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Background: The aim of the present study was to identify the metabolomic

signature of responders and non-responders to an omega-3 fatty acid

(n-3 FA) supplementation, and to test the ability of a multi-omics classifier

combining genomic, lipidomic, and metabolomic features to discriminate

plasma triglyceride (TG) response phenotypes.

Methods: A total of 208 participants of the Fatty Acid Sensor (FAS). Study took

5g per day of fish oil, providing 1.9–2.2 g eicosapentaenoic acid (EPA) and 1.1 g

docosahexaenoic (DHA) daily over a 6-week period, and were further divided

into two subgroups: responders and non-responders, according to the change

in plasma TG levels after the supplementation. Changes in plasma levels of 6

short-chain fatty acids (SCFA) and 25 bile acids (BA) during the intervention

were compared between subgroups using a linear mixed model, and the impact

of SCFAs and BAs on the TG response was tested in a mediation analysis.

Genotyping was conducted using the Illumina Human Omni-5 Quad BeadChip.

Mass spectrometry was used to quantify plasma TG and cholesterol esters

levels, as well as plasma SCFA and BA levels. A classifier was developed and

tested within the DIABLO framework, which implements a partial least squares-

discriminant analysis tomulti-omics analysis. Di�erent classifierswere developed

by combining data from genomics, lipidomics, and metabolomics.

Results: Plasma levels of none of the SCFAs or BAs measured before and after

the n-3 FA supplementation were significantly di�erent between responders and

non-responders. SCFAs but not BAs were marginally relevant in the classification

of plasma TG responses. A classifier built by adding plasma SCFAs and lipidomic

layers to genomic data was able to even the accuracy of 85% shown by the

genomic predictor alone.

Conclusion: These results inform on the marginal relevance of SCFA and BA

plasma levels as surrogate measures of gut microbiome in the assessment of

the interindividual variability observed in the plasma TG response to an n-3 FA
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supplementation. Genomic data still represent the best predictor of plasma TG

response, and the inclusion of metabolomic data added little to the ability to

discriminate the plasma TG response phenotypes.

KEYWORDS

short-chain fatty acids, bile acids, gut microbiota, metabolic health, metabolomics,

precision nutrition

1 Introduction

The beneficial effects of marine omega-3 fatty acids (n-

3 FA) on reducing plasma triglyceride (TG) levels are widely

recognized (1), but subject to a large interindividual variability

(2). Accordingly, their potential effects in reducing the incidence

of cardiovascular disease are still under debate (3, 4). Current

recommendations for marine n-3 FA supplementation may

therefore be limited by being too general and not addressing the

specific needs of certain population subgroups (5). Thus, not all

individuals seem to benefit equally from n-3 FA supplementation,

with some individuals being relatively insensitive, while others

being quite responsive, as extensively reported in the past (2).

Indeed, although a reduction of the risk of cardiovascular

events by decreasing plasma TG levels has been associated

with the consumption of n-3 FA (6), a large heterogeneity

in the response to n-3 FA supplementation has also been

reported (2). In the Fatty Acid Sensor (FAS) Study, we

previously reported that about 30% of individuals do not

decrease their plasma TG levels in response to a 6-week n-3 FA

supplementation (7).

There is evidence that this interindividual variability is,

at least in part, determined by genetic factors, as previously

shown in the FAS Study, where a number of single-nucleotide

polymorphisms (SNPs) were associated with the plasma TG

response in a genome-wide association study (GWAS) (8). After

fine mapping and densification of genetic markers by imputation,

a genetic risk score (GRS) composed of 31 SNPs was built,

explaining more than 49% of the variance of plasma TG levels

during the supplementation (9). Finally, lipidomic features in

the form of plasma TG species were added to the GRS in

a classification tool that was able to correctly identify TG

response phenotypes with the accuracy of 75% in a subset of

the FAS population (10). Although the combination of genetic

information and lipidomic data allowed to predict the plasma

TG response to an n-3 FA supplementation with high accuracy,

a non-negligible portion of this response remained unexplained.

Given the mounting evidence linking gut microbiota to the

heterogeneity in the response to nutrients, and specifically, to

n-3 FA consumption (11), we hypothesized that part of this

unexplained variance may be due to a distinct impact of n-

3 FA on the gut microbiota composition of responders vs.

non-responders. Since we lacked direct metagenomic data in

the FAS Study, we were interested in analyzing the ability

of short-chain fatty acids (SCFA) and bile acids (BA) plasma

profiles, two well-known gut microbiota-derived metabolites, to

aid in the prediction of the plasma TG response to the n-

3 FA supplementation. On one hand, significant shifts in the

composition of the gut microbiome with a specific increase

in SCFA-producing bacteria have been found following an n-3

supplementation (12) and, in the other hand, BAs are further

metabolized by the gut microbiota (11), and partly dependent on

n-3 FA consumption (13). Recent evidence linking gut microbiota

and microbiota-related metabolites with the development of

hyperlipidemia (14) and the advances in metabolomic technologies

triggered the exploration of the relationship between circulating

metabolites, such as SCFA and BA, and cardiometabolic disease

risk factors (15). SCFAs appear to be promising metabolites in

the modulation of cardiometabolic diseases, as they can improve

different risk factors associated to plasma lipids, insulin resistance,

hyperglycemia and inflammation (15). Furthermore, SCFA may

have a beneficial impact on plasma TG levels through the

modulation of key enzymes involved in lipid metabolism, leading

to reduced TG levels (16). Concretely, it has been shown that

dietary supplementation of acetate, propionate, butyrate or their

admixture may modulate the expression of fatty acid receptors

FFAR2 and FFAR3, which ultimately may stimulate the hydrolysis

of TG and enhance free fatty acid oxidization in adipose tissue

(17). BAs, for their part, are involved in the regulation of multiple

metabolic processes (18). Through the activation of various

signaling pathways, BAs regulate not only their own synthesis and

enterohepatic circulation, but also TG, cholesterol, glucose, and

energy homeostasis (19). More concretely, BAs play a significant

role in the digestion and absorption of fats, and may aid in the

emulsification of dietary fats and fat-soluble vitamins, enhancing

their absorption and regulating lipid metabolism, including

TG levels.

The aim of the present study was to identify the

metabolomic signature of responders and non-responders

to n-3 FA supplementation, to test the potential effect and

extent to which SCFAs and BAs may mediate changes in

TG levels, and finally to test the ability of a multi-omic

classifier combining genomics, lipidomics, and metabolomics

to discriminate TG response phenotypes. We hypothesize

that the metabolomic signature is likely to discriminate

responders and non-responders to n-3 FA supplementation.

These signatures may improve the predictive performance by

applying a multi-omics classifier analysis combining genomic,

lipidomic, and metabolomic features compared with exclusively

genetic data.
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2 Materials and methods

2.1 FAS study population

Between 2009 and 2011, a total of 254 healthy subjects living

in the Quebec City metropolitan area were recruited to take part

in the FAS Study. To be eligible, subjects must have not taken

any n-3 FA supplements 6 months prior to the intervention, be

non-smokers and have no thyroid or metabolic disorders requiring

pharmacological treatment. Participants must have a body mass

index (BMI) between 25 and 40 kg/m2 and be aged between

18 and 50. A total of 210 people completed the intervention

protocol. Two participants were excluded from further analyses

due to missing values prior to supplementation. Of the remaining

208 participants, those whose plasma TG levels decreased after

the n-3 FA supplementation (1TG levels < 0) were defined as

responders, while non-responders were participants for whom the

TG concentrations remained stable or increased after the n-3 FA

supplementation (1TG levels ≥ 0), as previously described (8).

This study was approved by the ethics committees of Center de

recherche du CHU de Québec and Université Laval and registered

as NCT01343342 at ClinicalTrials.gov. All participants provided

written informed consent prior to participation in accordance with

the Declaration of Helsinki.

2.2 Study design

The study design and diets have been fully described previously

(8). Briefly, after a 2-week stabilization period, the participants

were asked to complete the intervention protocol, which consisted

of consuming five capsules per day containing one gram of fish

oil for a 6-week period. This supplementation provided 1.9–2.2 g

of eicosapentaenoic acid (EPA) and 1.1 g of docohexaenoic acid

(DHA) daily. Blood samples were taken immediately before and

after n-3 FA supplementation, and plasma lipids were measured by

enzymatic assays, as previously described (8).

2.3 Genomic, lipidomic, and metabolomic
analyses

White blood cell samples were used for genomic analyses,

while plasma was used for lipidomic and metabolomic analyses.

First, the 141 participants who showed the most extreme plasma

TG response to an n-3 FA supplementation were included in a

previous GWAS (8) and its subsequent refinements (9). Briefly,

the GenElute Gel Extraction Kit (Sigma-Aldrich Co.) was used to

extract genomic DNA from the blood samples. Genotyping was

conducted using the Illumina Human Omni-5 Quad BeadChip

(Illumina, San Diego, CA), according to the manufacturer’s

instructions (8). After the exclusion of participants lacking plasma

baseline samples, lipidomic analysis was performed on a total of

193 participants. As previously described in Picklo et al. (10),

quantification of TG and CE species has been done using infusion

mass spectrometry. Plasma levels of BA and SCFA were measured

in 208 and 202 participants, respectively. Metabolomic analyses

of SCFAs were carried out on the NUTRISS-INAF platform.

Gas chromatography flame ionization detection (GC-FID) was

used to profile plasma SCFA levels as previously described (20).

Acetic, propionic and butyric acids were measured considering

that they are the most abundant SCFAs, as well as isovaleric and

isobutyric acids as the most abundant branched-chain fatty acids

(BCFAs) (21). MS analyses were performed using electrospray

ionization in the positive and negative ionization. Raw data were

processed with Skyline (www.skyline.ms), Compound Discoverer

2.0 (Thermo Scientific, Waltham, MA, USA) and Progenesis QI

QI v.2.1 (Non-linear Dynamics, Newcastle, UK). A calibration

curve prepared with a mixture of standard SCFA and BCFA

(acetic acid, propionic acid, isovaleric acid, butyric acid, isobutyric

acid, and valeric acid) was used to measure these metabolites.

An initial metabolite analysis was performed using the local

reference standards database containing over 800 compounds

(IROA technologies). The remaining chromatographic peaks

were putatively identified using multiple spectral and molecular

databases such as mzCloud and the Human Metabolome Database

(HMDB), in addition to comparing retention time indices based

on literature (22). Plasma levels of an exhaustive list of 25 primary

and secondary BAs (23), as well as their glycine, taurine, sulfate,

and glucuronide conjugates were measured. Concretely, plasma

levels of chenodeoxycholic acid (CDCA), taurochenodeoxycholic

acid (tauro-CDCA), glycochenodeoxycholic acid (glyco-CDCA),

cholic acid (CA), taurocholic acid (tauro-CA), glycocholic acid

(glyco-CA), ursodeoxycholic acid (UDCA), tauroursodeoxycholic

acid (tauro-UDCA), lithocholic acid (LCA), taurolithocholic acid

(tauro-LCA), glycolithocholic acid (glyco-LCA), deoxycholic acid

(DCA), taurodeoxycholic acid (tauro-DCA), glycodeoxycholic

acid (glyco-DCA), hyodeoxycholic acid (HDCA), hyocholic

acid (HCA), LCA-3-sulfate, CDCA-3-glucuronide, CDCA-24-

glucuronide, LCA-3-glucuronide, LCA-24-glucuronide, DCA-3-

glucuronide, DCA-24-glucuronide, HDCA-6-glucuronide, and

HCA-6-glucuronide were measured at the functional bileacidomic

plateform by liquid chromatography/tandem mass spectrometry

(LC-MS/MS), as previously described (24). The chromatographic

system consisted of an Alliance 2690 HPLC instrument (Waters,

Milford, MA), and the tandemmass spectrometry system (MS/MS)

was an API4000 mass spectrometer (Applied Biosystems, Concord,

Canada). A CDCA-3G standard curve was used to quantify HCA-

6G, while all the other BA species were quantified with the

appropriate standard curve (25).

2.4 Statistical analysis

A two-tailed unpaired t-test was used to compare baseline

clinical characteristics and plasma metabolite levels between

responders and non-responders. Linear mixed models,

implemented in the lme (v3.1-162) and emmeans (v1.5.7) R

packages, were used to test whether the changes in clinical

outcomes and metabolomic markers during the intervention were

significantly different between responders and non-responders.

When a significant interaction at p<0.05 was found for any of the

clinical parameters analyzed, contrasts analyses were performed

to test its association with baseline levels of SCFA and BA in both
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responders and non-responders using emtrends (v1.8.4-1) and

lmer (v1.1-31) R packages with adjustments for age, sex, batch and

BMI, and age, sex, and BMI, respectively. A mediation analysis was

conducted in the 141 participants with known genotypes, of which

66 were at high risk (GRS > median) and 75 at low risk (GRS ≤

median) of non-response to the supplementation. This analysis

was carried out to examine the role of metabolomic markers as

mediators in the relationship between baseline plasma TG levels

and the change in plasma TG levels, depending on the levels of

GRS values over the course of the intervention. The mediation

analysis, which is comprised of three regression analyses, adjusted

for age, sex, and BMI was performed with the mediation R package

(v4.5.0). A mediation was considered significant at an Average

Causal Mediation Effect (ACME) p-value < 0.05. Statistical

analyses were performed with R [v4.1.2; (26)].

2.5 Predictive analysis

Different classifiers aiming at accurately identifying responders

and non-responders to the n-3 FA supplementation, and

combining genomic, lipidomic, and metabolomic features were

developed. The classification tools were built and tested within

the DIABLO (Data Integration Analysis for Biomarker Discovery

Using Latent Components) framework, which implements a

partial least squares-discriminant analysis (PLS-DA) to multi-

omics analysis (27) in the mix0mics R package (v6.20.0) (28). The

classifiers were first tuned in the entire sample independently for

each predictor and its performance was evaluated with the area

under the ROC curve (AUC-ROC) and the balanced accuracy

metrics. The sample was then randomly divided into two data

sets, one for training and the other for testing, maintaining the

same proportions of responders and non-responders. To reach

the highest prediction value, different classifiers were developed

by combining data from genomics (31 SNPs), lipidomics (13

cholesterol esters and 57 TG species) and metabolomics (6 SCFA

and 25 BA species). Each classifier was then trained and a 10-fold

cross-validation was performed using the R caret package (v6.0-

94) (29). The predictive performance of cross-validated models

obtained in the train dataset was further assessed in the test

dataset. Predictive performance comparison between classifiers was

finally evaluated in the test dataset using the balanced accuracy

metric, which stands for the proportion of true responders and

non-responders out of the total number of subjects.

3 Results

3.1 Characteristics of the study participants

Clinical characteristics of study participants in pre- and post-

supplementation have been previously reported in Rudkowska

et al. (8) and are briefly summarized herein. Participants were

overweight, with a mean BMI of 27.8 ± 0.3 kg/m2 for the

responders and 27.8± 0.5 kg/m2 for the non-responders. Although

body weight increased in both responders and non-responders

following the intervention, it was significantly higher in responders

(pgroup∗visit = 0.05), also reflected in BMI (pgroup∗visit = 0.04).

Following the intervention, responders showed a mean decrease

in insulin levels of 9.8%, while non-responders showed an increase

of 11.6% (pgroup∗visit = 0.06, Table 1). Responders had significantly

higher plasma TG levels before the supplementation than non-

responders (1.28 ± 0.05 vs. 1.03 ± 0.08 mmol/L; p < 0.01), and

a significant group-by-visit interaction effect was found for plasma

TG levels (pgroup∗visit < 0.01; Table 1).

3.2 Metabolomic analysis

No significant differences were observed in baseline levels for

any of the 6 SCFA and 25 BA analyzed between responders and

non-responders (Table 2). No significant group-by-visit interaction

effects were found for acetic acid, propionic acid, isobutyric acid,

butyric acid, isovaleric acid, or valeric acid (Table 2). No significant

group-by-visit interaction effects were observed for any of the

BAs analyzed either (Table 2). Contrast analyses were performed

between baseline plasma SCFA levels and clinical parameters

with significant group-by-visit interaction effects during the

intervention (Table 1). Pre- and post-supplementation levels of

the two clinical parameters having a significant contrast effect

with SCFA, HDL-C (pgroup∗visit = 0.01, Figure 1A) and vitamin

B-12 (pgroup∗visit = 0.01, Figure 1B) are shown. A significant

association was found between HDL-C and isovaleric acid (p =

0.04; Figure 1C), with a positive association between HDL-C and

isovaleric acid in responders, and a negative association in non-

responders (Figure 1C). A significant association was also found

between vitamin B-12 and isobutyric acid (p = 0.003; Figure 1D).

Along the same lines, contrast analyses performed between baseline

plasma BA levels and the change in clinical parameters during

the intervention showed a significant association between HDL-

C and tauro-CA (p = 0.009). A negative association between

plasma HDL-C and tauro-CA levels in responders was found,

while the opposite was observed for non-responders, i.e., a positive

association between the increase in HDL-C and in tauro-CA level

was found. Significant associations between total-C and the sum of

tauro-conjugated bile acids (p = 0.04), tauro-CA (p = 0.006), and

glyco-CA (p= 0.02) were also found.

3.3 Mediation analysis

Previously, baseline plasma TG levels and GRS were identified

as the main factors leading to the heterogeneity of plasma TG

response to an n-3 FA supplementation (9). The role of SCFAs

as mediators in the different TG response to n-3 FA between

responders and non-responders was examined through amediation

analysis. The significant association found between baseline plasma

TG levels and the change in plasma TG levels during the

supplementation was found to be partially mediated by baseline

plasma levels of isovaleric acid in participants having a high genetic

risk (GRS>median) of non-response (ACME p-value= 0.04). This

significant association vanished when tested in participants with a

low genetic risk (GRS < median) of non-response (ACME p-value

= 0.8). The role of BAs as mediators in this relationship was also
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TABLE 1 Clinical parameters of responders and non-responders during the n-3 fatty acid supplementation.

Responders (n = 148) Non-responders (n = 60) P-values

Variables Pre Post Pre Post Group Time Int

Sex (men/women) 66/82 30/30 0.58 - -

Age (years) 30.7± 8.6 31.1± 9.0 0.77 - -

Weight (kg) 80.8± 1.1 81.0± 1.1 82.6± 1.8 83.2± 1.8 0.23 0.05 0.15

BMI (kg/m2) 27.8± 0.3 27.9± 0.3 27.8± 0.5 28.0± 0.5 1.00 <0.01 0.04

Glucose (mmol/L) 4.96± 0.04 5.06± 0.04 4.94± 0.06 5.04± 0.06 0.58 <0.01 0.96

Insulin (pmol/L) 90.0± 5.9 81.2± 3.3 80.2± 9.3 89.5± 5.3 0.13 0.32 0.06

Total-C (mmol/L) 4.74± 0.07 4.66± 0.08 4.77± 0.12 4.87± 0.12 0.47 0.41 0.02

TG (mmol/L) 1.28± 0.05 0.95± 0.04 1.03± 0.08 1.20± 0.07 <0.01 <0.01 <0.01

HDL-C (mmol/L) 1.41± 0.03 1.47± 0.03 1.50± 0.05 1.48± 0.05 0.03 <0.01 0.01

LDL-C (mmol/L) 2.75± 0.07 2.76± 0.07 2.79± 0.11 2.84± 0.11 0.75 0.47 0.67

Total-C/HDL-C (mmol/L) 3.55± 0.09 3.40± 0.09 3.33± 0.13 3.48± 0.14 0.11 0.01 <0.01

ApoB (g/L) 0.84± 0.02 0.86± 0.02 0.83± 0.03 0.89± 0.03 0.85 <0.01 0.08

CRP (mg/L) 2.47± 0.32 2.50± 0.36 2.89± 0.51 3.06± 0.56 0.22 0.85 0.87

Folic acid (nmol/L) 35.5± 0.6 34.9± 0.5 34.7± 0.9 31.6± 0.9 0.02 <0.01 0.01

B12 vitamin (mcg) 328.6± 10.3 341.8± 10.7 344.0± 16.2 335.3± 16.8 0.74 0.06 0.01

Total bilirubin (pg/L) 9.67± 0.46 9.78± 0.56 11.29± 0.71 10.88± 0.87 0.07 0.96 0.43

Direct bilirubin (pg/L) 2.32± 0.09 2.38± 0.09 2.69± 0.14 2.45± 0.14 0.15 0.75 0.03

Indirect bilirubin (pg/L) 7.35± 0.38 7.39± 0.49 8.60± 0.59 8.43±0.75 0.10 0.99 0.75

Data are unadjusted means ± standard deviation. A linear mixed model adjusted for age, sex, and body mass index (BMI) was used to compare clinical parameters between responders and

non-responders to the n-3 fatty acid supplementation. A linear mixed model adjusted for age and sex was used to compare BMI.

Total-C, total cholesterol; HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol; ApoB, apolipoprotein B; CRP, C-reactive protein; Pre, pre-supplementation values; Post, post-supplementation

values. Int, group-by-time interaction term. Bold values represent significant associations p < 0.05.

examined and no significant mediation effect was found in any of

the high or low genetic risk subgroups.

3.4 Predictive analysis

A classifier was built independently for each feature to

separately assess the ability of genomic, lipidomic, and

metabolomic data to accurately predict response to the n-3

FA supplementation. The classifier containing only baseline

plasma SCFAs achieved the lowest predictive performance,

with an AUC-ROC of 0.5 and an accuracy of 44% (Figure 2),

whereas the one created exclusively with baseline plasma BAs

only reached an AUC-ROC of 0.66 and a balanced accuracy

of 50% (Figure 2). The classification tool built using uniquely

lipidomic features slightly increased the AUC-ROC to 0.74 and the

accuracy to 57% (Figure 2), while the use of genomic data alone

made it possible to create the best independent classifier, with

a predictive performance reaching an AUC-ROC of 0.97 and a

balanced accuracy of 85% (Figure 2). After testing for each feature

individually, genomic, lipidomic and metabolomic data layers were

combined to increase the predictive performance of the response

to an n-3 FA supplementation. In the test dataset, we observed

that none of the combined classifiers was able to substantially

increase the predictive performance showed by genomic data

alone (Figure 3). Only a classifier built by adding plasma SCFAs

and lipidomic data to the 31 SNPs was able to achieve the same

accuracy of 85% shown by the genomic predictor (Figure 3).

Interestingly, the classifier built by combining plasma SCFAs and

genomic data slightly increased the predictive performance to a

balanced accuracy of 86% (Figure 3). The predictive capacity of the

complete four-layer-model, including the 31 SNPs and lipidomic

data (13 cholesterol esters and 57 TG species), as well as 6 SCFA

and 25 BA species, reached an overall balanced accuracy of 75%

(Figure 3). Then, the predictive performance was refined by further

selecting the most important features on each layer. After a tuning

process involving a 10-fold-cross validation and based on the

centroids distance, we finally kept a reduced model including 28

SNPs as well as 10 TG, 2 SCFA and 5 BA species. However, the

accuracy of the refined classification tool only reached 76%.

4 Discussion

The present study examined the role of SCFAs and BAs in the

heterogeneity of the TG response to an n-3 FA supplementation. A

continually emerging body of evidence supports the role of SCFAs

and BAs as key molecular links between diet, the microbiome and

health (30). Thus, in the absence of data on the gut microbiota,

it is possible to indirectly analyze the impact of gut microbiota

composition on the heterogeneity observed in the metabolic
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TABLE 2 Metabolomic analysis of short-chain fatty acid and bile acid levels of responders and non-responders during the n-3 fatty acid

supplementation.

Responders Non-responders P-values

Variables Pre Post Pre Post Group Time Int

Short-chain fatty acids

Acetic acid 49.69± 1.53 50.39± 1.53 50.96± 2.38 48.82± 2.38 0.72 0.99 0.38

Propionic acid 1.06± 0.04 1.07± 0.04 1.06± 0.06 1.12± 0.06 0.68 0.30 0.83

Isobutyric acid 0.26± 0.02 0.27± 0.02 0.25± 0.03 0.25± 0.03 0.81 0.46 0.79

Butyric acid 0.49± 0.02 0.50± 0.02 0.53± 0.03 0.57± 0.03 0.26 0.28 0.95

Isovaleric acid 0.63± 0.02 0.66± 0.02 0.64± 0.03 0.63± 0.03 0.86 0.65 0.21

Valeric acid 0.10± <0.01 0.10± <0.01 0.10± <0.01 0.10± <0.01 0.54 0.95 0.38

Bile acids

CDCA 3.61± 0.89 6.39± 0.92 2.71± 1.48 3.56± 1.34 0.46 0.26 0.33

Tauro-CDCA 3.74± 0.85 4.73± 0.88 2.01± 1.30 4.42± 1.19 0.19 0.34 0.84

Glyco-CDCA 3.26± 0.50 2.25± 0.51 1.60± 0.73 2.77± 0.68 0.88 0.17 0.73

CA 9.32± 1.88 9.49± 1.95 6.87± 3.08 7.82± 2.80 0.66 0.85 0.80

Tauro-CA 4.24± 2.48 8.40± 2.54 4.26± 3.47 4.74± 3.22 0.20 0.05 0.90

Glyco-CA 4.16± 0.79 3.25± 0.81 1.70± 1.14 3.62± 1.06 0.30 0.73 0.82

UDCA 3.05± 1.08 5.75± 1.12 1.99± 1.76 2.68± 1.61 0.80 0.29 0.67

Tauro-UDCA 8.97± 2.78 10.73± 2.91 6.48± 4.77 6.81± 4.28 0.41 0.08 0.70

ICA 1.45± 0.14 1.59± 0.14 1.41± 0.21 1.45± 0.19 0.99 0.15 0.12

Tauro-LCA 3.29± 0.71 3.11± 0.74 3.01± 1.20 3.70± 1.09 0.67 0.37 0.49

Glyco-LCA 4.07± 0.84 2.59± 0.85 2.87± 1.03 3.54± 0.98 0.08 0.91 0.71

LCA sulfate 5.01± 1.46 3.62± 1.47 8.22± 2.45 8.72± 2.25 0.06 0.61 0.93

DCA 1.59± 0.19 1.85± 0.20 1.61± 0.31 1.23± 0.28 0.61 0.62 0.14

Tauro-DCA 4.56± 1.17 5.57± 1.21 3.09± 1.83 3.73± 1.66 0.27 0.64 0.26

Glyco-DCA 3.77± 0.72 3.16± 0.73 1.89± 0.93 3.22± 0.87 0.65 0.97 0.90

HDCA 1.68± 0.14 1.47± 0.14 1.71± 0.22 1.41± 0.20 0.31 0.98 0.43

HCA 2.13± 0.31 2.31± 0.32 1.95± 0.51 2.11± 0.46 0.67 0.23 1.00

CDCA-3-G 2.00± 0.25 1.94± 0.25 1.98± 0.35 2.05± 0.32 0.62 0.75 0.73

CDCA-24-G 4.05± 0.76 4.78± 0.79 3.06± 1.33 5.14± 1.18 0.79 0.69 0.99

LCA-3-G 2.56± 0.24 2.03± 0.25 2.56± 0.38 2.13± 0.34 0.61 0.02 0.18

LCA-24-G 1.55± 0.43 3.06± 0.45 1.48± 0.70 3.41± 0.63 0.09 <0.01 0.71

DCA-3-G 1.95± 0.20 1.83± 0.20 2.66± 0.30 1.58± 0.27 0.99 0.03 0.24

DCA-24-G 1.39± 0.14 1.64± 0.14 1.65± 0.21 1.32± 0.19 0.96 0.37 0.26

HDCA-6-G 1.53± 0.14 1.32± 0.15 1.44± 0.23 1.48± 0.21 0.33 0.03 0.94

HCA-6-G 2.27± 0.28 1.77± 0.28 2.16± 0.42 2.47± 0.39 0.39 0.80 0.89

Data are unadjusted means± standard deviation. A linear mixed model adjusted for batch, age, sex and BMI was used to compare plasma SCFA levels between responders and non-responders

to the n-3 fatty acid supplementation. A linear mixed model adjusted for batch, age, sex, and BMI was used to compare plasma SCFA levels.

CDCA, chenodeoxycholic acid; Tauro-CDCA, taurochenodeoxycholic acid; Glyco-CDCA, glycochenodeoxycholic acid; CA, Cholic acid; Tauro-CA, taurocholic acid; Glyco-CA, glycocholic

acid; UDCA, Ursodeoxycholic acid; Tauro-UDCA, tauroursodeoxycholic acid; LCA, lithocholic acid; Tauro-LCA, taurolithocholic acid; Glyco-LCA, glycolithocholic acid; DCA, deoxycholic

acid; Tauro-DCA, taurodeoxycholic acid; Glyco-DCA, glycodeoxycholic acid; HDCA, hyodeoxycholic acid; HCA, hyocholic acid; −3, −6 and 24G, 3, 6 and 24-glucuronide; Pre,

pre-supplementation values; Post, post-supplementation values. Int, group-by-time interaction term.

N for short-chain fatty acids= 202 and N for bile acids= 208.

Frontiers inNutrition 06 frontiersin.org

https://doi.org/10.3389/fnut.2024.1327863
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Morin-Bernier et al. 10.3389/fnut.2024.1327863

FIGURE 1

Contrast analysis between short-chain fatty acid levels and clinical parameters. (A, B) show levels of HDL-C and vitamin B-12, respectively, for

responders and non-responders before and after the intervention. (C) shows the change in HDL-C levels related to the change in isovaleric acid

levels for responders and non-responders. (D) shows the change of vitamin B-12 linked to the change in isobutyric acid levels for both groups.

HDL-C, High-density lipoprotein cholesterol.

response to n-3 FA supplementation through the metabolites it

produces. The present study did not reveal that plasma levels of

SCFA and BA play a relevant role in the clinical and metabolic

changes observed following an n-3 FA supplementation, and they

lack of predictive power to accurately classify responders and non-

responders to the supplementation. Indeed, results showed that

SCFAs but not BAs were marginally relevant in the classification

of plasma TG responses. In this regard, genomic data still

represent the best predictor of plasma TG response to an n-3

FA supplementation (9), and the inclusion of other omic data

layers does not substantially increase the ability to discriminate the

plasma TG response phenotypes.

As previously stated, the consumption of specific nutritional

components can modify the abundance, diversity, and activity

of the gut microbiota, and consequently the composition in

SCFAs and BAs (31). Although this may have been observed in

the present study, no significant differences between responders

and non-responders were found in plasma levels during the n-

3 FA supplementation for any of the SCFAs and BAs analyzed.

However, the previously reported significant association between

baseline plasma TG levels and change in plasma TG levels

in response to n-3 FA supplementation (9) was here partially

mediated by plasma isovaleric acid levels at baseline. Both baseline

plasma TG levels and GRS have been previously identified as the

main factors leading to the plasma TG response heterogeneity

to an n-3 FA supplementation (9). In the present study, the

mediating effect of isovaleric acid was reported between baseline

TG levels and response to n-3 FA supplementation in the group of

participants at high genetic risk of non-response. In other words,

the relationship between basal TG levels and response to n-3 FA

supplementation appears to be partially mediated by isovaleric

acid when GRS is high. A significant association was also found

between baseline plasma isovaleric acid levels and the change in

HDL-C levels during the intervention. Concretely, plasma HDL-

C levels increased together with isovaleric acid levels in the group

of responders, whereas in non-responders this relationship was

inverse. High plasma HDL-C levels act to reduce cardiovascular

risk by multiple pathways (32). Therefore, in non-responders, an

increase in isovaleric acid levels would have a negative effect on

cardiovascular risk, as plasma HDL-C levels decrease. Consistently,

a previous study found a positive correlation between isovaleric

acid and HDL-C, as well as positive correlations between isovaleric
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FIGURE 2

Predictive performance of metabolomic, lipidomic, and genomic features. The predictive performance of each feature is represented by the area

under the ROC-curve (AUC) and the balance accuracy (ACC) metrics. AUC, area under the curve; ACC, accuracy; BA, bile acids; SCFA, short-chain

fatty acids; TG + CE, triglycerides and cholesterol esters; SNP, single nucleotide polymorphism.

acid and LDL-C and total-C in pregnant women (33). The

significant association between isovaleric acid and the change

in plasma HDL-C levels found in the present study is also in

agreement with recent findings showing a positive correlation

between isovaleric acid and LDL-C levels, as well as between

valeric acid and TG levels, and between isobutyric acid and

HDL-C and LDL-C levels (34). An increase in BCFA levels has

been also observed in individuals with hypercholesterolemia, as

compared to those with normocholesterolemia (35), suggesting

a potential association between BCFAs and lipid metabolism.

In vitro experiments have also shown that BCFAs are able

to inhibit both cAMP-mediated lipolysis and insulin-stimulated

lipogenesis in adipocytes (36). Moreover, isovaleric acid-containing

porpoise oil has shown to exert beneficial effects on fatty liver

in a murine model of type 2 diabetes, by increasing serum

levels of adiponectin and enhancing lipoprotein synthesis and

secretion (37).

The synergistic role of n-3 FA and vitamin B-12 in lipid

homeostasis and other host metabolic processes has been

extensively studied in rats. Concretely, a series of studies showed

that n-3 FA are linked with vitamin B-12 in the one-carbon

metabolic cycle (38). A previous study also reported that maternal

vitamin B-12 deficiency in pregnant Wistar rats resulted in

elevated homocysteine levels, a vitamin B-12 substrate, while the

supplementation with n-3 FA reduced homocysteine levels (39).

As these animals were deliberately induced into a vitamin B-12

deficient state, these studies did not find an increase in vitamin B-

12 after the n-3 FA supplementation, but have already highlighted a

commonmetabolic pathway that may explain why responders to n-

3 FA supplementation also showed increased vitamin B-12 levels in
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FIGURE 3

Predictive performance of the response to an n-3 FAs supplementation. SNP, single nucleotide polymorphism; SCFA, short-chain fatty acid; TG&CE,

triglycerides and cholesterol esters; BA, bile acids; n-3 FA, omega-3 fatty acid. The balance accuracy for each feature or combination of features is

shown the top of the bars.

the present study. Furthermore, by modulating the gut microbiota

composition, n-3 FA may indirectly affect vitamin B-12 absorption

or production differently in responders and non-responders. Most

dietary vitamin B-12 in humans comes from animal-derived foods,

and is absorbed in the small intestine. However, the presence of

vitamin B12-producing bacteria in the colon may contribute to the

B-12 supply (40). The role of gut microbiota in contributing to

vitamin B-12 status remains an area of ongoing research, exploring

the impact of different bacterial strains on host vitamin B-12

metabolism. In this regard, the significant association observed

between vitamin B-12 and isobutyric acid may potentially be

explained by the protein composition of the diet. Indeed, high

protein diets have been related with higher BCFAs levels (41, 42)

and as widely recognized, vitamin B-12 is bound to protein in food

(43). We can also speculate that n-3 FA may act as a prebiotic

and indirectly affect the production of vitamin B-12 and isobutyric

acid differently among responders and non-responders, through a

distinct modulation of gutmicrobiota composition. In this regard, a

previous study has shown an increase in the production of vitamin

B-12, along with SCFA and BCFA, including isobutyric acid, during

the in vitro digestion and fermentation of probiotic chocolate (44),

which may be attributed to shared Lactobacillus species.

Another significant association was found between the change

in plasma HDL-C levels during the intervention and tauro-CA

levels. Specifically, a negative association was found between

plasma HDL-C levels and tauro-CA levels in the group of

responders, whereas a positive association was seen for non-

responders. The significant association found between HDL-C and

tauro-CA is in line with the negative relationship between plasma

levels of HDL-C and biliary saturation previously reported in

healthy females (45). This observation can be explained by the fact

that HDL-C has been proposed to serve as preferential precursor

for BA biosynthesis (45). McMillin and al. found that the three

ratios of taurine-conjugated BAs (primary or secondary) and the

levels of tauro-UDCA and tauro-HDCA were elevated following a

fish oil supplementation. These results indicate that n-3 FAs may

promote taurine conjugation with BAs or inhibit the deconjugation

of taurine-conjugated BAs (46). All associations observed in the

present study between SCFAs and BAs with cholesterol levels thus

suggest a potential role of gut microbiota in lipid homeostasis.

Current research is gradually enabling us to understand how the gut

microbiota influences cholesterol metabolism in order to eventually

target it for therapeutic benefit (47).

Gut microbiota speciation has proven to have a regulatory

role in host lipid metabolism (48), and specifically in plasma TG

and cholesterol levels, as reviewed in Schoeler and Caesar (49).

Hence, it has been proposed that gut microbiota may be key to

the development of hyperlipidemia and related chronic diseases,

such as cardiovascular disease (14). In this regard, previous studies

with conventionally raised and germ-free mice have elucidated

that the gut microbiota prompts hepatic fatty acid synthesis

(50). Similarly, it has been shown that the interaction between

gut microbiota with dietary components may impact host lipid

metabolism and composition. Concretely, results from mice fed

diets rich in saturated lipids supplemented with BA revealed that

the gut microbiota was involved in the observed increase of

hepatic TG levels, highlighting the influence of colonization status

on hepatic lipid profiles (51). Additionally, research involving

probiotic treatments in mice and rats further underscores the role

of the gut microbiota in regulating lipid homeostasis. For instance,

in mice fed a high-fat high-cholesterol diet, Lactobacillus curvatus

alone or in combination with Lactobacillus plantarum significantly
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reduced cholesterol levels in plasma and liver, while exhibiting a

synergistic effect on hepatic TG levels (52). Similarly, rats on a high-

fat diet experienced decreased circulating TG and LDL levels, along

with increased HDL levels, when administered Bifidobacterium

spp. (53). Moreover, clinical studies connecting the gut microbiota

to lipid metabolism have revealed that reduced microbial gene

richness in individuals with obesity correlated with higher plasma

total-cholesterol and TG levels (54). An energy-restricted diet

has also been shown to increase gene richness and reduce lipid

levels. Individuals with fewer microbial had higher TG levels and

lower HDL-cholesterol levels (55). Additionally, variability in gut

microbiota composition have been associated with about 6% of

plasma TG levels and 4% of HDL-cholesterol levels in the general

population (56).

Although genetic and lipidomic factors have been reported

to cover a significant portion of the variance in the plasma TG

response to an n-3 FA supplementation, a substantial fraction

of this response remains unexplained. This still unexplained

variability may be influenced by several other factors, such as

dietary habits, including fat and carbohydrate intake, as well as

specific nutrients that may interact with or modify the effects of

n-3 FA. A role of individual metabolism and absorption of n-3

FA due to differences in microbial and host enzymatic activity is

another potential factor leading to this heterogeneity, as well as the

changes in gut microbiota composition investigated in this study.

Nevertheless, the present results did not support the use of baseline

SCFA and BA levels as a proxy of gut microbiota composition

in the prediction of the interindividual variability in the plasma

TG response to n-3 FA supplementation. In this sense, it is worth

highlighting that, even in the absence of direct measurements of

gut microbiota, this study still has some strengths. Multiple clinical

and metabolomic measurements were carried out, which adds

to the power of the study, as well as the thoughtful assessment

of the compliance of participants to the intervention protocol.

However, the fact that this study was conducted on a mostly

Caucasian population living in the Quebec City metropolitan area

limits the generalization of the results obtained, as well as the

relatively small sample size. Moreover, it has been observed that

the higher the baseline levels of TG, the more effective the n-3 FA

supplementation is in reducing TG levels (9). However, since one

of the exclusion criteria is having a metabolic disorder, participants

who had higher baseline TG levels were not included in the study.

On the one hand, this may have influenced the results, but on

the other hand, it makes it possible to generalize the results to a

healthy population.

In the FAS Study, participants were classified as responders and

non-responders based on changes in plasma TG levels subsequent

to an n-3 FA supplementation. This categorization approach,

although providing a simplified interpretation of outcomes,

presented several limitations warranting discussion. First, the

binary classification into responders and non-responders may

have overlooked the inherent variability within these groups.

Quantitative phenotypes may have offered a more nuanced

understanding, capturing the spectrum of individual responses

to the supplementation. Second, by adopting a categorical

approach, we acknowledge the potential oversimplification of

complex physiological responses, potentially masking variations

in treatment effects within these broad categories. However, we

have previously shown that the classification of participants into

responders and non-responders constituted a major strength of

the FAS Study, allowing a growing reliability in the identification

of actual responders by refining the predictive models (8–10, 57,

58). In terms of clinical relevance, we recently reported that a

prognostic model with such a high predictive performance may be

a suitable decision aid tool to identify individuals likely to benefit

from n-3 FA supplementation in reducing plasma TG levels (57).

Nevertheless, such a predictive tool would need to be validated

first in a larger and heterogeneous cohort to be able to guide

treatment choices, and should emphasize sensitivity (identifying

actual responders) over specificity (accurately classifying non-

responders) to maximize the number of patients benefiting from

n-3 FA treatment. In any case, integrating quantitative phenotypes

may yield a more comprehensive insight into the magnitude and

patterns of response, facilitating a more precise interpretation of

the supplementation efficacy and aiding in targeted interventions.

Thus, future studies should explore the continuum of responses

to provide a deeper understanding of individual variations in the

context of n-3 FA supplementation and plasma TG modulation.

Both the host phenotype and genotype, as well as other

geographical and environmental factors, may influence the

microbial composition in taxa type and abundance (59). More

precisely, it was found that as much as 20% of the microbiota

variability was associated with diet, medication and body

composition (60). In any case, an in-depth study of the gut

microbiota is limited by the absence of fecal samples. Thus, future

studies are still needed to determine its role on the metabolic

heterogeneity observed in response to food consumption, as well

as the impact of diet on its composition, diversity and activity.

Finally, the complex interaction between genetics, environment,

lifestyle, and individual health characteristics also contribute to

the heterogeneity in the response to a nutritional intervention.

Exploring these factors through further researchmay help elucidate

the unrevealed variability in the plasma TG response to an n-3

FA supplementation.

5 Conclusion

In conclusion, identifying the underlying factors of the

interindividual variability observed in the metabolic response

to n-3 FA will make it possible to develop precision tools to

better prevent chronic societal diseases by modifying lifestyle

habits, including diet. In this study, metabolomic changes

resulted from n-3 FA supplementation showed a limited

impact on the metabolic response derived from it, as well

as on the predictive ability of this response. However, the

integration of multi-omics data still represents a promising

approach to cardiovascular disease prevention, and further efforts

including more comprehensive data, for example intestinal

metagenomics, may help to elucidate the yet unexplained inter-

individual variability observed in the metabolic response to n-3

FA supplementation.
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