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Background: Though considerable studies suggesting connections between 
micronutrients and pregnancy complications, current evidence remains 
inconsistent and lacks causative confirmation. Our study aimed to explore the 
causal links between them with a two-sample Mendelian randomization (MR) 
analysis.

Methods: Genome-wide association studies (GWAS) data for circulating 
micronutrients were sourced from GWAS Catalog consortium and PubMed, 
while data for pregnancy outcomes, including gestational diabetes mellitus 
(GDM), gestational hypertension (GH), spontaneous abortion (SA), preterm 
birth (PTB), and stillbirth (SB), were retrieved from the UK Biobank and FinnGen 
consortia. Causal effects were appraised using inverse variance weighted (IVW), 
weighted median (WM), and MR-Egger, followed by sensitivity analyses and 
meta-analysis for validation.

Results: Genetically predicted higher vitamin E (OR  =  0.993, 95% CI 0.987–0.998; 
p  =  0.005) levels were inversely associated with SA risk. Consistent results were 
obtained in meta-analysis (OR  =  0.99, 95% CI 0.99–1.00; p  =  0.005). Besides, a 
potential positive causality between genetic predisposition to vitamin B12 and 
SB was identified in both IVW (OR  =  0.974, 95% CI 0.953–0.996; p  =  0.018) and 
WM analysis (OR  =  0.965, 95% CI 0.939–0.993; p  =  0.013). However, no causal 
relationships were observed between other analyzed circulating micronutrients 
and pregnancy complications.

Conclusion: This study offers compelling evidence of causal associations 
between circulating levels of vitamins E, B12 and the risk of SA and SB, 
respectively. These findings are pivotal for pregnancy complications screening 
and prevention, potentially guiding clinical practice and public health policies 
toward targeted nutritional interventions.
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1 Introduction

Gestational diabetes mellitus (GDM), gestational hypertension 
(GH), miscarriage, preterm birth (PTB), and stillbirth (SB) are 
prevalent complications encountered during pregnancy. GDM is 
notably the most common, affecting approximately 16.7% of live births 
(1). GH, which impacts 2–8% of pregnancies worldwide, is a primary 
cause of maternal and perinatal mortality (2). The incidence rates of 
miscarriage and preterm labor are reported to be 10.8% and 5–18%, 
respectively (3, 4). It is estimated that over 7,000 women globally 
experience stillbirth daily (5). As a result, pregnancy complications 
represent a substantial challenge to global maternal and neonatal 
health, highlighting the importance of early screening and prevention.

Although the precise cause of pregnancy complications remains 
elusive, a growing body of observational studies suggests that 
micronutrients, especially minerals and vitamins, might play a role in 
their onset (6–9). However, existing literature on the relationship 
between micronutrients and pregnancy complications provides mixed 
results, complicating the development of clear nutrient 
supplementation guidelines. For instance, a meta-analysis found that 
vitamin B12 deficiency was associated with an increased risk of PTB 
(10), but a randomization controlled trial (RCT) revealed no 
significant clinical benefit from multivitamin supplementation (7). 
Large cohort studies have indicated that increased folate intake from 
supplements is associated with a decreased risk of spontaneous 
abortion (SA) (11). In contrast, another prospective cohort study 
found vitamins had limited impact on the risk of early pregnancy loss 
or birth weight (12). These varying findings might be attributed to 
intrinsic limitations of observational studies, such as reverse causality 
and confounders, or to challenges in RCTs, such as adherence, dosage, 
trial duration, and statistical power. Thus, the definitive role of 
micronutrients in pregnancy complications remains to be determined.

Mendelian randomization (MR) has emerged as a method to infer 
causal associations between risk factors and health outcomes (13). 
Using the random assignment of genetic variants during meiosis, MR 
employs these genetic variations as instrumental variables (IVs) to 
explore associations between exposures and outcomes (14). As these 
genetic markers are predetermined at conception, prior to disease 
onset, MR analyses can effectively eliminate confounding variables 
and pinpoint causal factors (15).

Given the current uncertainty surrounding the causal relationships 
between micronutrients and pregnancy complications, our study utilized 
genome-wide association study (GWAS) data. The aim was to thoroughly 
investigate these potential causalities using a two-sample MR framework, 
supplemented by replication and meta-analyses to enhance the reliability 
of the MR estimates. Findings from this work would provide reliable 
evidence contributing to the development of strategies for pregnancy 
complications screening and preventions in clinical practice.

2 Materials and methods

This Mendelian randomization (MR) analysis utilized previously 
published GWAS summary statistics. All referenced data sources 
secured participant informed consent and acquired the necessary 
ethical approval. This study adhered to the Strengthening the 
Reporting of Observational Studies in Epidemiology Using Mendelian 
Randomization (STROBE-MR) reporting guideline (16).

2.1 Study design

We systematically examined the potential causal relationships 
between circulating minerals, vitamins, and the risk of pregnancy 
complications using a two-sample MR design. A robust MR design 
should meet three core assumptions: (1) genetic instruments exhibit 
strong associations with exposures; (2) genetic instruments have no 
associations with confounding variables; (3) genetic instruments 
influence outcomes only through the exposures of interest (17). The 
latter two assumptions are collectively termed the independence from 
horizontal pleiotropy and can be evaluated using various sensitivity 
analyses (18), such as Cochran’s Q statistic, MR-Egger intercept tests. 
Genetic data for pregnancy complications were sourced from the UK 
Biobank (UKB) and FinnGen consortia for primary and replication 
analyses. Subsequently, a meta-analysis was performed. Figure  1 
provided an overview of the study. All statistical analyses were 
performed utilizing the TwoSampleMR package (Version 0.5.7) and 
MRPRESSO (Version 1.0) in R (Version 4.2.2), and the Reviewer 
Manager software (Version 5.3.3).

2.2 GWAS data for circulating minerals and 
vitamins

Given the prevalent use of Elevit as a nutrient supplement 
before and during pregnancy in Chinese clinics, we  selected 
micronutrients based on Elevit’s composition to ascertain their 
direct causal effects on pregnancy complications. As the lack of 
GWAS data derived from Chinese or Asian ancestry, we undertook 
a comprehensive search of the most recent GWASs conducted on 
European populations, focusing on circulating minerals and 
vitamins. This search spanned the GWAS Catalog consortium and 
PubMed database. Subsequently, 14 exposures were identified: 
calcium (19), phosphorus (20), magnesium (19), iron (19, 21), zinc 
(21), copper (21), vitamin A (19), B6 (19), B12 (19), C (22), D (19), 
E (23), nicotinamide (23), and folate (19). Participants in the above 
GWAS studies were recruited mainly from United  States, 
Netherlands, Australia, TwinsUK cohort, Germany, and Canada. 
This suggests that there may be  no or merely minimal sample 
overlap with the outcome data of our study. Detailed information, 
such as recruitment criteria of population and quality control of 
genetic data, can be  found in the original paper (Table  1). 
Unfortunately, no available GWASs were found for vitamins B1, B2, 
D3, biotin, and calcium pantothenate, hence they were excluded 
from this study. Although gender-stratified data was accessible from 
the UKB, it was not incorporated to prevent overlap of 
study samples.

Abbreviations: GDM, Gestational diabetes mellitus; GH, Gestational hypertension; 

SA, Spontaneous abortion; PTB, Preterm birth; SB, Still birth; GWAS, Genome-wide 

association study; MR, Mendelian randomization; RCTs, Randomization controlled 

trials; IVW, Inverse variance weighted; WM, Weighted median; LOO, Leave-one-out; 

OR, Odd ratio; CI, Confidential interval.
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FIGURE 1

Overflow of the current Mendelian randomization (MR) study. SNPs, single nucleotide polymorphisms; LD, linkage disequilibrium.

TABLE 1 Details of the GWASs included in the Mendelian randomization.

Traits SNPs Consortium Participants 
case/control

Ancestry PMID

Exposure Calcium 8 GWAS Catalog 62,143 European 33441150

Phosphorus 4 16,264 20558539

Magnesium 2 20,707 33441150

Iron 2 15,335 33441150

Zinc 2 2,603 23720494

Copper 2 2,603 23720494

Vitamin A 12 2007 33441150

Vitamin B6 14 1758 33441150

Vitamin B12 5 19,415 33441150

Vitamin C 13 7,824 24816252

Vitamin D 2 18,315 33441150

Vitamin E 1 8,192 36635386

Nicotinamide 21 8,110 36635386

Folate 11 5,998 33441150

Outcome Gestational diabetes 

mellitus

UK Biobank 691/5428 European

EuropeanFinnGen 13,039/197831

Gestational 

hypertension

UK Biobank 1474/192679 European

EuropeanFinnGen 14,727/196143

Spontaneous abortion UK Biobank 1150/193024 European

EuropeanFinnGen 16,906/149622

Preterm birth UK Biobank 194,174 European

EuropeanFinnGen 8507/162777

Stillbirth UK Biobank 60,453 European
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2.3 GWAS data for pregnancy 
complications

Five prevalent pregnancy complications: gestational diabetes 
mellitus (GDM), gestational hypertension (GH), spontaneous 
abortion (SA), preterm birth (PTB), and stillbirth (SB) were included 
as outcomes in this study (Table 1). Summary-level GWAS data from 
UK Biobank were used as discovery set in primary analysis, which 
were available at the website: http://www.nealelab.is/uk-biobank/. 
Additionally, GWAS data retrieved from the latest R9 release of the 
FinnGen consortium were used for replication (24). A GDM diagnosis 
was coded according to the ICD-9 (6480), ICD-10 (O24); a GH 
diagnosis was coded according to the ICD-8 (63701), ICD-9 (6423), 
ICD-10 (O13); a SA diagnosis was coded according to the ICD-8 
(643), ICD-9 (634), ICD-10 (O03); a PTB diagnosis was coded 
according to the ICD-8 (63497), ICD-9 (644), ICD-10 (O60). 
However, the FinnGen consortium lacked GWAS data for SB.

2.4 Instruments selection

We implemented a meticulous process to select suitable genetic 
variants linked to circulating minerals and vitamins. Initially, due to a 
scarcity of SNPs for vitamin A, B6, C, nicotinamide, and folate that 
reached genome-wide significance, we adopted a relaxed association 
threshold of p < 1 × 10−5, which was in accordance with the study of 
Chen et al. (25). For other micronutrients, a more stringent p < 5 × 10−8 
threshold was applied to identify the most independent SNPs. 
Clumping procedures were then applied using a linkage disequilibrium 
(LD) r2 of 0.001 and a window size of 10,000 kb. To mitigate bias from 
weak instruments, we calculated F statistics for each SNP, discarding 
those with an F < 10 to ensure a robust variance contribution for each 
nutrient (26, 27). Subsequently, we extracted the pertinent SNPs from 
the outcome datasets, excluding any with a direct association 
(p < 5 × 10−8). Harmonization followed, aligning exposure and 
outcome SNP alleles and removing palindromic SNPs with EAF > 0.42 
or SNPs with mismatched alleles.

2.5 Primary analysis

For exposures with more than three SNPs, a random-effect inverse 
variance weighted (IVW) method was applied as the primary analysis, 
targeting significant causal effects with p < 0.05. Supplementary 
methods, including weighted median (WM) and MR-Egger 
regression, were used to corroborate the IVW findings. WM provides 
consistent estimates under the condition that over half of the 
information is free from horizontal pleiotropy (28), while MR-Egger 
regression can detect unbalanced pleiotropy and heterogeneity, 
though requiring a larger sample size (29). For exposures with two 
SNP instruments, a fixed-effects IVW approach was adopted, and for 
single-SNP exposures, the Wald ratio method was implemented.

2.6 Sensitivity analysis

To ascertain the robustness of our findings, we engaged several 
methods: Cochran’s Q statistic, MR-Egger intercept tests, Mendelian 

Randomization Pleiotropy Residual Sum and Outlier (MR-PRESSO), 
funnel plots, and leave-one-out (LOO) analysis. These were designed 
to uncover any heterogeneity, pleiotropy, outliers, and to validate the 
consistency of the results. MR-PRESSO and LOO analyses were 
restricted to cases with three or more instrumental variants.

2.7 Replication and meta-analysis

We further replicated our MR analysis using independent GWAS 
data from the FinnGen consortium and performed meta-analysis to 
confirm the final results. However, due to the absence of GWAS data 
for SB in FinnGen, we  could not perform replication and meta-
analysis for the causal association between micronutrients and SB.

2.8 Confounding analysis

In addition to the comprehensive statistical methods employed in 
the sensitivity analysis to scrutinize potential MR assumption 
violations, we explored the association of exposure-related SNPs with 
common confounding risk factors via the Phenoscanner V2 platform.1 
SNPs associated with confounders at p < 1 × 10−5 were excluded to 
prevent any bias in the MR estimates.

3 Results

3.1 Screening of instruments

Following the instrument selection criteria, 8 SNPs of calcium, 4 
SNPs of phosphorus, 2 SNPs of magnesium, iron, zinc, copper, and 
vitamin D, 12 SNPs of vitamin A, 14 SNPs of vitamin B6, 5 SNPs of 
vitamin B12, 13 SNPs of vitamin C, 1 SNP of vitamin E, 21 SNPs of 
nicotinamide, and 11 SNPs of folate in circulating micronutrients were 
included in MR analysis. F statistics for SNPs after clumping were 
consistently above 10, indicating the absence of weak instruments in 
our study (Supplementary Table S1). Harmonized data for each 
outcome in discovery set and replication set are detailed in 
Supplementary Tables S2, S3.

3.2 MR estimates

In the vitamin E phenotype, Wald ratio analysis showed that 
genetically predicted elevated circulating vitamin E levels correlated 
with a decreased risk of SA in the discovery set (OR = 0.993, 95% CI 
0.987–0.998; p = 0.005) (Figure 2). Additionally, potential causality was 
observed between genetic predisposition for vitamin B12 and SB, as 
identified by both IVW (OR = 0.974, 95% CI 0.953–0.996; p = 0.018) 
and WM analyses (OR = 0.965, 95% CI 0.939–0.993; p = 0.013) 
(Figure 3). However, no causal relationships were observed between 
other analyzed circulating minerals or vitamins and pregnancy 
complications (Supplementary Tables S4, S5). Especially, no 

1 http://www.phenoscanner.medschl.cam.ac.uk/
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associations were identified between circulating folate levels and risks 
of SA (OR = 1.001, 95% CI 0.999–1.003; p = 0.473), PTB (OR = 1, 95% 
CI 1–1.001; p = 0.297), or SB (OR = 1.008, 95% CI 0.995–1.022; 
p = 0.235). Besides, none of the analyzed minerals or vitamins were 
found to play a causal role in the onset of GDM, GH, or PTB.

3.3 Sensitivity analyses

To validate our primary findings, we conducted several sensitivity 
analyses, including the Cochran’s Q test, MR-Egger intercept, and the 
MR-PRESSO global test. Notably, we could not conduct sensitivity 
analyses for genetically inferred vitamin E levels as only one SNP were 
included in MR analysis. No significant heterogeneity, pleiotropy, or 
outliers were identified in the association between vitamin B12 and 
SB (Q value = 3.007, p = 0.56; Intercept = −0.005, p = 0.36; MR-PRESSO 
p = 0.593). Besides, the LOO analysis further confirmed that no 
individual SNP heavily influenced the result (Supplementary Figure S5). 
The symmetry observed in the funnel plot (Supplementary Figure S8) 
also supported the integrity of our estimate. Comprehensive results 

from the sensitivity analyses can be  found in 
Supplementary Tables S4, S5, with the funnel plots, scatter plots, and 
LOO results illustrated in Supplementary Figures S1–S16.

3.4 Replication and meta-analysis

Since only 1 SNP for vitamin E was included in the MR analysis, 
we used the independent GWAS data from the FinnGen consortium 
for validation and performed a meta-analysis to further confirm our 
findings. We did not observe a causal relationship between vitamin E 
and SA in replication set (OR = 1.02, 95% CI 0.78–1.34; p = 0.860). 
However, a combined analysis of both datasets supported the causality 
(OR = 0.99, 95% CI 0.99–1.00; p = 0.005) (Figure 2). Unfortunately, 
publicly available GWAS data on SB were not found during the search 
and therefore, the causal association between vitamin B12 and SB 
could not be validated. Additionally, no new causalities between other 
vitamins, minerals and pregnancy complications were found during 
the replication and meta-analysis. Details are listed in 
Supplementary Table S5.

FIGURE 2

Associations of minerals and vitamins with risk of spontaneous abortion. CI, confidence interval; OR, odds ratio.
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3.5 Confounding analysis

Despite the rigorous sensitivity analyses, we further examined the 
secondary traits of the harmonized SNPs using the Phenoscanner. 
This review revealed that although SNPs related to vitamins E and B12 
were not linked with any confounders, the SNP rs1728918 for calcium 
showed a connection with diabetes. Similarly, for iron, the SNP 
rs1800562 was associated with factors like blood pressure medication, 
self-reported hypertension, and cardiovascular disease. Importantly, 
our primary estimates remained consistent after excluding these 
specific SNPs (Supplementary Tables S4, S5).

4 Discussion

In our study, we  established a definitive genetic link between 
elevated levels of circulating vitamin E and a reduced risk of 

spontaneous abortion (SA). Additionally, an increased genetic 
predisposition for vitamin B12 was suggested to confer a protective 
effect against stillbirth (SB). We observed no associations between 
folate and risks for SA, preterm birth (PTB), or SB. Likewise, no 
minerals or vitamins demonstrated a causal role in the onset of 
gestational diabetes mellitus (GDM), gestational hypertension (GH), 
or PTB. To our knowledge, this is the first Mendelian randomization 
(MR) study to use replication and meta-analysis for a comprehensive 
evaluation of the causative role of micronutrients in pregnancy 
complications (see Figure 4).

The significant impact of pregnancy complications on both 
immediate and long-term maternal and neonatal health underscore 
the critical need for early screening and preventive measures. 
Although various studies have implicated micronutrients in adverse 
pregnancy outcomes, the inconsistencies stemming from demographic 
and methodological differences present a challenge for clinical 
guidance. For instance, a Chinese birth cohort study suggested that 

FIGURE 3

Forest plot for the causal effects of minerals and vitamins on the risk of still birth derived from inverse variance weighted (IVW), weighted median (WM) 
and MR-Egger analysis. CI, confidence interval; OR, odds ratio.
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the effects of folate and multivitamin supplementation on birth defects 
vary by subtype, advocating for moderation in their use to mitigate 
the risk of birth defects (30). Inspired by the MR analysis conducted 
by Rogne et al. (31), our multi-exposure MR study aims to provide 
robust evidence for the implementation of nutritional supplementation 
and complication screening strategies for women of reproductive age.

Consistent with existing literature, our findings suggested an 
inverse correlation between circulating vitamin E levels and the risk 
of SA (32, 33). Specifically, a large-scale cohort study in rural 
Bangladesh linked lower vitamin E levels in early pregnancy to a 
heightened risk of miscarriage (32), while a single-blind RCT 
indicated that vitamin E supplementation could enhance uterine 
artery blood flow, potentially benefiting women with a history of 
recurrent abortion due to circulatory impairments (33). While the 
precise pathophysiological mechanisms underpinning the 
relationship between vitamin E and SA are not fully understood, 
several hypotheses have emerged. For instance, experiments on 
zebrafish models have demonstrated that vitamin E deficiency leads 
to increased lipid peroxidation in phosphatidylcholine-
docosahexaenoic acid (DHA-PC), resulting in choline depletion and 
increased betaine production, which disrupts the methionine cycle 
(34). This disruption may also affect the one-carbon metabolism, 
involving folate and vitamin B12, potentially precipitating neural 
tube defects and other pregnancy-related complications via 
diminished DNA methylation and synthesis (35, 36). Furthermore, 
vitamin E is known to protect polyunsaturated fatty acids (PUFAs) 
and their lipid mediators from lipid peroxidation, and inhibit 

lipoxygenases (LOX), thus reducing apoptosis (37). Conversely, a 
recent meta-analysis casts doubt on the benefits of routine vitamin E 
supplementation during pregnancy, hinting at possible adverse 
effects (38). These findings, which suggest variable impacts of 
vitamin E based on its concentration and the individual’s nutritional 
status (39–41), highlight the need for further clinical trials with 
consistent methodologies and well-defined vitamin status 
classifications (42).

In terms of vitamin B12, our MR findings pointed to a tentative 
causal link with SB risk, consistent across both the IVW and WM 
methods. Although replication and meta-analysis were constrained by 
the absence of SB data in the FinnGen consortium, the evidence, when 
viewed in conjunction with prior studies (43, 44), suggested a potential 
causative association between vitamin B12 and SB. Further well-
designed RCTs and larger GWAS datasets will be  beneficial for 
validation of the result.

However, we did not identify associations with folate nor with any 
other minerals or vitamins for the selected pregnancy complications. 
This contrasts with some observational studies that have suggested 
such links (11, 45–47), potentially attributable to the inherent 
confounders and biases of observational design.

Literatures on supplementation of micronutrients are limited to a 
few, small-scale studies that only target specific subgroups of patients, 
precluding specific recommendations. Findings from this study 
identified a causal association between circulating vitamins and 
pregnancy complications, enriching the research on nutritional 
intervention strategies for maternal and neonatal health.

FIGURE 4

Systemic effects of vitamin E and B12 deficiency in the lipid peroxidation and one-carbon metabolism.

https://doi.org/10.3389/fnut.2024.1334974
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Xie et al. 10.3389/fnut.2024.1334974

Frontiers in Nutrition 08 frontiersin.org

The main strength of this study is the MR design, which 
incorporated data from large consortia to provide solid genetic 
evidence for the reported associations. Specifically, an array of 
methods was performed in MR and sensitivity analysis to confirm 
the validity of our findings and adherence to MR assumptions. 
Second, by utilizing data from populations of European ancestry, 
we  reduced confounding effects, reverse causality, and bias from 
population stratification. In addition, meta-analysis of two 
independent databases, covering four pregnancy complications, 
lends credence to the consistency and non-random nature of 
our results.

Limitations of this MR investigation also merit consideration. First, 
a stringent p-value cutoff (5e - 08) for most exposures was applied to 
diminish weak instrument bias, which might lead to an underpowered 
analysis susceptible to false negatives. Second, the genetic instruments 
for calcium and phosphorus explained a limited amount of variance in 
their blood levels, suggesting that negative findings should 
be interpreted with caution, as causality may not be fully excluded. 
Third, although we  used female-specific outcome GWAS data, 
exposures were derived from combined-gender GWAS due to the lack 
of gender-stratified data. Moreover, small sample sizes for GWAS on 
certain micronutrients, namely zinc, copper, vitamin A, and B6, 
impeded the capacity to provide precise and clinically applicable 
conclusions. Future research would benefit from gender-specific and 
larger MR analyses to bolster the accuracy of the findings. Another 
limitation is that other antioxidants such as selenium and lycopene 
were not included in our study, which may be associated with certain 
health outcomes (48–50). A further limitation is that micronutrients 
generally showed a U-shaped correlation with various disease risks, 
emphasizing the need for caution in interpreting our results. Future 
research could explore alternative methods to validate our findings. 
Finally, we did not apply a correction for multiple testing. Instead, 
we chose for replication and meta-analysis to confirm our results, 
avoiding the risk of obscuring significant associations due to an overly 
stringent approach to multiple testing.

5 Conclusion

In summary, this MR analysis provided robust evidence that 
higher levels of circulating vitamin E might play a protective role in 
the progression of SA, while an increased genetic propensity for 
vitamin B12 could potentially decrease the likelihood of SB. Contrarily, 
we did not identify an association between folate levels and the risks 
for SA, PTB, or SB, nor did we find any causal relationships between 
other assessed micronutrients and GDM, GH, or PTB. These findings 
underscore the causal associations between circulating micronutrients 
and pregnancy complications, guiding clinicians in micronutrient 
supplementation decisions for women of childbearing age, especially 
those at high risk of nutritional deficiencies.
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