease mycotoxin 
adsorption and its bioavailability in the respective animals or poults. 
The adsorbents or binders such as activated carbon and chitosan 
resins present other useful ways to neutralize mycotoxins in feed/food. 
For example, the adsorbents such as activated carbons or modified 
chitosan resins are reported to be helpful in removing PAT from fruit 
juices (42).

The biggest part of such detoxifying materials are usualy based 
on mineral clays or other compounds that can adsorb mycotoxins 
from contaminated feed and to reduce their absorption in 
gastrointestinal system, and in such a way to facilitate mycotoxin 
excretion (2). The main substances, which are very useful in 
mycotoxins binding and subsequent prevention of mycotoxins 
absorption, usually are with high molecular weight. The formation 
of adsorbent–mycotoxin complexes increase their fecal excretion 
and detoxification (43). Such mycotoxin-adsorbing additives could 
be some silica-based inorganic substances or carbonbased organic 
polymers. In this regard, bentonite clays such as Hydrated sodium 
calcium aluminosilicate (HSCAS) or zeolitic minerals present are a 
large group of aluminosilicates with good possibilities for 
mycotoxins binding in gastrointestinal tract and subsequently 
decreasing mycotoxins bioavailability. Such clays are very effective 
in AFs-contaminated feeds and could decrease AFs transmission 
from feeds to milk of lactating animals (25, 44, 45). However, such 
clays may decrease the nutritive quality of agricultural commodities 
by binding various nutrients together with mycotoxins. It was also 
found that absorption of AFs in gastrointestinal system could 
be  effectively decreased by bentonite (46). However, the same 
adsorbents, such as kaolin or sepiolite, similarly to the other clays, 
are rarely effective in regards to the other mycotoxins such as T-2 
toxins, OTA, DON and FUMs (2, 47–51).

The previous studies support the above mentioned statements. For 
example, OTA absorption in gastrointestinal system is not influenced 
by HSCAS addition (in 1%) or bentonite addition (in 1% or 10%) to 
animal diet and no changes are seen in OTA levels in the blood, tissues 
or bile of treated pigs (52). Also, T-2 toxin could be adsorbed by 
bentonite, only when bentonite is added at 10 times higher (100 g/kg) 
level to diet than this one used for elimination of AFs (53). However, 
1% activated charcoal added to animal feeds was found to decrease 
slightly OTA levels in blood of pigs, whereas 10% charcoal was found 
to decrease significantly OTA levels in blood and various tissues (52, 
54). Unfortunately, the addition of charcoal to the animal diet is 
impractical method of decreasing OTA absorption, because of its high 
price and the possibility of subsequent decrease in vitamins and 
minerals absorption in treated animals (52).

Cholestyramine, a commercial anion exchange resin, is another 
absorbent, which is reported to be effective in various cases of OTA, 
FUMs or ZEA contaminations in feeds. It was seen to reduce 
significantly (about 50%) the contamination levels of OTA in blood, 
when supplemented to OTA containing rat diet (54).

In this regard, the modified chitosan resins or magnetic chitosan 
are found to be effective in removal of PAT without side changes on 
the quality of juice (55–59). In comparison to the other methods of 
removal, the removing mechanism here is very clear and no risk is 
found of possible toxicity if the correct adsorbent is selected and 
properly recovered from the juice (60).

Having in mind that clay binders are rarely effective against most 
of mycotoxins, excluding AFs and PAT, natural organic binders are 
also investigated for the same purpose. Such organic binders are found 
to be effective against several mycotoxins, which is useful in the cases 
of multi-mycotoxin contamination. It is important to underline, that 
such natural organic binders are highly biodegradable, which prevents 
environmental contamination (48).

Another possible way for mycotoxin removing from the feed/food 
is the extraction by solvents such as ethanol, isoprapanol or 
methoxymethane, which is found to be effective for decontamination 
of feeds with high levels of AFs, but the high costs and the remaining 
residues from the solvents put up a barrier, which prevents such 
extraction methods to be widely used for commercial exploitation 
(25, 61).

2.3 Chemical additives inhibiting the 
growth and mycotoxin production by fungi

Some other chemicals or antifungal agents such as anthocyanin, 
polyphenols, and some biologically active substances could also 
inhibit the fungal growth and mycotoxin production of A. flavus, 
preventing subsequent mycotoxin contamination of feedstuffs (62–
64). Such substances would be a more practical way for decreasing 
mycotoxin contamination of feedstuffs. In this regard, phosphine 
(PH3) was reported to be an effective substance in the suppression of 
the fungal growth and sterigmatocystin production of A. versicolor 
(65). Methyl paraben and potassium sorbate were also found to 
be potent antimicrobial agents that would be able to prevent the fungal 
growth of Aspergillus and Penicillium species in food/feed with pH 
values between 5 and 6, e.g., cereals, sorghum or silage and 
subsequently to prevent OTA production from the same fungal 
species (66). Potassium sorbate or calcium propionate are also effective 
against OTA in bread (67).

The combination of cold storage and the treatment of fruit and 
vegetable with fungicides is commonly used to control postharvest 
decay for long periods of time. It is reported that annually about 23 
thousand tons of fungicides are usually used on a global scale to 
prevent postharvest damages in vegetables and fruits (68). Some 
fungicides such as Azoxystrobin are also effective against OTA in 
wine (69).

A lot of chemical agents are investigated for their protective 
properties against production of PAT by P. expansum or other fungi. 
The bioactive isothiocyanates packaging at levels of 50 ppb or above is 
reported to prevent contamination of apples with P. expansum (70). 
The application of exogenous potassium phosphite is found to inhibit 
significantly the germination of P. expansum spores, which are 
inoculated in pears or apples (71). Beta-aminobutyric acid gamma-
aminobutyric acid (72) as well as β-aminobutyric acid (73), are shown 
to be effective against the growth of this fungus. Hydrogen peroxide 
and sodium hypochlorite are also successfully tested in the inhibition 
of spore germination and the growth of P. expansum (74, 75). Boric 
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acid (76), sodium propionate and potassium sorbate are also shown 
to be  effective against production of PAT and fungal growth of 
P. expansum (77). The wash treatment with acetic acid in solution 
levels of 2–5% is reported to inhibit the fungal growth of P. expansum 
in apples (75), whereas the vapor treatment with the same compound 
in concentration of 6 μL/L is also reported to be helpful in preventing 
the growth of Botrytis cinerea and Penicillium species on apples (78).

On the other hand, the addition of some chemicals could also 
increase the efficacy of some bioactive agents. For example, the 
addition of some nitrogenous compounds (L-aspartic or L-serine) to 
Candida sake can improve the efficacy of this bioactive agent against 
contamination of apples with P. expansum. Similarly, the bioefficacy 
of C. sake can increase significantly by addition of ammonium 
molybdate, which can eradicate significantly the blue mold 
development on pears and apples in cold storage conditions (79). The 
addition of nitrogenous substanes (L-proline or L-asparagine) can also 
improve the bioefficacy of Pseudomonas syringae, completely reducing 
the growth of blue mold (80). Some phenolic compounds such as 
ferulic acid, umbeliferone or quercetin, have been successfully tested 
on Golden delicious and/or Granny Smith apples (81).

3 Plant and herbal additives as a safe 
approach to combat harmful effects 
of mycotoxins

3.1 Plant and herbal additives inhibiting the 
fungal growth and mycotoxin production 
by fungi

It is important to know, that some biologically active substances 
or plant extracts may act as antifungal agents, e.g., some polyphenols, 
flavonoids, carotenoids, silymarin, etc., and could suppress the growth 
of Aspergillus flavus preventing possible contamination of feed/food 
with AFs (63, 64, 82, 83), and could serve as a practical way for 
preventing mycotoxin contamination.

Some plant extracts were found to be effective in suppressing the 
growth of PAT- or Alternaria producing fungi. In this regard, the 
essential oils such as cinnamon and clove oil were reported to be useful 
in decreasing PAT contamination in apples (84). Similarly, the garlic 
extract usage was seen to be  effective in decreasing Alternaria 
mycotoxins in tomatoes. Plants extracts of essential oils and 
monoterpenoids (85), garlic extract and garlic vapor exposure of 
apples have been reported to inhibit significantly the growth of 
P. expansum (86).

In this regard, natural antioxidants were found to be very useful 
for control of fungi at postharvest time and in inhibition PAT 
production (87) as well as for fungal control and subsequent 
production of AFs and OTA (88). Some antioxidants such as vanillic 
acid are effective against OTA synthesis (89).

3.2 Plant and herbal additives protecting 
against deleterious effects of mycotoxins

Another way to reduce deleterious effects of mycotoxins on farm 
animals and poults is addition of various natural mycotoxin-protecting 
compounds from plant or herbal origin having protective or antidote 

effect against some mycotoxins (8, 90–94). In this regard, above 7,000 
plant species are currently used in India for medical treatment of some 
diseases (95) (Table 1).

Such herbal feed additives or plant extracts were reported to 
protect against the suppressing effects of mycotoxins such as OTA on 
the gain of body weight in stock poults (96–98) as well as on the 
production of eggs by hens (8). In this regard, such a protection 
against OTA toxicity and subsequent improvement of OTA 
elimination from body, was reported for 5% water-extract (prepared 
via steam infusion) of dried leaves of Artichoke (Cynara scolymus L) 
given via the drinking water or feed of poults at levels 5 mL/kg.b.w. 
(90, 96–98). The cynarine content in such Artichoke extract can 
increase the biliary secretion, and improve the hepatobiliary rout of 
OTA excretion (98). Similarly, the urinary route of OTA excretion is 
also increased in Artichoke-treated poults due to the improved 
diuresis and cardiac activity (96, 98). The OTA-content in kidneys and 
liver in the same studies was found to be  lower in poults given 
Artichoke-extract together with OTA in comparison to poults only 
given the same contamination level of OTA in feed (97). In addition, 
permeability decreasing and vasoconstrictive effects of Artichoke 
extract (96, 98) could decrease OTA-induced oedematous changes in 
internal organs. The known hepatoprotective effects of cynarin and 
flavonoids in such water extract of Artichoke could also improve the 
liver damages in poults due to OTA-exposure (96, 98). The improved 
diuresis by artichoke-extract could be responsible for amelioration of 
OTA-provoked increase in serum glucose in the same experimental 
study (96).

A protective effect was also reported against OTA toxicity in 
poults for Rosallsat (a plant extract of seminum Rosae caninae and 
bulbus Allii Sativi) given as a supplement to the feed of poults in 
0.6 mL/kg b.w. daily (98). It was suggested that the bioactive substance 
allicin and the high levels of some vitamins (e.g., E, A and F) in such 
a plant extract are responsible for decreasing the toxic effects of OTA 
(98). The Rosallsat was previously found to suppress lipid peroxidation 
(98), but the enhanced lipid peroxidation is known to be an important 
mechanism of OTA toxicity (159). Such increased levels of lipid 
peroxidation in OTA-treated poults may lead to damages in the cell 
membrane, which could be responsible for the increase of cellular 
calcium and subsequent changes in metabolic activity and necrosis of 
the cells (160).

Another natural bioactive feed additive Roxazyme-G (polyenzyme 
complement produced by the “Trichoderma” fungi) supplemented to 
diet at level 0.2 g/kg feed was also reported to protect against 
deleterious effects of OTA in poults (97). The found protection of the 
same bioactive additive against OTA-provoked increase in serum 
glucose was explained by the improved energy metabolism (97).

The protection of another natural feed additive “sesame seed 
“against OTA-induced suppression of humoral immune response and 
deleterious changes in differential WBC count was explained by the 
improvement of OTA-induced suppression of protein synthesis, and 
subsequent improving of the division of the immune cells (97). It was 
also explained that sesame seed contains a high quantity of 
phenylalanine, which is known as a structural analog to OTA and, 
therefore, found to be a good antidote against this mycotoxin (97).

The authors made a conclusion that some of the above mentioned 
feed additives could serve for a safe utilization of OTA contaminated 
feedstuffs for poults avoiding possible condemnation of such feedstuffs 
(90, 96–98).
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TABLE 1 Protective effect of some plant/herbal or vitamin additives against deleterious effects of mycotoxins.

Plant/herbal or 
vitamin 
additive

Protective effects in animals or poultry References

5% water extract of 

Artichoke (Cynara 

scolymus L) given as 

steam infusion

 • Improve diuresis and ↑ urinary rout of OTA excretion

 • ↑ hepatobiliary rout of OTA excretion

 • Improve OTA-suppressed eggs production

 • ↑ OTA-suppressed body weight gain

 • ↓ OTA-content in liver and kidneys

 • Protective effects against OTA-induced liver and kidney damages

 • Protective effect against OTA-induced damages in lymphoid organs

 • Vasoconstrictive and permeability decreasing effects against OTA-induced oedematous changes

 • ↓ OTA-increased serum glucose, uric acid, creatinine, urea

 • Protective effect against OTA-suppressed humoral immune response

Stoev et al. (90, 96–98); Stoev (8)

Rosallsat (a plant 

extract of seminum 

Rosae caninae and 

bulbus Allii Sativi)

 • Suppress OTA-increased lipid peroxidation

 • Protective effects against OTA-induced liver and kidney damages

 • Protective effect against OTA-induced damages in lymphoid organs

 • ↓ OTA-content in liver and kidneys

Stoev et al. (98)

Roxazyme-G 

(polyenzyme 

complement produced 

by “Trichoderma” 

fungi)

 • ↓ OTA-increased serum glucose, creatinine and urea

 • Protective effects against OTA-induced liver and kidney damages

 • Improve OTA-suppressed eggs production

 • Protective effect against OTA-suppressed humoral immune response

 • ↑ OTA-suppressed body weight gain

 • Protective effect against OTA-induced damages in lymphoid organs

Stoev et al. (97); Stoev (8)

Sesame seed  • ↓ OTA-increased serum creatinine and urea

 • Protective effects against OTA-induced liver and kidney damages

 • Improve OTA-suppressed eggs production

 • Improve OTA-suppressed protein synthesis

 • Protective effect against OTA-suppressed humoral immune response

 • ↑ OTA-suppressed body weight gain

 • Protective effect against OTA-induced damages in lymphoid organs

Stoev et al. (97); Stoev (8)

Phenylalanine  • ↓ OTA-increased serum creatinine and urea

 • Protective effects against OTA-induced liver and kidney damages

 • Improve OTA-suppressed eggs production

 • Improve OTA-suppressed protein synthesis

 • Protective effect against OTA-suppressed humoral immune response

 • ↑ OTA-suppressed body weight gain

 • Protective effect against OTA-induced damages in lymphoid organs

 • Protection against OTA-induced carcinogenic effect

 • Protection against OTA-induced teratogenic effect

Stoev et al. (97); Stoev (8, 16, 99, 100)

Silybum marianum

or Silymarin

 • Protective effect against OTA-suppressed humoral immune response

 • Protective effects against OTA-induced liver and kidney damages

 • ↓ OTA-increased serum uric acid

 • ↓ OTA-increased enzyme levels of AST and ALT

 • Protective effect against OTA-induced damages in lymphoid organs

Stoev et al. (92, 94)

Silybum marianum

or Silymarin

 • ↓ AFs-increased enzyme levels of AST, ALT and ALP

 • Protective effects against AFs-induced liver damages

 • ↑ AFs-suppressed body weight gain

 • ↑ in feed conversion ratio in AFs exposed chicks

Tedesco et al. (101); Muhammad et al. (102)

Silymarin  • Protective effect against OTA-suppressed humoral immune response Khatoon et al. (103)

Silymarin  • Protection against AFs induced diabetic nephropathy Soto et al. (104)

Silybum marianum

or Silymarin

 • Protective effect against experimental liver damages and the increased levels of AST, ALT, ALP 

and/or lipid peroxidation in rats/mice

 • Protective effect against oxidative stress

Kaur and Agarwal (105); Pradeep et al. 

(106, 107); Shaarawy et al. (108); Rasool 

et al. (109)

(Continued)
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TABLE 1 (Continued)

Plant/herbal or 
vitamin 
additive

Protective effects in animals or poultry References

Silymarin  • Protective effect against experimental kidney damages

 • Protective effect against increase of lipid peroxidation

Karimi et al. (110); Varzi et al. (111)

Silybum marianum

or Silymarin

 • Protective effect on humoral and cell mediated immune response

 • Antioxidative effect

Katiyar (112); Kiruthiga et al. (113, 114)

Withania somnifera  • Protective effect against OTA-suppressed humoral immune response

 • Protective effects against OTA-induced liver damages

 • ↓ OTA-increased enzyme levels of AST and ALT

 • Protective effect against OTA-induced damages in lymphoid organs

Stoev et al. (92)

Withania somnifera  • Suppress lipid peroxidation

 • Protective effect on liver

Elberry et al. (115)

Withania somnifera  • Protective effect against brain damages Schliebs et al. (116)

Withania somnifera  • Protective effect on humoral and cell mediated immune response

 • Antioxidative effect

Kuttan and Leemol (117)

Withania somnifera  • ↑ of body weight gain

 • Anti-inflammatory effect

 • Anti-neoplastic effect

 • Antioxidative effect

 • Immunomodulatory effect

Mishra et al. (118)

Centella asiatica  • A slight protection against OTA-suppressed humoral immune response

 • ↓ OTA-increased enzyme levels of AST

 • A slight protection against OTA-induced damages in lymphoid organs

Stoev et al. (92)

Centella asiatica  • Protective effect on gastrointestinal mucosa, vascular intima and skin

 • Protective effect against oxidative stress

Montecchio et al. (119); Gohil et al. (120)

Centella asiatica  • Protective effects against liver and kidney damages

 • Immunostimulating effects

 • Anti-bacterial activity

Oyedeji and Afolayan (121)

Tinospora cordifolia  • Antioxidative effect against OTA provoked oxidative stress

 • Protective effect against the changes in spleen and blood biochemistry in OTA-exposed 

laboratory animals

 • Protective effect against OTA-induced genotoxic effects

Karamalakova et al. (122, 123)

Tinospora cordifolia  • Immunostimulating effect

 • Diuretic effect

 • Suppress lipid peroxidation

 • Anti-diabetic, anti-inflammatory, antioxidant, hepato-protective and anti-neoplastic activities

Singh et al. (124); Upadhyay et al. (125, 126); 

Sharma et al. (295)

Tinospora cordifolia  • ↑ OTA-suppressed body weight gain

 • Protective effect against OTA-induced liver and kidney damages

 • ↓ OTA-increased levels of serume glucose and uric acid

 • Protective effect against OTA-suppressed humoral immune response

Stoev et al. (93)

Tinospora cordifolia  • Improve humoral and cell mediated immune response Rege et al. (127); Nagarkatti et al. (128); 

Sudhakaran et al. (129); Ranjith et al. (130); 

Upadhyaya et al. (125)

Tinospora cordifolia  • Hepatoprotective effect

 • Protective effect on gastrointestinal mucosa

Bishayi et al. (131); Panchabhai et al. (132); 

Sharma and Pandey (133); Kavitha et al. 

(134); Nagarkar et al. (135)

Tinospora cordifolia  • Antioxidative effect Premanath and Lakshmidevi (136)

Tinospora cordifolia  • Antidiabetic effec expressed by inhibition of alpha glucosidase activity Rajalakshmi et al. (137); Chougale et al. 

(138)

Tinospora cordifolia  • Protective effect against AFs-induced kidney and liver damages

 • Protective effect against AFs-induced oxidative stress

Gupta and Sharma (139)

(Continued)
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Protective properties of some herbs, e.g., Withania somnifera, 
Silybum marianum or Centella asiatica, given as feed additives at levels 
of 4,000 ppm, 1,100 ppm, and 4,600 ppm respectively, were reported 
against the immunosuppressive and toxic effects of OTA in broiler 
poults immunized against Newcastle disease and exposed to 5 ppm 

OTA via the diet (92). In the same experimental study, the strongest 
protection of S. marianum and W. somnifera was found against 
immunosuppression and harmful effects of OTA on liver and kidneys. 
However, the hepatoprotective effect against OTA-induced damages 
was found to be stronger in poults protected by or S. marianum or 

TABLE 1 (Continued)

Plant/herbal or 
vitamin 
additive

Protective effects in animals or poultry References

Glycyrrhiza glabra  • ↑ OTA-suppressed body weight gain

 • Protective effect against OTA-induced liver damages

 • ↓ OTA-increased enzyme levels of AST

 • Protective effect against OTA-suppressed humoral immune response

Stoev et al. (93)

Glycyrrhiza glabra  • Improve humoral and cell mediated immune response Mazumdar et al. (140)

Glycyrrhiza glabra  • Antioxidative effect

 • Suppressive effect on lipid peroxidation

Chin et al. (141); Tohma and Gulcin (142); 

Latif et al. (143)

Glycyrrhiza glabra  • Protective effect on liver

 • Anti-oxidative property

 • Decrease serum enzyme levels of AST, ALT and ALP

Al-Razzuqii and Al-Hussaini (144); Rasool 

et al. (109)

A. leiocarpus, B. 

refescens, M. oleifera, I. 

asarifolia and G. 

senegalensis

 • Antioxidative effect Muhammad et al. (145)

Glycyrrhiza glabra  • Antibacterial/antiviral effect

 • Anti-inflammatory effect

 • Anti-hyper glycemic effect

Kaur et al. (146)

Glycyrrhiza glabra  • Suppress lipid peroxidation

 • Hepatoprotective effects

 • Hypocholesterolaemic effect

 • Hypolipaemic effect

Sitohy et al. (147)

Polyherbal additive 

“Growell”

 • Protection against OTA or AFs induced pathologic damages in internal organs and biochemical 

changes in blood

Kalorey et al. (148); Sakhare et al. (149)

Turmeric powder  • Protective effect against AFB1 induced increase in lipid peroxidation

 • Antioxidative effect in broiler chicks

 • ↓ AFB1 content in the liver of broiler chicks

Amminikutty et al. (150)

Ascorbic acid 

supplementation to the 

diet

 • Protection against toxic effect of OTA on the production and weight of the eggs Haazele (151); Haazele et al. (152)

Ascorbic acid or 

vitamin B 

supplementation

 • ↓ PAT levels in apple juice Fremy et al. (153); Drusch et al. (30); Yun 

et al. (154); Meizhen and Ping (32)

Citric acid and sodium 

bicarbonate given as 

supplements to the 

apple juice

 • ↓ PAT levels in apple juice Kim et al. (155)

Oleanolic acid  • Nephroprotective effect against OTA-induced nephrotoxicity

 • Amelioration of OTA-induced apoptotic damages and cell viability in human proximal tubule 

epithelial kidney-2 (HK-2) cells

Zhang et al. (156)

Ursolic acid  • Nephroprotective effect against OTA-induced nephrotoxicity

 • Amelioration of OTA-induced apoptotic damages and cell viability in human proximal tubule 

epithelial kidney-2 (HK-2) cells

 • Antioxidative effect against OTA provoked oxidative stress

Li et al. (157); Zhang et al. (158)

Vitamin E  • Protection against OTA induced immunosuppression Khatoon et al. (103)
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W. somnifera, whereas the protection against kidney damages was 
better expressed in the poults protected by S. marianum as supported 
by the relative organs’ weight, macroscopic, biochemical and 
pathomorphological findings (92). The authors claim that the same 
herbs could be used as a practical means to combat ochratoxicosis and 
for safely utilizing of OTA-contaminated feedstuffs (92). In the same 
study it was found, that the investigated herbs possess different 
mechanisms of protection against OTA toxicity: W. somnifera and 
S. marianum were found to be  very good immunoprotectors; 
S. marianum was seen to be a good protector against the toxic damages 
provoked by OTA on liver and kidneys, whereas W. somnifera was 
seen to ameliorate mainly the hepatotoxic damages provoked by 
OTA (92).

In another study a protection of herbal feed additive Silymarin 
(standardized seed extract of S. marianum, known as Milk thistle) 
against OTA-induced disturbances in blood biochemistry or kidneys 
and liver damages were found as measured by the serum 
concentrations of glucose, uric acid and the activity of enzymes ALT 
and AST (94).

In another experiment, a strong hepatoprotective effect of 
S. marianum was also found against AFs-provoked liver damages as 
measured by the decrease of serum enzyme activities of alanine-
aminotransferase (ALT), aspartate-aminotransferase (AST) or alkaline 
phosphatase (ALP) in AFs-intoxicated chicks (102). These enzymes 
are known as sensitive biomarkers for liver damages. Similar 
hepatoprotective effect against AFs-induced liver damages in poults is 
also found in another study (101). In the same studies a better gain in 
body weight was found in poults fed on diet supplemented with 
S. marianum or Silymarin and additionally treated with AFs (101, 
102). In the same experiments, it was found that the feed conversion 
ratio and the gain in body weight were increased when such chicks 
were supplemented by S. marianum and the measured indices were 
not different when compared to poults supplemented only by 
AFs-binder (102). Such an increase in the gain of body weight was also 
seen in rats supplemented with W. somnifera (118).

A similar protection of S. marianum was also found in rats with 
experimental damages of liver as measured by the decreased levels of 
ALT, AST, ALP and lipid peroxidation (108). A protective effect of 
S. marianum on liver was also seen in mice with hepatic damages due 
to alcoholic treatment as measured by the inhibition of lipid 
peroxidation and/or tumor necrosis factor (TNF) and/or the enzyme 
activity of ALT (105), and in diethylnitrosamine-provoked damages 
in the liver of rats (106, 107). It seems that the chicks and animals 
supplemented by the both herbs were found to utilize the feed in a 
better way.

Similar effect was also reported for polyherbal additive “Growell” 
given as supplement in experimental ochratoxicosis or aflatoxicosis 
and in combined mycotoxin exposure of poults (148, 149).

A potent protection of W. somnifera and S. marianum on cell 
mediated or humoral immune response was also reported in some 
other studies (112, 117).

In other studies, a significant protection of the herb Centella 
asiatica was reported on the mucosa of gastrointestinal tract and on 
the integrity of vascular intima (119, 120), which could protect against 
the harmful effects of some mycotoxins such as DON or OTA on the 
mucosa of gastrointestinal system and on permeability of vessels (92). 
The same herb is suggested to be useful against oxidative damages in 
oxidative stress as well as against possible damages in the integrity of 

the mucosa of gastrointestinal system (119, 120), which is often 
destroyed by some mycotoxins (1). A protection of C. asiatica was also 
reported against some damges in the kidneys or liver in addition to its 
immunostimulating effect (121), but the same protection was not so 
strong in experimental ochratoxicosis in poults (92).

A protection power of Silymarin was also reported against 
AFs-provoked diabetic nephropathy (104) as well as against kidney 
damages and increase in lipid peroxidation in rats provoked by 
cisplatin (110) and also against kidney damages in dogs provoked by 
gentamicin (111).

A dose-dependent protection of Silymarin against OTA-provoked 
immunosuppression is also reported in poults. In the same 
experimental study, Silymarin and/or Vitamin E alone or together 
decreased the immunotoxic effects provoked by OTA, but did not 
show a significant protection in OTA treated poults in contamination 
feed levels above 2 ppm (103).

The S. marianum or Silymarin used in the above mentioned 
experimental studies were also reported to have pronounced anti-
oxidative properties and a significant protection on internal organs, 
e.g., immunostimulatory, membrane-stabilizing, nephro- or hepato- 
protective and liver repairing effects (92, 94, 101, 102, 106, 107, 112, 
161–166).

The protective mechanism of S. marianum or its seed extract 
Silymarin was supposed to be  a consequence of suppressed lipid 
peroxidation and/or the elevated levels of endogenous antioxidants, 
which have beneficial effects on the integrity and the function of cell 
membranes, and therefore, preventing cell damages due to the 
enzymes’ leakage, which can destroy the cells (106, 113, 114, 164). The 
antioxidative property of Silymarin or S. marianum could be explained 
by their suppressive effects on the production of free radicals during 
the metabolism of toxic substances as well as to elevated levels of 
hepatic glutathione and the enchanced antioxidant defense of liver 
(167). The protective properties of Silymarin could be explained by 
the high quantity of flavonoids, among which, silybin is known to 
possess the strongest biological activities, incl. Hepatoprotective and 
nephroprotective activities against various toxic agents (165, 166, 168).

The other herbal additive W. somnifera was also found to possess 
similar organoprotective, antioxidative and immunostimulating 
properties (117) and suppressive effect on lipid peroxidation in 
various farm- or laboratory animals, e.g., protective effect on the liver 
(115), on the nervous system (92, 116). This protection is explained 
by some bioactive compounds, e.g., steroidal lactones, alkaloids or 
saponins (118).

Obviously, the same herbal additive Silymarin or S. marianum and 
W. somnifera could be used as feed supplements, “in addition to” or 
“instead of ” mycotoxin binders, for decreasing the harmful effects of 
mycotoxin contamination of the feed in the commercial poultry farms 
(101, 102, 169). Such herbs could ensure a safe and practical approach 
for protection of pouls against the toxic properties of mycotoxins such 
as AFs, FUMs or OTA, and simultaneously can ensure of safe 
utilization of mycotoxin contaminated feedsuffs while avoiding the 
respective loss of body weight or condemnation of such mycotoxin 
contaminated feedstuffs (1).

Tinospora cordifolia protection against OTA-provoked spleen and 
blood toxicity was reported in male ICR albino mice (122, 123). A lot 
of mycotoxins can provoke oxidative stress (OS) (123, 170, 171) and, 
therefore, could additionally make worse the health of animals or 
humans. The protective effect of some herbal additives such as 
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T. cordifolia-extract is found to be  related to its good antioxidant 
potential against OS and could find application as protectors against 
mycotoxicoses (122, 123). The protection of T. cordifolia-extract 
against oxidative stress was reported to be atributed to its good radical 
scavenging properties against ROS (reactive oxygen species) and RNS 
(reactive nitrogen species) (172), which usally are increased under the 
exposure of mycotoxins such as OTA (122, 123). The scavenging 
properties of T. cordifolia-extract against reactive oxygen and nitrogen 
species (ROS/RNS) were explained by the presence of tannins and 
phenolic substances (173). The T. cordifolia–extract was also found to 
decrease genotoxic potential of OTA, e.g., 8-OHdG (8-hydroxy-2′-
deoxyguanosine) genotoxic biomarker, followed by a decreased level 
of oxidative activity and gradual recovery of ROS-provoked damages 
in DNA (122, 123). On the other hand, T. cordifolia-extract was found 
to stimulate activation and differentiation of immune effector cells, 
e.g., T and B cells, and to increase bile secretion (125), to have diuretic 
effects (126), and to inhibit lipid peroxidation (124). Therefore, such 
T. cordifolia-extract can additionally improve hepatobiliary and 
urinary excretion of OTA, to suppress the lipid peroxidation 
enchanced by OTA, and to stimulate humoral and/or cell mediated 
immune response, which is usually disturbed by OTA.

Protective effects against OTA-provoked suppression on the 
gain of body weight and accompanying changes in internal organs 
and blood biochemistry were also seen for the herbs Glycyrrhiza 
glabra and T. cordifolia given as feed supplements to the diet of 
chicks (93). The decrease in body weight and relative organs’ weight, 
and the decrease of antibody titer in chicks vaccinated against 
Newcastle disease were less pronounced in OTA-exposed poults 
supplemented additionally with Glycyrrhiza glabra or T. cordifolia 
in comparison to the poults without herbs supplementation (93). A 
protective effect of both herbs was also seen against liver damages, 
but the protection was better expressed in the poults additionally 
given Glycyrrhiza glabra via the feeds as confirmed by 
pathomorphological changes and lower enzyme activity of AST 
compared to chicks treated only with OTA. A protection of 
T. cordifolia on kidneys and bone marrow was also observed as seen 
from the lower serum concentrations of uric acid compared to 
chicks treated only with OTA (93).

The extracts of T. cordifolia (130) and Glycyrrhiza glabra (140) 
were reported to stimulate the both humoral and cell mediated 
immune response and to improve antibody production in vivo. 
According to some authors, T. cordifolia was seen to stimulate 
phagocytic activity without influencing the humoral or cell-mediated 
immune immune response (127, 174). However, the same herb was 
also reported to improve activation and differentiation of T and B cells 
as well as cytokine production (125, 129).

The Liquorice (Glycyrrhiza glabra) is another herb, which is often 
used in Eastern or Western herbal medicine (146), because of its 
potent antioxidative and hepatoprotective properties (143, 144), and 
the immunostimulating potential (93, 140). The protective potential 
of Glycyrrhiza glabra is attributed to some bioactive substances, e.g., 
flavonoids, glabridin, hispaglarbidin B, isoliquiritigenin, saponin 
glycyrrhizin, licocoumarin and others (141). The Liquorice has been 
also reported to possess natural anti-inflammatory (incl. Antibacterial 
and antiviral), hepatoprotective, cardiotonic, antithrombotic, 
expectorant and even antidiabetic properties (109, 146) and, therefore, 
could protect against hepatotoxic, pulmotoxic and immunosuppressive 
action of some mycotoxins such as AFs, FUMs, OTA or DON (93).

T. cordifolia was also found to possess similar imunostimulating, 
diuretic, anti-inflamatory, hepatoprotective, anticarcinogenic and 
antidiabetic properties as well as possibilities to suppress lipid 
peroxidation (126, 128, 131, 175), which could explain its protective 
properties against hepatotoxic, nephrotoxic, cancerogenic or 
immunosuppressive action of some mycotoxins and to facilitate their 
excretion via the kidneys. It was widely used for the treatment of 
chronic diarrhoea or dysentery and urinary diseases (175), which have 
been often found in mycotoxin exposed animals.

It was reported, that the both herbs T. cordifolia and Glycyrrhiza 
glabra have a strong antioxidative potential, in addition to 
immunostimulating and organoprotective effect (136, 141, 142), and 
to be suppressors of lipid peroxidation (147). Therefore, the same 
herbs could be the good protectors against the toxic effects of some 
mycotoxins such as OTA, e.g., the increased lipid peroxidation and the 
oxidative stress (123, 176), the liver and kidney damages, and the 
immunosuppression (7, 93, 96–98).

The intimate mechanism of protective effect of T. cordifolia and 
Glycyrrhiza glabra in OTA-treated chicks (93) could be attributed to 
the observed decrease of lipid peroxidation, which is enhanced in 
OTA-treated chicks/animals (7, 159) as well as to the elevated levels of 
endogenous antioxidants ensuring cellular membrane integrity and 
preventing the increase of some target enzymes in the cellular 
cytoplasm and subsequent death of the cells. The immunosuppressive 
properties of mycotoxins can lead subsequently to some carcinogenic 
effects, because the important function of natural killer cells is the 
regular destroying of tumor cells (13, 99, 177). The both herbs were 
reported to have strong anti-bacterial or anti-viral properties and to 
be  immune boosters (92) and, therefore, could prevent some 
secondary bacterial diseases, which are often induced by the 
immunosuppressive properties of mycotoxins (7, 96). These herbs 
were found to be helpful in some kidney or liver ailments (109, 135) 
and would be  able to protect against OTA/AFs-provoked liver or 
kidney damages in poults or pigs.

The extract of T. cordifolia was reported to inhibits alpha 
glucosidase, which can explain its anti-diabetic effect (137, 138) and 
decreased levels of serum glucose (173). The same herb was found to 
decrease the serum glucose in poults treated with OTA and 
additionally supplemented with Tinospora cordifolia (93), which 
ameliorate the OTA-induced increase of serume glucose.

T. cordifolia is also found to have a strong protective activity on 
liver (135), to decrease the liver damages provoked by carbon 
tetrachloride (131, 134), and to ameliorate the liver damages induced 
by bile salts (127) or lead nitrate (133), and to suppress lipid 
peroxidation (124, 136). Therefore, T. cordifolia could protect against 
the damages in internal organs provoked by the OTA (93).

T. cordifolia was also seen to have good protective properties 
against AFs-provoked liver and kidney damages (139). T. cordifolia 
was seen to possess protective properties on gastrointestinal system 
(132), which is possibly realized by protecting against the damaging 
properties of free radicals on gastrointestinal mucosa (123). Therefore, 
the same herb could ameliorate the deleterious effects of mycotoxins 
such as OTA (93) or DON on intestinal mucosa.

It seems that T. cordifolia and/or Glycyrrhiza glabra, in addition 
to Silymarin or Silybum marianum and W. somnifera, could be also 
used along with some mycotoxin binders for minimizing deleterious 
effects of mycotoxin contaminated feeds and ensuring a better feed 
utilization and a higher body weight of commercial poults. 
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According to some authors, such herbs could be used in the practice 
for realizing a safe utilization of OTA-containing feedstuffs (92, 93) 
as supported by the improved body weight gain and feed utilization 
of such poults. In such a way, the economic loss from condemnation 
of mycotoxin contaminated feeds and weight loss of animals/chicks 
could be avoided with minimal costs to purchase the same herbs (3, 
92, 93). Having in mind the known polarity of most therapeutic 
substances in herbs, the same authors suggested to use the polar 
solvents for extraction of such compounds (93). However, some 
additional efforts are necessary for their application in animal/
chicken feeds.

Oleanolic acid, which is often found in various medicinal 
plants, fruit skins and food materials, was reported to have a 
nephroprotective effect and poteintial to counteract OTA-induced 
nephrotoxicity, if given as feed additive. The pre-treatment of 2 μM 
oleanolic acid for 2 h was reported to ameliorate OTA-induced 
apoptotic damages and to improve cell viability in human proximal 
tubule epithelial-originated kidney-2 (HK-2) cells (156).

Ursolic acid, which is a water-insoluble pentacyclic triterpene 
bioactive compound, is also seen in a lot of medicinal plants and 
food materials such as cuticular waxes of edible fruits. The same 
bioactive substance was found to have a nephroprotective possibility 
against nephrotoxic effects of OTA (158). It was found that a 
2 h-pre-treatment with 4 μM ursolic acid could significantly 
ameliorate mitochondrial-mediated apoptosis in human proximal 
tubule epithelial-originated kidney-2 (HK-2) cells, induced by 
24 h-treatment of 5 μM OTA (158). In another similar study, cell 
viability, reactive oxygen species (ROS) production, and several 
proteins’ expressions of human embryonic kidney 293 T (HEK293T) 
cells were investigated in response to the treatment with ursolic acid 
and OTA in order to clarify the protective mechanism of ursolic 
acid against OTA-induced renal cytotoxicity. It was found that 
oxidative stress was involved in both the nephrotoxicity of OTA and 
the renoprotective effect of ursolic acid. Results indicated that a 
2 h-treatment of 1 μM ursolic acid could significantly alleviate the 
ROS production and cell death induced by a 24 h-treatment of 8 μM 
OTA in HEK293T cells (157).

Having in mind that oxidative stress plays a major role in AFB1 
toxicity, natural products such as turmeric powder are increasingly 
being used as an alternative to mineral binders to ameliorate AFB1 
toxicosis in farm animals or poultry (150). It was found that broilers 
exposed for 10 days to AFB1 at dietary levels of 0.02 mg/kg feed 
showed a significant increase in lipid peroxidation in the liver, 
which was completely reverted by the concomitant administration 
of turmeric powder given at feed levels of 400 mg/kg. It was 
experimentally proved that turmeric powder counteracted such 
negative effects and simultaneously increased the hepatic gene 
expression of some antioxidant enzymes (e.g., CAT and SOD2) and 
decreased the liver content of AFB1 to undetectable levels. The 
authors suggested that turmeric powder could be  an effective 
feeding strategy to ameliorate AFB1 related adverse effects in 
broilers (150).

A potent antioxidative effect in a dose-dependent manner was 
also found for methanolic extracts of A. leiocarpus, B. refescens, 
M. oleifera, I. asarifolia and G. senegalensis. The phytochemical 
investigation revealed the presence of alkaloids, flavonoids, and 
tannins in the same plants, but the phenolic and proanthocyanidin 
contents of methanolic extracts were significantly higher as compared 

with aqueous extracts. The authors concluded that DPPH-free radical 
scavenging activity of methanolic extracts of A. leiocarpus and 
M. oleifera was similar to vitamin C and was better expressed as 
compared with B. refescens, I. asarifolia, G. senegalensis (145). A 
similar antioxidative effect and DPPH-free radical scavenging activity 
was also reported for methanolic extract of Desmodium ramosissimum, 
which could be another rich source of natural antioxidants, justifying 
its pharmacological use in traditional medicine (178).

In this regard, it should be  mentioned, that there are a lot of 
similar investigations and reports for antioxidative effects of many 
plants or plant extracts, but unfortunately the same are not investigated 
as possible protectors against the toxic effects of mycotoxins in the 
real practice.

It is interesting to mention, that AFs levels can be significantly 
decreased in some target kinds of corn processings, such as treatment 
of maize with lime water in the process of tortillas production (37). A 
synergistic interaction is also reported in the process of AFB1 
degradation between citric acid, lemon juice, and heating of AFB1-
contaminated pistachios, because the same mycotoxin is easily 
destroyed by frying with citric acid and lemon juice. However, such a 
treatment can change the desired physical properties of the 
product (179).

4 Biological supplements given as 
feed additives to prevent mycotoxin 
contamination and to promote 
mycotoxin degradation

Some other feed supplements/additives can alter the mode of 
action of mycotoxins via participation of enzymes or live micro-
organisms which are involved in biotransformation and detoxification 
of mycotoxins. Such additives usually receive a great attention from 
the feed industry, because the same can ensure a promising and safe 
strategy for preventing mycotoxin exposure, often by reducing 
mycotoxin bioavailability (2). The action of biological supplements 
used for preventing mycotoxin contamination or detoxification 
include the usage of microbial antagonists with fungicidal properties 
and biotransformation or degradation of mycotoxins by 
bio-transforming agents such as live and dead microbial cells, enzyme, 
proteins and culture extracts of yeasts, that are less or non-toxic when 
ingested by animals and can be easily excreted from the organism 
(180). Biological detoxification methods usually propose a better 
safety and flavor of treated food/feed, a preservation of nutritional 
quality, better organoleptic properties of treated food/feed, a good 
availability and cost-effectiveness. Therefore, such methods are more 
practical and promising than chemical or physical detoxification 
methods (181).

4.1 Mycotoxin detoxification by 
biotransformation or binding

The “detoxification by biotransformation” is a promising new 
strategy, which is based on microbial degradation of mycotoxins into 
less toxic compounds. Such a mycotoxin degradation could be also 
realysed by target microbial enzymes or enzyme preparations. In this 
regard, the interactions between gut microbiota and mycotoxins can 
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explain the protective effect of the microbiota against toxicity of 
mycotoxins in some animals, which is often due to degradation of 
mycotoxins into less toxic compounds or a decrease of their intestinal/
ruminal absorption (182, 183). Therefore, development of some 
probiotics derived from the digestive microflora of some animals are 
recently initiated for ensuring of mycotoxin degradation (182, 
184, 185).

Generally, the mycotoxin degradation by enzymes is not found 
to be very effective for AFs, ZEA, DON or FUMs and, therefore, 
the same mycotoxins can be found in beer produced from wheat 
and maize (186). However, OTA is found to be relatively stable 
mycotoxin under acid or alkaline conditions, but partial 
degradation can occur in the presence of some enzymes. Powder 
of oyster mushroom Pleurotus ostreatus was recently studied for 
possible detoxification of OTA and ZEA by simulation of in vitro 
gastrointestinal digestion in the absence and presence of cornmeal 
and ground feed. It was found that Pleurotus ostreatus has a great 
potential to detoxify OTA (187) (Table 2).

A lot of microorganisms such as bacteria, actinobacteria, 
filamentous fungi or yeast were found to effective in OTA 
degrading or adsorbing. For example, the Bacillus 
amyloliquefaciens ASAG1 (216); Sphingomonas paucimobilis 
033-1, S. asaccharolytica 034-1, Stenotrophomonas nitritreducens 
041-9 (220); Stenotrophomonas sp. CW117, Luteimonas sp. 
CW574, Silanimonas sp. CW282, Lysobacter sp. CW239, and 
Pseudomonas aeruginosa N17-1 (181) were found to degrade 
successfully OTA. Some actinobacteria can also adsorb OTA or 
inhibit its biosynthesis in addition to the possibility to degrade 
this mycotoxin. For example, actinobacterial strains (Streptomyces 
AT10, AT8, SN7, G10, and PT1) can degrade (arround 22–52%) 
and also adsorb (around 16–33%) of OTA (245). Some other 
actinobacterial strains (Streptomyces MS1, ML5, and G10) can also 
inhibit the expression of some biosynthesis genes of OTA in 
Aspergillus carbonarius (245). Phaffia rhodozyma CBS 5905 was 
also able to degrade around 90% of OTA (7.5 μg/mL) within 15 d 
and adsorbed 23% of OTA (3 μg/mL) within 2 h (240). The most 
important influence factors of mycotoxin adsorption capacity of 
microorganisms were found to be cell wall components such as 
glucogalactans and β-glucans (244) or mannoproteins (259) or 
β-glucans and mannans (260). However, the mycotoxin 
adsorption/binding ability by the same microorganism in different 
culture conditions usually has different manifestations (215, 244, 
261). The mycotoxin adsorption by the same microorganism but 
in different statuses (viable/dead) could be also different (228, 
236, 240, 247, 262).

The filamentous fungi such as Aspergillus niger GX312, 
A. japonicus AX35, Aspergillus carbonarius SA332 (225), in 
addition to A. fumigatus, A. clavatus, A. ochraceus, A. versicolor, 
A. wentii, Cladosporium sp., P. aurantiogriseum, P. spinulosum and 
Botrytis cinerea (isolated from grapes) are also reported to degrade 
OTA (227–229). In addition, some yeast strains such as Yarrowia 
lipolytica and Yarrowia lipolytica Y-2 are also reported to 
be effective in OTA degrading (223, 239). The mechanism of OTA 
degradation is mainly by its detoxification to the non-toxic 
metabolite OTα through the hydrolysis of an amide bond via 
hydrolytic enzymes, such as carboxypeptidase A, carboxypeptidase 
PJ_1540, protease A, lipase A, ochratoxinase, etc. (181, 252). 

Another possible mechanism involves OTA degradation via the 
hydrolysis of the lactone ring (263). Unfortunately, the degradation 
product in such a case was found to have a similar toxicity to OTA 
when ingested by rats (264, 265).

Anaerobic Eubacterium biforme MM11, isolated from swine 
intestinal microbiota, was reported to degrade nearly 77–100% of 
OTA and/or AFB1 in liquid medium or solid corn substrate within 
24 h, which suggests that such anaerobic microorganisms could 
be suitable for development of feed additives (219).

It was recently found that the process of detoxification due to 
Lactobacillus strains, e.g., Lactobacillus rhamnosus strain, is mainly 
due to binding of AFB1 and AFM1 (62, 188). In this regard, “in 
vitro” detoxification of AFB1 by probiotic Saccharomyces cerevisiae 
yeast was seen to be similar to that in Lactobacillus strains (189). 
Saccharomyces cerevisiae is such a bacteria, which is most 
successful at binding to AFB1. Some other strains, e.g., Mucor sp., 
Phoma sp., Rhizopus sp. 663, Rhizopus sp. 668, Rhizopus sp. 710, 
Trichoderma harzianum, Trichoderma sp. 639, Alternaria sp. and 
target Sporotrichum strains are capable to degrade nearly 65–99% 
of AFB1 (190–193). Flavobacterium aurantiacum strain was 
reported to remove AFB1 (194).

Some other studies reported that Eubacterium strain BBSH 797 
has capability to transform DON to de-epoxy-DON, which is not 
a toxic metabolite (195). In a similar way, a yeast strain of 
Trichosporon mycotoxinivorans was reported to detoxify both OTA 
and ZEA (196). The same T. mycotoxinivorans strain was found to 
cleave OTA into phenylalanine and OTα, which does not have 
toxic effect on animals (220). ZEA was found to be metabolized by 
the same strain into the nontoxic metabolite ZOM-1, which is 
without estrogenic properties (197). In following experimental 
studies, the both strains T. mycotoxinivorans and Eubacterium 
BBSH 797 were reported to destroy the same mycotoxins “in vivo” 
(198, 266). It is worth to mention, that Trichosporon 
mycotoxinivorans strain was not only reported to degrade OTA, but 
also it can meet the prerequisites for usage as an animal feed 
additive based on a European Food Safety study (199). Due to the 
excellent OTA-detoxification performance of T. Mycotoxinivorans 
(MTV, 115), it was made into a commercial product named 
Mycofix® PlusMTVINSIDE by Biomin GmbH (Austria) (267). 
Experimental studies with chicks confirmed that OTA induced 
toxic effects, e.g., decreased body weight gain, poor feed conversion 
ratio, increased levels of serum lactate dehydrogenase, aspartate 
aminotransferase, and γ-glutamyltranspeptidase, in addition to 
pathological changes in bursa of Fabricius, spleen, liver, and 
kidney, were significantly attenuated by the same commercial 
product (267). A similar example of such a degradation presents 
the gene coding for a carboxylesterase, which has been isolated 
from a soil microorganism and subsequently cloned into Pichia 
pastoris, later renamed to Komagataella pastoris. The same enzyme 
is possible to detoxify FUMs in the gastrointestinal system of pigs 
into some non-toxic compounds (200).

Some microorganisms having a good OTA adsorption ability 
also have great application prospects in food or feed industries 
(237, 268, 269). For example, within a 90-day fermentation process, 
OTA (4 μg/mL) was found to be adsorbed of S. cerevisiae by 73, 85, 
and 90% in white, rose, and red wine musts, respectively (268). 
Similarly, immobilized Candida intermedia 253 yeast cells into 
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TABLE 2 Natural mycotoxin degradation/detoxification by biotransformation or binding mycotoxins using target enzymes, yeasts, microorganisms or 
fungi.

Natural mycotoxin degradation by enzymes, yeasts, 
microorganisms or fungi

Degradation/detoxification or 
binding mycotoxins

References

Oyster mushroom Pleurotus ostreatus Detoxification of OTA Nobre et al. (187)

Lactobacillus strains, e.g., Lactobacillus rhamnosus strain Binding AFs Bovo et al. (62); Afshar et al. (188)

Saccharomyces cerevisiae yeast Binding AFs Chlebicz and Śliżewska (189)

Mucor sp., Phoma sp., Rhizopus sp. 663, Rhizopus sp. 668, Rhizopus sp. 710, 

Trichoderma harzianum, Trichoderma sp. 639, Alternaria sp., Bacillus subtilis 

and target Sporotrichum strains

Degradation capacity against AFs is nearly 

65–99%

Shantha (190); Kabak and Var (191); 

Gerbaldo et al. (192); Xia et al. (193)

Flavobacterium aurantiacum Remove AFs Bhatnagar et al. (194)

Eubacterium strain BBSH 797 Degradation of DON to non-toxic de-epoxy-

DON

Binder et al. (195)

Yeast strain of Trichosporon mycotoxinivorans Detoxification of OTA and ZEA Molnar et al. (196)

Yeast strain of T. mycotoxinivorans Degradation of ZEA to non-toxic metabolite 

ZOM-1

Vekiru et al. (197)

T. mycotoxinivorans and Eubacterium BBSH 797 In vivo degradation of DON, ZEA and OTA Binder et al. (195); Politis et al. (198); 

Varga et al. (199)

Komagataella pastoris Detoxification of FUMs Hartinger and Moll (200)

Alicyclobacillus spp Degradation of PAT in juce Yuan et al. (201)

Yeast Saccharomyces cerevisiae PAT degradation Moss and Long (202)

Lactic acid bacteria (LAB) PAT removal Hatab et al. (203)

Lactobacillus plantarum PAT degradation to hydroascladiol Hawar et al. (204)

Byssochlamys nivea (FF1-2) PAT degradation Zhang et al. (205)

Yeasts Sporobolomyces sp. strain IAM 13481 and Rhodosporidium 

kratochvilovae strain LS11

PAT degradation to less toxic compounds 

such as desoxypatulinic acid

Castoria et al. (206); Ianiri et al. (207)

yeast Rhodosporidium paludigenum PAT degradation to desoxypatulinic acid Zhu et al. (208)

Yeast Saccharomyces cerevisiae PAT degradation to E-ascladiol and 

Z-ascladiol

Moss and Long (202)

Gluconobacter oxydans PAT degradation to E-ascladiol and 

Z-ascladiol in apple juice

Ricelli et al. (87)

Bacillus licheniformis Sl-1, CM 21 Degradation capacity against OTA is between 

35 and 98%

Petchkongkaew et al. (209); Shi et al. (210)

Acinetobacter calcoaceticus strain Degradation of OTA to non-toxic metabolite 

OTα

Hwang and Draughon (211); De Bellis 

et al. (212)

Pediococcus parvulus UTAD 473 Degradation of OTA (80–90%) to non-toxic 

metabolite OTα

Abrunhosa et al. (213)

Lactobacillus plantarum, L. sanfrancisco, L. brevis, yeast strain Saccharomyces 

cerevisiae

Degradation capacity against OTA is 50–54% Piotrowska and Zakowska (214); 

Piotrowska (215)

Bacillus amyloliquefaciens ASAG1 Degradation of OTA (98%) to non-toxic 

metabolite OTα

Chang et al. (216)

Brevibacterium casei; B. linens; B. iodinum; B. epidermidis Degradation of OTA (100%) to non-toxic 

metabolite OTα

Rodriguez et al. (217)

Lactobacillus acidophilus Degradation of PAT and OTA Fuchs et al. (218)

Bacillus licheniformis Degradation capacity against AFB1 is about 

74%

Petchkongkaew et al. (209)

B. subtilis Degradation capacity against AFB1 is about 

85%

Petchkongkaew et al. (209)

Eubacterium biforme MM11 isolated from swine intestinal microbiota Degradation capacity against AFB1 and OTA 

is about 77–100%

Upadhaya et al. (219)
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TABLE 2 (Continued)

Natural mycotoxin degradation by enzymes, yeasts, 
microorganisms or fungi

Degradation/detoxification or 
binding mycotoxins

References

Eubacterium callanderi, Sphingomonas paucimobilis, S. asaccharolytica, 

Stenotrophomonas nitritreducens

Degradation of OTA (95–100%) to non-toxic 

metabolite OTα

Schatzmayr et al. (51, 220)

Cupriavidus basilensis ŐR16 strain isolated from soil Degradation of OTA (100%) to non-toxic 

metabolite OTα

Ferenczi et al. (221)

Bacillus subtilis CW 14 Degradation capacity against OTA is up to 

97%

Shi et al. (222)

Brevundimonas vermicularis B-1, Yeast Yarrowia lipolytica Y-2 Degradation capacity against OTA is about 

84–87%

Wang et al. (223)

Bifidobacterium bifidum, B. breve, Lactobacillus casei, L. delbrueckii bulgaricus, 

L. johnsonii, L. paracasei, L. rhamnosus, L. salivarius, L. plantarum

Degradation of OTA (30–97%) to non-toxic 

metabolite OTα

Luz et al. (224)

Aspergillus niger GX312, A. japonicus AX35, A. carbonarius SA332 Degradation of OTA (83–99%) to non-toxic 

metabolite OTα

Bejaoui et al. (225)

Aspergillus tubingensis M036, M074 Degradation of OTA (up to 95%) to non-toxic 

metabolite OTα

Cho et al. (226)

A. niger, A. carbonarius, A. fumigatus, A. clavatus, A. ochraceus, A. versicolor, 

A. wentii, A. japonicus, Cladosporium sp., P. aurantiogriseum, P. spinulosum, 

Botrytis cinerea, isolated from grapes

Degradation of OTA (up to 80%) to non-toxic 

metabolite OTα

Abrunhosa et al. (227); Bejaoui et al. (228); 

Valero et al. (229)

Pleurotus ostreatus Degradation of OTA (up to 77%) to non-toxic 

metabolite OTα

Engelhardt (230)

Rhizopus stolonifer, R. microsporus, R. homothallicus, R. oryzae, R. stolonifer Degradation of OTA (up to 96,5%) to non-

toxic metabolite OTα

Varga et al. (231)

Aspergillus niger M00120 Degradation of OTA (up to 99%) to non-toxic 

metabolite OTα

Xiong et al. (232)

Aureobasidium pullulans AU14-3-1, AU18-3B, AU34-2, LS30 Degradation of OTA (75–90%) to non-toxic 

metabolite OTα

De Felice et al. (233)

Yeast strains Saccharomyces cerevisiae, Kloeckera apiculata, 

Schizosaccharomyces pombe, Candida pulcherima, Candida friedrichii, 

Candida intermedia, Lachancea thermotolerans, Cyberlindnera jadinii, 

Torulaspora delbrueckii

Degradation of OTA (25–84%) to non-toxic 

metabolite OTα

Cecchini et al. (234); Angioni et al. (235); 

Fiori et al. (236); Farbo et al. (237)

Yeast strains Trichosporon sp. DSM 14153, DSM 14156, DSM 14162, 178; 

Trichosporon mycotoxinivorans MTV, 115; Rhodotorula sp. DSM 14155, 124; 

Cryptococcus 118

Degradation of OTA (80–100%) to non-toxic 

metabolite OTα

Schatzmayr et al. (51, 220, 238); Molnar 

et al. (196)

Yeast strain Yarrowia lipolytica Degradation capacity against OTA is about 

88%

Yang et al. (239)

Yeast strain Phaffia rhodozyma CBS 5905 Degradation of OTA (90%) to non-toxic 

metabolite OTα and adsorb 23% of OTA

Péteri et al. (240)

Yeast strains Metschnikowia pulcherrima MACH1, M320; Kloeckera lindneri 

GAL5; Pichia guilliermondii M8, M29; Rhodococcus erythropolis AR14

Degradation capacity against OTA is between 

26 and 84%

Patharajan et al. (241)

Stenotrophomonas sp. CW117, Luteimonas sp. CW574, Silanimonas sp. 

CW282, Lysobacter sp. CW239 and Pseudomonas aeruginosa N17-1

OTA degradation Chen et al. (181)

Candida guilliermondii PAT degradation Chen et al. (242)

Candida famata, Candida guilliermondii, Candida lusitaniae, Cryptococcus 

laurentii, Kloeckera spp., Rhodotorula glutinis from Turkish wine-grapes

OTA degradation Var et al. (243)

Acetobacter syzygii, Lactobacillus kefiri Degradation of AFB1, OTA and ZEA Taheur et al. (244)

Actinobacterial strains, e.g., Streptomyces AT10, AT8, SN7, G10, PT1 OTA degradation (arround 22–52%) and/or 

adsorbtion (around 16–33%)

Khoury et al. (245)

Oenococcus oeni, Lactobacillus plantarum, Lactobacillus brevis, Leuconostoc 

mesenteroides, Pediococcus acidilactici from grape must or wine

OTA degradation Del Prete et al. (246)
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TABLE 2 (Continued)

Natural mycotoxin degradation by enzymes, yeasts, 
microorganisms or fungi

Degradation/detoxification or 
binding mycotoxins

References

Oenococcus oeni isolated from wine OTA degradation Mateo et al. (247)

Carboxypeptidase produced by Bacillus amyloliquefaciens, Phaffia rhodozyma, 

Acinetobacter sp. neg1

Degradation of OTA to non-toxic metabolite 

OTα

Péteri et al. (240); Chang et al. (216); 

Liuzzi et al. (248)

Carboxypeptidase A produced in bovine pancreas Degradation of OTA to non-toxic metabolite 

OTα

Pitout (249); Deberghes et al. (250); 

Abrunhosa et al. (251)

Carboxypeptidase Y produced by Saccharomyces cerevisiae Degradation of OTA to non-toxic metabolite 

OTα

Abrunhosa et al. (252)

A crude enzyme Ancex OTA degradation Abrunhosa et al. (251)

Lipase A produced by Aspergillus niger Degradation of OTA to non-toxic metabolite 

OTα

Stander et al. (253)

Hydrolase produced by Aspergillus niger Degradation of OTA to non-toxic metabolite 

OTα

Abrunhosa et al. (254)

Protease A produced by Aspergillus niger Degradation of OTA to non-toxic metabolite 

OTα

Abrunhosa et al. (251)

A crude metalloenzyme produced by Aspergillus niger OTA hydrolization Abrunhosa and Venancio (255)

Enzymes polyphenol oxidase or peroxidase Decrease PAT content in fruits Chen et al. (256)

Glucose oxidase or peroxidase Decrease Alternaria mycotoxin alternariol 

(AOH) in fruits

Tittlemier et al. (257); Sun et al. (258)

CotA laccase from Bacillus licheniformis ZOM-1 Degradation of ZEA, AFs and AOH Sun et al. (258)

magnetic calcium alginate beads were reported to be effective in 
adsorbing OTA in commercial grape juice, and more than 80% of 
OTA (0.02 μg/g) was adsorbed within 48 h of incubation (237).

Another good example is the licensed probiotic preparation, 
including L. paracasei LOCK 0920, L. plantarum LOCK 0945, 
L. brevis LOCK 0944, S. cerevisiae LOCK 0140, and Yucca schidigera 
extracts, which was used to decrease OTA content in broiler feed 
(270), as the contamination levels of 1 ppm and 5 ppm OTA were 
reduced by 73 and 55% in feed within 6 h fermentation with the 
probiotic preparation, respectively. A yeast strain Kluyveromyces 
marxianus C2, isolated from pig feces, was also found to reduce 
82.3% of OTA (0.5 μg/mL) in YPD medium and 83.7% of OTA 
(0.082 μg/g) in moldy corn feed, respectively (181).

Various biological methods (using target biological agents) 
were developed for decreasing of PAT or Alternaria mycotoxin 
contamination in fruits and derived products, e.g., yeast 
fermentation and adsorption, degradation by enzymes, degradation 
by lactic acid bacteria (LAB), etc. (201–204, 271). Such 
biodegradations do not impart significant changes in quality of the 
product, but some further studies are necessary for clarifying the 
involved mechanisms and the possibility of safe usage of such 
methods in order to elaborate the required parameters for their 
successful usage in the fruit and/or juice industry.

A study reported a successful removal of PAT in some fruit or 
fruit products is described by Yuan and collaborators, who have 
found that the contamination level of PAT in juice can decrease 
nearly 88% by usage of 49 g/L inactivated Alicyclobacillus spp. 
(201). In another study, it was reported that PAT was successfully 
removed by usage of strain Byssochlamys nivea (FF1-2), which 
cannot produce PAT (205). Some other in vitro experiments 

showed that the yeasts Sporobolomyces sp. such as strain IAM 
13481 or Rhodosporidium kratochvilovae strain LS11 have 
possibility to resist PAT and to ensure its degradation to less toxic 
metabolites such as ascladiol and desoxypatulinic acid (207).

The mechanisms of biological removal of PAT are considered 
to be as follow: the biosorption of PAT by microbial cells (272, 
273), degradation by some enzymes produced by target 
microorganisms (208), destroying the functional properties of PAT 
(274, 275). Also, another explanation would be that the availability 
of PAT in growth media can provoke the production of 
PAT-degrading enzymes by PAT-resistant yeasts (208, 276). In this 
regard, it was found that PAT can be degraded by Saccharomyces 
cerevisiae and Gluconobacter oxydans to E-ascladiol and Z-ascladiol 
(87, 202), by Candida guilliermondii (242); by L. plantarum - to 
hydroascladiol (204), by Rhodosporidium paludigenum  - to 
desoxypatulinic acid, which are not or less toxic (208).

According to some authors, enzymes play an important role in 
detoxification or degradation of PAT in juices prepared by pome 
fruit (207) and some antioxidative enzymes are main factors in the 
process of elimination of reactive oxygen species (206).

Some enzymes, e.g., polyphenol oxidase or peroxidase were 
found to decrease PAT content in fruits (256). In this regard, 
polyphenol oxidase produced by extraction from apples was found 
to decrease significantly PAT content in apple juice. Enzymes such 
as glucose oxidase or peroxidase were also reported to decrease 
Alternaria mycotoxin in fruits. In this regard, peroxidase which is 
produced by extraction from horseradish was found to decrease 
the content of Alternaria mycotoxin alternariol (AOH) in tomatoes 
(257). Glucose oxidase, which is synthesized by Aspergillus niger 
was found to decrease AOH content in apples, whereas CotA 
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laccase from Bacillus licheniformis ZOM-1 was found to degrade 
ZEA, AFs and AOH (258).

Enzymes are also used for OTA degradation. Proteolytic 
enzymes such as trypsin, α-chymotrypsin and carboxypeptidase A 
were reported to hydrolyse OTA for the first time in 1969, but 
among them carboxypeptidase A was found to be more effective 
(249). A crude enzyme Ancex is found to be more effective in OTA 
degradation as compared to some commercially purified enzymes 
like Protease A, Pancreatin or Prolyve PAC (251). Another crude 
metalloenzyme isolated from Aspergillus niger was found to have a 
much higher OTA hydrolytic activity as compared to the 
carboxypeptidase (255). Similarly, the crude enzymes of Aspergillus 
tubingensis (M036 and M074) were found to remove about 90–97% 
of OTA at defined pH 5 and 25°C (226). The purified recombinant 
ochratoxinase was also found to hydrolyze OTA more efficiently 
than carboxypeptidase A at an optimal pH and temperature (277).

It seems that a large number of microorganisms, which have a 
good OTA degradation and/or adsorption ability, in addition to 
some OTA degradation enzymes isolated or cloned from such 
microorganisms or animal pancreas, received also great application 
prospects in food or feed industry.

Nowadays, biodegradation was found to be an emerging and 
promising new strategy for control of mycotoxins, because of the 
outstanding efficiency without possible pollution of the treated 
products. It was found that a lot of fungi or bacteria can degrade 
mycotoxins in feed (191–193). However, some futurer research 
efforts are required to clarify the mechanisms, which are involved 
in such a degradation or detoxification and to define and isolate 
enzymes responsible.

4.2 Natural antagonists against target fungi 
as a valuable alternative to conventional 
fungicides for preventing mycotoxin 
contamination

Another practical way to prevent feeds/foods from mycotoxin 
contamination is to use some target microbial antagonists, which 
could be a valuable alternative to conventional fungicides. In this 
regard, a special attention should be paid to the development of target 
bioeffective technologies for preventing the growth of toxigenic fungi, 
which are based on the natural bioeffective microbial aggents. In this 
regard, Bacillus subtilis strains, were found to suppress the fungal 
growth of Fusarium strains (48). Also, it was reported that non 
toxigenic Aspergillus flavus strains can decrease AFs content in the 
treated feedstuffs or food commodities (278), because such strains 
grow on the same ecological niche as mycotoxigenic strains and can 
displace them. Therefore, the spores of such non toxigenic A. flavus 
strains inoculated on various grains such as barley or sorghum can 
be used for prevention excessive AFs contamination in feeds/foods. 
The introduction of atoxigenic A. flavus strains, which are capable to 
replace fully AFs producing strains, would be a useful strategy for 
decreasing preharvest AFs contamination levels of crops (279) 
(Table 3).

The addition of bioeffective microorganisms that can suppress 
P. expansum growth or destroy PAT metabolism is found to be useful 
biocontrol technique for preventing PAT contamination in the 
prolonged storage of some sensitive products prepared by fruits. The 

accumulation of PAT in fruit at storage time could be also prevented 
by the effective control for possible decay of fruit, which is usually 
provoked by P. expansum. In this regard, cells of Rhodotorula glutinis 
LS11 were reported to decrease contamination levels of PAT and 
destroy it in “in vitro” study (280). It is reported, that PAT content can 
be decreased by nearly 83% after 2 consequent days following the 
incubation with Pichia ohmeri and after 15 days PAT was found to 
be undetectable (281), whereas inoculation of Pichia caribbica yeast 
can significantly decrease PAT content in apples after 15-day 
incubation period (282). A significant decrease in accumulation of 
PAT was also demonstrated by using some other fungal suppressing 
agents such as Candida sake CPA-2 and Pantoea agglomerans CPA-1 
(283) or some yeast species such as Pichia ohmeri 158 and Candida 
guilliermondii P3 (284). Such a decrease of PAT content was assumed 
to be a consequence of the protection of fruit against contamination 
of toxigenic P. expansum species or by absorption, but not 
metabolization or degradation of PAT (290).

Some antagonistic microorganisms/yeasts or extracts of such 
microorganisms/yeasts inhibiting the growth of fungi and subsequent 
PAT production are reported for apples and laboratory cultures, e.g., 
Pichia caribbica (282) or Candida membranifaciens and Torulaspora 
delbrueckii (285, 286). Such a suppression of mycotoxin production by 
P. expansum via using antagonist yeast inoculation is supposed to 
be due to the the suppression of the growth of P. expansum (291). 
Some cultures of LAB or LAB-supernatants, which are free of cells 
were reported to suppress PAT-production by P. expansum or other 
fungi (275).

Some microorganisms, e.g., Pseudomonas fluorescens or Bacillus 
subtilis were reported to be  useful in decreasing PAT contents in 
apples (287). For example, the dip treatment of McIntosh and Spartan 
apples with cell suspension of Pseudomonas fluorescens realized before 
the dip treatment with spore suspension of P. expansum was found to 
suppress the fungal growth at the time of commercial cold storage of 
apples. The same protection was found to be  similar to that of 
commercially availble fungicides (288). Similarly, a powerful control 
of the fungal growth of Botrytis cinerea and P. expansum was 
demonstrated by usage of some isolates of Pseudomonas syringae 
during 28 days of storage (271).

Such inhibition by some bioactive agents (yeast, fungi or bacteria, 
suppressing the growth and PAT production by fungi) could be also 
explained by the possible competition for the necessary nutritients or 
the space available as well as by some generated bioactive (antagonistic) 
substances of antagonistic agents, which can suppress the germination 
of spores and development of mycelium of the fungi or by true 
predation (288, 289).

5 Other miscelaneous natural 
antidotes or vitamins given as 
supplements in the diet to combat 
mycotoxicoses

Another possibility for reducing toxicity of mycotoxins is to 
know in depth the particular mechanisms of their toxicity in order 
to find specific antidotes or vitamins, which could be  used as 
supplements to the diet for preventing the specific toxicity of each 
separate mycotoxin (2, 91). For example, some of the toxic 
properties of OTA are attributed to the structural similarity of this 
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mycotoxin with phenylalanine, which can explain the subsequent 
suppression of protein synthesis as a result of competition for 
target t-RNA (292). Unfortunately, the possible protection of 
phenylalanine is studied mostly by in vitro experimental 
investigations using yeast or bacteria, but only a few experimental 

studies were performed with animals/poultry or laboratory 
animals (8, 16, 97, 99, 100).

Such a protection of phenylalanine was seen against 
OTA-provoked biochemical and pathological changes in rats. In the 
same experimental study, the number of OTA-provoked tumors in 

TABLE 3 Natural antagonists such as yeasts, microorganisms, fungi or biologically active substances against the growth of target mycotoxin producing 
fungi.

Natural antagonists such as yeasts, 
microorganisms, fungi or 
biologically active substances 
against target mycotoxin 
producing fungi

Suppression the growth of following fungi and 
subsequent mycotoxin production

References

Lactobacillus plantarum Suppression the fungal growth of Aspergillus parasiticus and 

Penicillium expansum and subsequent production of AFs and PAT

Luz et al. (275)

Bacillus subtilis strains Suppression the fungal growth of Fusarium strains and subsequent 

FUMs production

Jouany (48)

Actinobacterial strains, e.g., Streptomyces MS1, ML5 

and G10

Inhibition of the expression of some biosynthesis genes of OTA in 

Aspergillus carbonarius

Khoury et al. (245)

Non toxigenic Aspergillus flavus strains Displace mycotoxigenic strains by biocompetition and decrease AFs 

content in the feedstuffs or food commodities

Cole and Cotty (278); Moral et al. (279)

Rhodotorula glutinis LS11 Suppression the fungal growth of Penicillium expansum and 

subsequent production of PAT

Castoria et al. (280)

Pichia ohmeri Suppression the fungal growth of Penicillium expansum and 

subsequent production of PAT

Coelho et al. (281)

Pichia caribbica yeast Suppression of blue mold rot and subsequent PAT production in 

apples

Cao et al. (282)

Candida sake CPA-2 and Pantoea agglomerans CPA-

1

Suppression the fungal growth of Penicillium expansum and 

subsequent production of PAT

Morales et al. (283)

Yeast species of ascomycota (Pichia ohmeri 158 and 

Candida guilliermondii P3)

Suppression the fungal growth of Penicillium expansum and 

subsequent production of PAT

Coelho et al. (284)

Candida membranifaciens and Torulaspora 

delbrueckii

Suppression the fungal growth of Penicillium expansum and 

subsequent production of PAT

Farahani et al. (285); Ebrahimi et al. (286)

Dip treatment of apples with suspension of 

microorganisms Pseudomonas fluorescens or Bacillus 

subtilis

Suppression the fungal growth of Penicillium expansum during the 

cold storage and subsequent production of PAT on apples

Narayanasamy and Narayanasamy (287); 

Wallace et al. (288)

Pseudomonas syringae Suppression of postharvest fungal growth of Botrytis cinerea and P. 

expansum on apples and subsequent production of PAT

Zhou et al. (271)

Predacious yeast Saccharomycopsis schoenii Biological control of fungal growth of Penicillium italicum, P. 

digitatum and P. expansum by true predation

Pimenta et al. (289)

Polyphenols, flavonoids, carotenoids and silymarin Suppression the fungal growth of Aspergillus flavus and subsequent 

production of AFs

Zhou et al. (64); Shen et al. (63); Valencia-

Quintana et al. (83)

The essential oils such as cinnamon and clove oil Decrease PAT contamination in apples Sivakumar and Bautista-Baños (84)

Plants extracts of essential oils and monoterpenoids Suppression the fungal growth of Aspergillus terreus, Fusarium 

oxysporum, Penicillium expansum and Verticillium dahliae and 

subsequent mycotoxin production

Kadoglidou et al. (85)

Garlic extract and garlic vapor exposure of apples Suppression the fungal growth of Penicillium expansum and 

subsequent production of PAT

Ikeura et al. (86)

Lentinula edodes lyophilised filtrates Stimulation of A. parasiticus anti-oxidant enzymes production 

(superoxide dismutase, catalase, glutathione peroxidase) and 

suppression of AFs production by A. parasiticus

Reverberi et al. (88)

Vanillic acid Inhibition of OTA production and growth of Aspergillus species. Palumbo et al. (89)
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phenylalanine-supplemented rats treated additionally by 10 ppm 
OTA was comparable to that in the group treated with two times 
lower OTA concentrations, which suggests for such a protection of 
phenylalanine against OTA-provoked tumors (99, 100). Such a 
protection of phenylalanine was also found against OTA-provoked 
malformation in rats given phenylalanine as supplement to the 
diet (16).

The protective effect of phenylalanine against OTA-induced 
immunosuppression in humoral immunity was reported to be  a 
consequence of the improved protein synthesis, which is usually 
impaired by OTA and to a subsequent improvement of OTA-provoked 
delay of the division of immune cells (97). Such a mild protection of 
phenylalanine against OTA exposure was also seen in the eggs 
production of laying hens (8).

It was also found, that 300 ppm ascorbic acid supplementation to 
the diet of laying hen contaminated with 3 ppm OTA can decrease the 
toxic effect of OTA on the production and weight of the eggs (151, 
152) (Table 1).

Some vitamins such as ascorbic acid and/or vitamin B, are also 
reported to be useful for PAT degradation (32). Ascorbic acid and 
ascorbate which are present naturally in apples, were reported to 
be able to decrease PAT-content in apple juice (30, 153, 154). This 
degradation of PAT by ascorbic acid was found to be very strong and 
rapid in the presence of light and oxygen (30).

Another similar protection is reported about the combination of 
citric acid and sodium bicarbonate given as supplements to the apple 
juice, which are found to decrease PAT content (155).

A dose-dependent protection of Vitamin E against immunotoxic 
effect of OTA was also reported in chicks, but such a protection was 
not significant when the chicks were exposed to OTA in contamination 
levels above 2 ppm (103).

6 Some changes in the diet of animals 
as a means to combat some 
mycotoxicoses

Some changes in the diet such as low carbohydrate intake, 
increased protein content, calorie restriction or restriction of the 
dietary fats were also reported to be useful as a means to combat some 
mycotoxicoses. In this regard, some recent studies reported that low 
carbohydrate exposure and the restriction of calories could be useful 
in amelioration of toxic effects of AFs, and the increased protein 
content in the diet could also help for detoxification of AFs (32, 293).

However, there are some contradictions in the results concerning 
the importance of dietary fats on AFs content, but it is suggested that 
the increased fat in the diet could partially promote the retention of 
AFs in the body as compared to a diet containing low fat (293).

Another possibility to safely utilize feedstuffs contaminated with 
mycotoxins and to prevent toxic actions of mycotoxins on farm 
animals or poultry is to give such feedstuffs to some animal species or 
poultry that are less sensitive to a target mycotoxin. For example, 
ruminants can utilize safely OTA-contaminated feedstuffs, because the 
same animals are not so susceptible to OTA and can hydrolyze it via 
the rumen to the nontoxic metabolite ochratoxin α (OTα) (294).

It is important to emphasize, that any piece of knowledge about 
the metabolism of mycotoxins and the way of detoxification or 
elimination of each mycotoxin in each kind of animal is of particular 

importance for finding an appropriate way to reduce the toxicity of 
each particular mycotoxin.

7 Concluding remarks

Having in mind, that traditional chemical methods for mycotoxin 
decontamination have some significant disadvantages such as low 
efficiency, loss of taste, decreased nutritive value of the feedstuffs/
foods, some harmful side effects on the health and the high cost of the 
required equipment, their wide application (excluding ammoniation) 
is limited and considered impractical and even potentially harmful for 
extensive use in the real practice (27). On the other hand, clay binders 
are rarely effective against most of mycotoxins, with exception of AFs 
and PAT, giving way to natural organic binders, which are more 
effective against multi-mycotoxin contamination of forages and also 
are well biodegradable, preventing subsequent contamination of 
the environment.

Therefore, herbal/plant additives, enzymatic preparation, 
natural antioxidants or adsorbents, natural organic binders, 
biological agents with fungicidal properties, microorganisms and 
yeasts are recently prefered as more practical and safe ways for 
mycotoxin decontamination. On the other hand, biological 
detoxification methods provide a better food safety and preserved 
flavor of treated food/feed, accompanied with preserved nutritional 
quality and organoleptic properties of treated food/feed. Therefore, 
these methods are more practical and promising than chemical or 
physical detoxification methods, showing also a good availability 
and cost-effectiveness. In this regard, some additional research 
efforts are required to reveal their real addvantages towards the 
traditional methods for mycotoxin decontamination, and to clarify 
the intimate mechanisms of detoxification and/or enzymes 
involved in it.

Nowadays, biological supplements containing antagonistic 
microorganisms, target enzymes, yeasts or plant extracts or even some 
natural antioxidants are considered to be  a good alternative to 
conventional fungicides, and can promote “detoxification by biological 
transformation or degradation of mycotoxins,” which is a promising 
new strategy for control of mycotoxin content due to its high efficacy 
and environmental safety. The most important advantages of such 
biological supplements are their easy utilization or easy excretion by 
animals/humans and the absence of any toxic effects. Biological 
supplements such as target natural antioxidants, have been reported 
to be  very effective and safe in postharvest fungal control and 
suppression of production of PAT, AFs and OTA. Therefore, some 
emerging bioactive supplements receive a great attention from the 
commercial feed industry, because of providing a safe control of 
mycotoxin content or decreasing mycotoxin bioavailability. However, 
finding high-performance strains, which could simultaneously absorb 
or biodegrade multiple mycotoxins will be  an important task for 
future research.

Herbs or herbal extracts (using polar solvents for extraction) from 
T. cordifolia, Gl. glabra, W. somnifera, S. marianum and/or Silymarin 
or natural plants such as turmeric powder, could also serve as good 
protectors, together with some natural mycotoxin-binders, and could 
decrease deleterious effects of mycotoxins, providing a better 
utilization of mycotoxin-contaminated fodder and a higher weight 
gain or eggs production of mycotoxin-exposed commercial poults or 
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animals. The possible economic loss from scrapping of mycotoxin 
containing fodder or from loss of body weight of animals or poultry 
could be safely avoided only with minimal costs for purchasing the 
herbs or herbal products. In this regard, some additional studies and 
efforts are required for possible introduction of such a protection in 
large scale use in the real practice, ensuring a safe utilization of 
mycotoxin-contaminated feedstuffs.

Moreover, natural bioactive substances in plant extracts or 
volatiles (e.g., some phenolic compounds, polyphenols, flavonoids, 
silymarin or carotenoids) may also act as antifungal agents and are 
found to be  very effective against fungal growth in fruits at 
postharvest time and their application for such a purpose is 
absolutely safe. Such compounds are found to suppress strongly the 
fungal growth of A. flavus and AFs contamination of fodder, and 
could be also used in the practice. Therefore, any kind of knowledge 
about the metabolism and the intimate mechanisms of 
detoxification or excretion of each kind of mycotoxin in each kind 
of animals or poults is very valuable for providing a safe utilization 
of mycotoxin containing fodder without increasing the 
health hazard.
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