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UPLC-ESI-MS/MS-based widely 
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The Chinese name “Lingzhi” refers to Ganoderma genus, which are increasingly 
used in the food and medical industries. Ganoderma species are often used 
interchangeably since the differences in their composition are not known. 
To find compositional metabolite differences among Ganoderma species, 
we conducted a widely targeted metabolomics analysis of four commonly used 
edible and medicinal Ganoderma species based on ultra performance liquid 
chromatography-electrospray ionization-tandem mass spectrometry. Through 
pairwise comparisons, we  identified 575–764 significant differential metabolites 
among the species, most of which exhibited large fold differences. We screened 
and analyzed the composition and functionality of the advantageous metabolites 
in each species. Ganoderma lingzhi advantageous metabolites were mostly related 
to amino acids and derivatives, as well as terpenes, G. sinense to terpenes, and G. 
leucocontextum and G. tsugae to nucleotides and derivatives, alkaloids, and lipids. 
Network pharmacological analysis showed that SRC, GAPDH, TNF, and AKT1 were 
the key targets of high-degree advantage metabolites among the four Ganoderma 
species. Analysis of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes 
demonstrated that the advantage metabolites in the four Ganoderma species may 
regulate and participate in signaling pathways associated with diverse cancers, 
Alzheimer’s disease, and diabetes. Our findings contribute to more targeted 
development of Ganoderma products in the food and medical industries.

KEYWORDS

widely targeted metabolomics, Ganoderma, Ganoderma lingzhi, Ganoderma sinense, 
Ganoderma leucocontextum, Ganoderma tsugae

1 Introduction

“Lingzhi” is the Chinese term for a certain type of edible and medicinal fungi with a long 
history, generally including Ganoderma lingzhi, Ganoderma sinense, Ganoderma tsugae, and 
Ganoderma leucocontextum (1–3). Ganoderma contains a diverse range of bioactive 
compounds, including polysaccharides, triterpenoids, polyphenols, nucleotides, amino acids, 
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alkaloids, and vitamins (4–6). These active compounds exert 
remarkable pharmacological effects and are therefore intensively 
researched and widely applied in the medical field (7). The 
pharmacological properties of Ganoderma have been demonstrated 
in clinical trials and therapeutic applications, encompassing its 
anticancer, antioxidant, immunomodulatory, hypoglycemic, 
cardioprotective, anti-inflammatory, antiviral, and neuroprotective 
effects (8–11).

Ganoderma is also highly favored in the food industry (12). For 
thousands of years, it has been utilized as a health-promoting food 
supplement renowned for its properties of relaxation, mental clarity, 
and physical well-being (13, 14). Currently, Ganoderma is primarily 
marketed in health products and nutritional supplements, such as teas, 
alcoholic beverages, beverages, capsules, oral solutions (12, 14). 
Ganoderma and derived products represent a multibillion-dollar 
industry worldwide (15). Thus, Ganoderma has great potential in the 
food and medical industries.

However, there remain some prominent and challenging issues 
in the development of the Ganoderma industry. The most significant 
issue is that it is currently uncertain whether there are differences 
in the composition and contents of active components among 
different species. If so, it may be  possible to develop different 
Ganoderma products based on the advantages of each species in 
future, which would be  of great importance for the further 
development of Ganoderma for the food and medical industries. 
Widely targeted metabolomics tools are suitable for addressing the 
aforementioned issues as they offer high throughput, high 
sensitivity, and high qualitative accuracy, and comprehensive 
databases are available (16).

In this study, we  collected samples of the four commonly 
cultivated Ganoderma species: G. lingzhi, G. sinense, G. tsugae, and 
G. leucocontextum (17). We analyzed the composition of the active 
components in each species and identified significantly differential 
metabolites using widely targeted metabolomics based on ultra 
performance liquid chromatography-electrospray ionization-tandem 
mass spectrometry (UPLC-ESI-MS/MS). The research findings are 
beneficial for the development of Ganoderma in the food and 
medical industries.

2 Materials and methods

2.1 Sampling and sample extraction

The abbreviations used for the fungal species in this manuscript 
and the production areas of the four Ganoderma species are presented 
in Table 1. The fruiting bodies of all Ganoderma species are harvested 
upon reaching maturity through artificial cultivation. The criteria for 

determining Ganoderma fruiting body maturity are disappearance of 
the white growth ring of the fungus cap, cessation of expansion of the 
fungus cap and continuous thickening, and browning of the edge of 
the fungus cap (24, 25). Three replicate samples (1 g) from fungal caps 
were collected for each species. Using vacuum freeze-drying 
technology, place the biological samples in a lyophilizer (Scientz-
100F), then grinding (30 Hz, 1.5 min) the samples to powder form by 
using a grinder (MM 400, Retsch). Next, weigh 50 mg of sample 
powder using an electronic balance (MS105DM) and add 1200 μL of 
−20°C pre-cooled 70% methanolic aqueous internal standard extract 
(less than 50 mg added at the rate of 1200 μL extractant per 50 mg 
sample). Vortex once every 30 min for 30 sec, for a total of 6 times. 
After centrifugation (rotation speed 12000 rpm, 3 min), the 
supernatant was aspirated, and the sample was filtered through a 
microporous membrane (0.22 μm pore size) and stored in the 
injection vial for UPLC-MS/MS analysis.

2.2 UPLC conditions

The sample extracts were analyzed using an UPLC-ESI-MS/MS 
system (UPLC, ExionLC™ AD, https://sciex.com.cn/; MS, Applied 
Biosystems 6,500 Q TRAP, https://sciex.com.cn/). The analytical 
column was Agilent SB-C18 (1.8 μm, 2.1 mm × 100 mm), and the 
mobile phase comprised solvent A, pure water with 0.1% formic acid, 
and solvent B, acetonitrile with 0.1% formic acid. Sample 
measurements were performed with a gradient program comprising 
95% A, 5% B, linear gradient to 5% A and 95% B within 9 min, 5% A 
and 95% B for 1 min, 95% A and 5.0% B within 1.1 min and kept for 
2.9 min. The flow rate was 0.35 mL/min, column oven temperature 
was 40°C, and the injection volume was 2 μL. The effluent was 
alternatively connected to an ESI-triple quadrupole (QQQ)-linear ion 
trap (QTRAP)-MS.

2.3 ESI-q trap-MS/MS

The ESI source operation parameters were as follows: source 
temperature, 500°C; ion spray voltage (IS), 5,500 V (positive ion 
mode)/−4,500 V (negative ion mode); ion source gas I (GSI), gas II 
(GSII), curtain gas were 50, 60, and 25 psi, respectively; and collision-
activated dissociation, high. QQQ scans were acquired under multiple 
reaction monitoring (MRM), with collision gas (nitrogen) set to 
medium. Declustering potential (DP) and collision energy (CE) 
analyses for individual MRM transitions were performed, with further 
DP and CE optimization. A specific set of MRM transitions was 
monitored for each period according to the metabolites eluted within 
this period.

TABLE 1 Sample details of the four Ganoderma species.

Sample 
abbreviation

Species name Production area Host plant

Gl Ganoderma lingzhi
Changbai Mountain, Jilin province, 

China

Castanea, Cyclobalanopsis and Quercus (18)

Gs Ganoderma sinense Albizia mollis, Quercus sp., Dendrocalamus strictus and Dipterocarpus sp. (19, 20)

Gt Ganoderma tsugae Larix sp., Picea sp. and Tsuga sp. (20–22)

Gz Ganoderma leucocontextum Linzhi City, Tibet province, China Cyclobalanopsis glauca (20, 23)
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2.4 Qualitative and quantitative analyses of 
metabolites

Crucial MS parameters, such as DP, CE, retention time (RT), Q1 
(precursor ion), and Q3 (product ion), were used to identify 
metabolites from the Metware database (Wuhan Metware 
Biotechnology Co., Ltd.). After identifying the compounds, 
we  conducted a comparative analysis against the database and 
classified them into Class I and Class II based on their structural 
characteristics. Class I  represents the primary classification of 
compounds, while Class II provides a more detailed categorization of 
metabolites in Class I. Metabolites were quantified using the MRM 
mode for mass spectrum peaks of metabolites.

2.5 Reconstruction and analysis of 
protein–protein interaction networks

The canonical SMILES of Ganoderma metabolites were retrieved 
from the PubChem and NPASS databases. Subsequently, protein targets 
for each compound were predicted using SwissTargetPrediction, with 
a restriction to Homo sapiens. The identified targets of each dominant 
Ganoderma metabolite were merged, and duplicates were eliminated. 
PPI networks for all targets were predicted using information provided 
by the STRING database, with target genes restricted to “Homo sapiens” 
genetic symbols and saved as tsv files. The tsv files were visualized in 
Cytoscape v3.9.1 to depict the PPI network. To identify the key targets, 
we conducted target screening within the PPI network of all targets. The 
screening criteria were as follows: key targets were determined based 
on a degree value greater than twice the median, and betweenness 
centrality, and closeness centrality values exceeding the median. The 
selected key targets were subsequently visualized using STRING and 
Cytoscape v3.9.1, leading to the construction of a PPI network for each 
key target of each Ganoderma metabolite.

2.6 Gene ontology functional annotation 
and Kyoto encyclopedia of genes and 
genomes pathway analysis

To elucidate the biological processes and signaling transduction 
roles of key target proteins, we employed the ClueGO tool (a Cytoscape 
plug-in) for GO functional annotation and KEGG pathway analysis. 
The analysis was performed by inputting a list of human target gene 
names. The pathways wherein genes were located were filtered, 
retaining only GO items with p values <0.01, while ensuring that each 
pathway contains more than 20 genes and has a ratio higher than 20%. 
The top 20 pathways were selected based on their ratio, and a bubble 
plot visualization was generated using the ggplot2 package in R.1

2.7 Statistical analysis

Unsupervised principal component analysis (PCA) was 
performed using the statistics function prcomp in R. The data were 

1 www.r-project.org

unit variance-scaled before unsupervised PCA. Pearson correlation 
coefficients between two samples were calculated using the cor 
function in R and the data are presented as heatmaps. In differential 
metabolite analysis, differential metabolites between two groups were 
determined based on a value importance plot (VIP) value >1 and 
|Log2fold change (FC)| ≥ 1.0. VIP values were extracted from 
orthogonal projections to latent structures-discriminant analysis 
(OPLS-DA) results, which also contain score plots and permutation 
plots, generated using the R package MetaboAnalystR. The data were 
log-transformed and mean-centered before OPLS-DA. To avoid 
overfitting, a permutation test (200 permutations) was used.

3 Results and discussion

3.1 Metabolite composition of the four 
Ganoderma species

Widely targeted metabolomics analysis revealed the presence of 
1,187 metabolites in the Gl, Gs, Gz, and Gt samples. All detected 
metabolites were categorized into 11 classes under Class I: amino acids 
and derivatives (387), lipids (140), alkaloids (119), organic acids (110), 
others (110), phenolic acids (92), terpenoids (91), nucleotides and 
derivatives (84), flavonoids (36), lignans and coumarins (10), and 
quinones (8). Polysaccharides and triterpenoids have been the focus of 
research on the pharmacological activities of Ganoderma (26, 27). The 
fruiting body is the most important pharmacological part of Ganoderma. 
Xie et al. (6) demonstrated that the fruiting body exhibited the highest 
abundance of metabolites compared to the fermentation broth, 
mycelium, and spores of G. lucidum. Additionally, most triterpenoids 
were exclusively detected in the fruiting body, thereby establishing the 
fruiting body as a more promising candidate for the development of 
anti-tumor and anti-AIDS drugs (6). However, the chemical composition 
of Ganoderma is remarkably complex, and efforts are underway to 
broaden the research scope of its pharmacological constituents (28, 29). 
We found that amino acids and their derivatives were the most abundant 
metabolites in each Ganoderma species, providing new insights for the 
development of Ganoderma products. Amino acids and derivatives play 
diverse specific physiological roles in human life activities, and derived 
products represent an established market globally (30–32). Our findings 
indicate that Ganoderma is suitable for developing amino acid-based 
health products, such as nutritional supplements and beverages. In 
addition, Ganoderma is rich in other functional components such as 
alkaloids and organic acids, but research on their composition and 
functionality is limited. Based on the detected metabolites, we analyzed 
the metabolite composition of each Ganoderma species.

3.2 Differential metabolite composition of 
each Ganoderma species

The upset Venn diagram in Figure  1 shows the numbers of 
metabolites in each species. We detected a total of 1,187 metabolites, 
including 1,117 common metabolites, in all four species, with Gt 
having the widest variety of metabolites (1,174), followed by Gl (1,169), 
Gz (1,162), and Gs (1,155). Thus, there were only minor differences in 
metabolite variety among the four Ganoderma species were.

The pie chart in Figure 2 shows the numbers of metabolites in 
the different categories in each Ganoderma species. Among all 
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species, Gz was the most abundant in amino acids and derivatives, 
Gl in lipids, and Gt in alkaloids and terpenoids. Differences in the 
numbers of metabolites in other categories were relatively small (≤3).

The interrelationships in metabolite composition among all 
Ganoderma species were investigated using PCA (Figure 3). PC1 and 
PC2 contributed 35.73 and 23.46%, respectively, of the metabolic 
variation among all species. The central sample Qc was a mixture of 
equal amounts of all samples and served as a quality control. The three 
samples from each Ganoderma species clustered closely together, 
indicating good reproducibility of the triplicate measurements. The 
distance between Gz and Gs was short, whereas Gl and Gt were 
clustered further away from the other species. These findings indicated 
significant differences in metabolite composition among the different 
Ganoderma species.

3.3 Selection and analysis of advantageous 
metabolites in each Ganoderma species

3.3.1 OPLS-DA
To maximize the differentiation among groups and screen differential 

metabolites, an OPLS-DA model was established using multidimensional 
statistics (33). The results indicated that differential metabolites could 
be screened based on VIP values (Supplementary Figure S1).

3.3.2 Differential metabolite analysis among the 
four Ganoderma species

The volcano plots in Figure 4 show the numbers of differential 
metabolites (both significantly and insignificantly) in pairwise 

comparisons of all Ganoderma species. There most significantly 
differential metabolites (764) were found between Gs and Gt, and the 
least (565) between Gl and Gt (Table 2). The metabolites that were 
significantly more abundant in one species than in the other three 
were regarded advantageous metabolites and are represented in an 
upset Venn diagram (Figure  5). According to the numbers of 
advantageous metabolites, the species were ranked in the following 
order: Gl (179) > Gt (160) > Gz (129) > Gs (37).

3.3.3 FCs in advantageous metabolites among 
Ganoderma species

FCs represent differences in the relative abundance of metabolites. 
We statistically analyzed the FC of advantageous metabolites to evaluate 
their level of dominance (Figure  6). In general, the majority of 
advantageous metabolites in Gl and Gz were found in the larger FC 
range, whereas the majority of predominant metabolites in Gt and Gs 
showed smaller FCs. The advantageous metabolites with FC > 1,000 are 
listed in Supplementary Table S1. Most of these metabolites were unique 
to one species, as observed in pairwise comparisons. Some metabolites, 
e.g., terpenoids in Gs, exhibited a FC > 1,000-fold between two species.

3.4 Composition of advantageous 
metabolites of different categories among 
all Ganoderma species

Advantageous metabolites reflect the characteristics in which 
one Ganoderma species excels over the others. Therefore, we will 
discuss the advantageous metabolites of each species based on the 

FIGURE 1

Upset Venn plots of metabolite numbers in the four Ganoderma species.
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classifications of the compounds. The pie charts in 
Supplementary Figures S2, S3 show the composition of 
advantageous metabolites in Classes I and II of each species.

Within Class I, the most advantageous metabolites in all species 
were amino acids and derivatives. According to the numbers of amino 
acids and derivatives among advantageous metabolites, the species 

FIGURE 2

Pie chart of classification of metabolites in each Ganoderma species.

FIGURE 3

PCA score plot for the four Ganoderma species.
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were ranked in the following order: Gz (98) > Gl (71) > Gt (46) > Gs 
(15). Combining the results of Section 3.1 with these findings on 
dominant metabolites, it can be concluded that Gz is the most suitable 
among all Ganoderma species for developing amino acid products. 
Lipids were also found to be abundant in Ganoderma. According to 

the numbers of lipids, the species were ranked as follows: Gl (35) > Gt 
(33) > Gs (4) > Gz (1). The major lipids in Gl were comprised 
lysophosphatidylethanolamine and lysophosphatidylcholine, whereas 
those in Gt were mainly free fatty acids. Some fatty acids are essential 
because they cannot be synthesized by the human body. For instance, 

FIGURE 4

Volcano plots of the differential metabolites in the four Ganoderma species. (A) Gl vs. Gs; (B) Gl vs. Gt; (C) Gl vs. Gz; (D) Gs vs. Gt; (E) Gz vs. Gs; (F) Gz vs. Gt.

TABLE 2 Numbers of significant and non-significant differential metabolites among the four Ganoderma species.

Group name Significant Down regulated Up regulated Insignificant

Gl vs. Gs 699 522 177 488

Gl vs. Gt 565 268 297 619

Gl vs. Gz 654 398 256 532

Gs vs. Gt 764 170 594 420

Gz vs. Gs 577 432 145 599

Gz vs. Gt 688 259 429 499
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α-linolenic acid identified in this study has antithrombotic functions 
and is associated with reduced mortality rates of cardiovascular 
diseases and cancer (34, 35).

Terpenoids are considered one of the most important chemical 
compounds in Ganoderma (26, 36). According to the numbers of 
terpenoids among advantageous metabolites, the species were ranked 
as follows: Gs (9) = Gz (9) > Gt (2) > Gl (0). The contents of many 
terpenoids (91 in total) were relatively similar among all Ganoderma 
species; however, Gs and Gz were more abundant in advantageous 
terpenoids than the other species. Nearly all terpenoids found in 
Ganoderma have been demonstrated to possess beneficial 
physiological activities, such as anticancer and antioxidant properties 
(26, 36, 37). However, when we attempted to extract a large quantity 
of a specific terpenoid, we were unable to determine which species 
contains the highest amount and allows the highest extraction 
efficiency. Therefore, we presented the advantageous terpenoids in 
Supplementary Table S2 to facilitate better utilization of the terpenoids 
from each species.

Alkaloids are important chemical components of Ganoderma. 
Several studies have demonstrated that alkaloids in various 
Ganoderma products have remarkable health-promoting functions, 
including neuroprotection, renal protection, and anticancer effects 

(29, 38, 39). In total, 119 different alkaloids were identified in the four 
Ganoderma species, which calls for further research and development. 
According to the numbers of advantageous alkaloids among 
advantageous metabolites, the species were ranked as follows: Gl 
(20) > Gt (19) > Gz (5) > Gs (2). According to the pie chart in 
Supplementary Figure S2, Gl and Gt are more abundant in alkaloids 
than the other species. Compared to Gl, Gt has a wider variety of 
advantageous alkaloids. In addition to plumerane, which is also 
present in Gl, Gt contains pyridine alkaloids, pyrrole alkaloids, 
quinoline alkaloids, and piperidine alkaloids, which are absent in Gl. 
The alkaloids among the advantageous metabolites of all Ganoderma 
species are listed in Supplementary Table S2. N-Oleoylethanolamine 
exhibits weight-reducing and anti-atherosclerotic effects and is 
employed for the treatment of cardiovascular and metabolic disorders 
(40–42). O-Acetyl-l-carnitine functions in neuroprotection and the 
protection of brain development (43–45). Agmatine contributes to the 
regulation of glucose and lipid metabolism and has antidepressant, 
anticonvulsant, and neuroprotective effects (46, 47).

Nucleotides and derivatives are another important component of 
Ganoderma and derived health products; they exhibit pharmacological 
activities and health-promoting functions such as lipid-lowering 
effects (48–51). We identified 84 nucleotides and derivatives in the 

FIGURE 5

Upset Venn diagrams of metabolites specifically enriched in each of the four Ganoderma species.
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four Ganoderma species. According to the numbers of nucleotides and 
derivatives among advantageous metabolites, the species were ranked 
as follows: Gt (17) > Gl (14) > Gz (2) > Gs (0). The nucleotides and 
derivatives among advantageous metabolites of all Ganoderma species 
are listed in Supplementary Table S2. Vidarabine exhibits potent 
antiviral activity and is widely used as an anti-herpesvirus agent (52). 
Citicoline exerts neuroprotective effects and has anticonvulsant 
properties (53, 54). β-Nicotinamide mononucleotide possesses anti-
aging properties (55, 56). Acadesine possesses antitumor activities in 
several cancer types (57, 58).

Flavonoids, phenolic acids, and organic acids among advantageous 
metabolites of four Ganoderma species are listed in 
Supplementary Table S2. Flavonoids are a research focus in 
Ganoderma studies and exhibit antioxidant and anti-inflammatory 
effects and cytotoxicity against cancer cells (59–62). Xanthohumol 
possesses antitumor activities and antiarrhythmic properties (63, 64). 
2′,7-Dihydroxy-3′,4′-dimethoxyisoflavan possesses anti-inflammatory 
activity (65). The organic acid γ-aminobutyric acid improves sleep and 
reduces blood pressure (66–68). Shikimic acid has diverse biological 
activities and serves as an intermediate in the synthesis of anticancer 
drugs (69). The phenolic acids protocatechualdehyde, (E)-ethyl 
p-methoxycinnamate, and picein exhibit anticancer, anti-
inflammatory, and antioxidant effects (70–73).

3.5 Network pharmacology analysis

3.5.1 PPI networks of key targets from the four 
Ganoderma species

PPI networks of key targets were constructed for advantageous 
metabolites of all Ganoderma species (Figure  7 and 

Supplementary Table S3). In each PPI network, SRC, GAPDH, TNF, 
and AKT1 were among the top five highest-degree targets. SRC is 
associated with increased tumor progression, invasion, and metastasis 
in many cancers (74, 75). TNF plays a crucial role in cancer treatment 
and autoimmunity (76, 77), while AKT1 is linked to breast cancer and 
ovarian cancer (78, 79). Despite differences in the advantageous 
metabolites from the four Ganoderma species, their mechanisms of 
tumor suppression are closely related to these targets.

The third highest-degree target of TP53 was identified in Gz and 
Gt, but not in Gl and Gs. TP53 functions as a crucial tumor suppressor, 
with its mutations being frequently observed in various malignant 
neoplasms (80, 81). This observation implies that the tumor-
suppressive mechanisms of metabolites in Gz and Gt may exhibit 
greater prominence in regulating TP53 than those of metabolites in 
Gl and Gs. Albumin (ALB) exhibited a high degree in the PPI 
networks of Gl, Gs, and Gt. ALB is primarily synthesized by the liver 
in humans and serves as the predominant plasma protein (82). 
Extensive research has demonstrated that ALB functions as a tumor 
suppressor and plays a crucial role in hepatocellular carcinoma 
metastasis and invasion (83).

3.5.2 KEGG pathway and GO annotation analyses
GO and KEGG pathways were enriched and visualized by Cluego 

software (Figure 8). Among the top 20 pathways identified in the four 
Ganoderma species, several cancer-related pathways were prominently 
observed, including prostate cancer, non-small cell lung cancer, 
colorectal cancer, small cell lung cancer, pancreatic cancer, bladder 
cancer, and endometrial cancer. The advantageous metabolites of the 
four Ganoderma species exhibited a strong correlation with diverse 
cancer pathways, underscoring their potential as promising 
therapeutic agents. We also observed that some of the top 20 pathways 

FIGURE 6

Number of advantage metabolites of each Ganoderma species in different FC intervals.
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were only found in certain species of Ganoderma, including cocaine 
addiction and B cell receptor signaling pathway in Gl; TNF signaling 
pathway, positive regulation of smooth muscle cell proliferation, IL-17 
signaling pathway, C-type lectin receptor signaling pathway, pertussis, 
and neuroinflammatory response in Gs; and renal cell carcinoma in 
Gz. The findings facilitate a more precise investigation into the 
therapeutic pathways of different Ganoderma species.

The bubble plot was utilized to compare the number and ratio of 
genes in the pathways (Figure 9). Prostate cancer accounted for the 
highest ratio in all Gl and Gt pathways, reaching more than 44%. The 
proteasome exhibited a high ratio in both the Gz and Gt pathways. The 
response to amyloid-beta in the top 20 pathways of the four Ganoderma 
species exhibited a relatively high ratio. The neurotoxicity of amyloid-
beta and its strong correlation with Alzheimer’s disease have been 
consistently demonstrated in recent studies (84, 85). Therefore, the 
neuroprotective effects of the four Ganoderma species may primarily 
be attributed to their modulation of the amyloid-beta pathway. Similar 
findings have also been corroborated in pharmacological analyses and 
validation studies involving G. lucidum (86, 87). The AGE-RAGE 
signaling pathway in diabetic complications had a high ratio in the four 
Ganoderma species. AGE-RAGE plays a crucial role in the development 
of diabetic complications, such as kidney disease and cardiovascular 
disease (88). Recent advancements in network pharmacological 
analysis and animal experiments have demonstrated that certain 

natural remedies, such as Radix Rehmanniae and Corni Fructus, can 
effectively regulate this pathway to combat diabetic complications (89); 
however, limited research has been conducted on Ganoderma.

4 Conclusion

We conducted a widely targeted metabolomics analysis of four 
Ganoderma species commonly used in the food and medical 
industries. The results indicate that although there are differences in 
the variety of metabolites among the four Ganoderma species, these 
differences are relatively small. However, there are significant 
differences in the content of metabolites among the four Ganoderma 
species. The relative amounts of many metabolites in different species 
of Ganoderma vary significantly by hundreds or even thousands of 
times. Therefore, even if the metabolite compositions of these four 
species of Ganoderma are similar, it is imperative to determine the 
difference in dosage when using them interchangeably. To achieve a 
more targeted application of Ganoderma in the medical and food 
fields and to facilitate further development and research of each 
Ganoderma species, we  identified and discussed advantageous 
metabolites that are significantly more abundant in one Ganoderma 
species than in the others. Among the four Ganoderma species, Gz is 
the most suitable for the development of amino acid-based products. 

FIGURE 7

PPI networks of key targets from four Ganoderma species. The degree of the target increases proportionally with the darkness of the color and the size 
of the font.
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FIGURE 8

The top 20 pathway annotations in the ratio are presented by ClueGO.

FIGURE 9

The bubble plot of the top 20 pathway from four Ganoderma.
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Gs and Gz are richer in terpenes, whereas Gl and Gt are more 
abundant in nucleotides and derivatives, alkaloids, and lipids than the 
other species. Network pharmacological analysis showed that the 
top 5 targets with high degree were similar, although the compositions 
of dominant metabolites in the four Ganoderma species were different. 
Simultaneously, certain discrepancies were also observed. For 
instance, among the highly correlated targets, TP53 was exclusively 
present in Gz and Gt, while ALB appeared in only Gl, Gs, and Gt. 
These variations may reflect the specificity of different Ganoderma 
species in targeting disease-related pathways. Furthermore, KEGG 
and GO analyses demonstrated that the advantageous metabolites of 
the four Ganoderma species have potential regulatory effects on 
various pathways associated with cancer, Alzheimer’s disease, and 
diabetes complications, among others. However, each Ganoderma 
species also displayed unique and significantly enriched pathways. The 
findings necessitate further comprehensive exploration and validation 
to facilitate the targeted utilization of diverse metabolites from 
Ganoderma. In the future, we should determine the absolute content 
of the advantageous metabolites of the four types of Ganoderma to 
determine their utilization value. At the same time, we should also 
study the thermal stability of the active ingredients in Ganoderma and 
explore the temperature range required to maintain their biological 
activity in daily processing.
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