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The aims of this proof of principle study were to compare two different 
chemometric approaches using a Bayesian method, Partial Least Square 
(PLS) and PLS-discriminant analysis (DA), for the prediction of the chemical 
composition and texture properties of the Grana Padano (GP) and Parmigiano 
Reggiano (PR) PDO cheeses by using NIR and Raman spectra and quantify their 
ability to distinguish between the two PDO and among their ripening periods. 
For each dairy chain consortium, 9 cheese samples from 3 dairy industries were 
collected for a total of 18 cheese samples. Three seasoning times were chosen 
for each dairy industry: 12, 20, and 36  months for GP and 12, 24, and 36  months 
for PR. A portable NIR instrument (spectral range: 950–1,650  nm) was used on 
3 selected spots on the paste of each cheese sample, for a total of 54 spectra 
collected. An Alpha300 R confocal Raman microscope was used to collect 10 
individual spectra for each cheese sample in each spot for a total of 540 Raman 
spectra collected. After the detection of eventual outliers, the spectra were also 
concatenated together (NIR  +  Raman). All the cheese samples were assessed 
in terms of chemical composition and texture properties following the official 
reference methods. A Bayesian approach and PLS-DA were applied to the NIR, 
Raman, and fused spectra to predict the PDO type and seasoning time. The 
PLS-DA reached the best performances, with 100% correctly identified PDO 
type using Raman only. The fusion of the data improved the results in 60% of 
the cases with the Bayesian and of 40% with the PLS-DA approach. A Bayesian 
approach and a PLS procedure were applied to the NIR, Raman, and fused 
spectra to predict the chemical composition of the cheese samples and their 
texture properties. In this case, the best performance in validation was reached 
with the Bayesian method on Raman spectra for fat (R2VAL  =  0.74). The fusion of 
the data was not always helpful in improving the prediction accuracy. Given the 
limitations associated with our sample set, future studies will expand the sample 
size and incorporate diverse PDO cheeses.
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1 Introduction

European PDO (Protected Designation of Origin) cheeses are 
outstanding examples of historic inheritance, which is characterized 
by diversity and tradition in the world of dairy production. These 
cheeses, which include renowned types like Parmigiano Reggiano 
(PR), Grana Padano (GP), Roquefort, and Manchego, are praised for 
their flavors that are closely connected to their geographic origins. 
Behind the artisanal craftsmanship and centuries-old traditions of 
PDO cheese production lies a complex interplay of chemical and 
physical processes. Spectroscopic techniques have emerged as 
indispensable tools in the scientific field, providing invaluable insights 
into the composition, structure, and quality of these dairy products 
(1). Among these techniques, Near Infrared (NIR) and Raman 
spectroscopy are the most used in the food industry for the 
quantification of crucial cheese components such as moisture, fat, and 
protein content (2–4), facilitating precise quality control, and for the 
identification and quantification of specific compounds responsible 
for flavor and aroma (5). The top selling PDO cheeses in the world are 
the Italian PR and GP, with total export value exceeding $1.2 billion 
and $650 million USD, respectively (6). Despite their reputation in the 
global market, monitoring their quality is a complex task involving 
several challenges. Spectroscopic techniques, while valuable, face 
specific issues when applied to these cheeses, in part because obtaining 
representative samples from the cheese wheels is not always easy and 
because developing accurate calibration models for spectroscopic 
analysis requires extensive data collection and validation (7). 
Moreover, as both cheeses are vulnerable to counterfeiting and 
fraudulent replication, spectroscopic techniques used for 
authentication must be robust to detect subtle differences between 
authentic and imitation products.

When spectroscopy is used, the instrument is also an important 
factor, and its choice depends, apart from available resources, on the 
specific goals of the analysis, the cheese type, and the desired level of 
detail in terms of composition prediction. For example, NIR is well-
suited for macronutrients, whereas Raman is more suitable for lipids, 
such as ester linkages in triglycerides and phosphodiester bonds in 
phospholipids. The presence of these functional groups results in 
unique Raman peaks, enabling the differentiation of the type of lipid 
(8–10). For these reasons, a combination of spectroscopic techniques 
has been proposed to improve the accuracy of composition trait 
predictions from cheese spectra (11–13). The performance of the 
models can be evaluated in different ways: use of latent variables, 
cumulative variance, standard error of calibration, standard error of 
cross validation, coefficient of determination, similarity map and 
salience dimension of common space, limit of detection, limit of 
quantification, linearity, model fit and uncertainties. The spectroscopic 
instrument and the chemometric approach used (and related setup of 
parameters and features) for predicting cheese composition or other 
traits of interest can impact the prediction accuracy. For example, 
while chemometric methods like Partial Least Squares Regression 
(PLSR), Principal Component Analysis (PCA), or Linear Regression 
models are more commonly used for the prediction of food (including 
cheese) composition and other traits (14), Bayesian approaches are 
less common but have gained attention in recent years due to their 
ability to handle complex data structures and to provide deeper 
insights into uncertainty and variable selection (15). However, the 
choice of chemometric method often depends on several factors, 
including also the expertise of the researchers.

Therefore, the aims of this study were to compare two different 
chemometric approaches using a Bayesian method and PLSR and PLS- 
PLS-Discriminant Analysis (PLS-DA) (i) for the prediction of the 
chemical composition and texture properties of the GP and PR PDO 
cheeses by using NIR and Raman spectra, (ii) and for their ability to 
distinguish between the two PDO and among their ripening periods.

2 Materials and methods

2.1 Experimental design

A total of 18 cheese samples were collected from 6 dairy plants 
comprised within the consortia of GP and PR dairy chain. Three dairy 
plants belonged to GP and three to PR PDO chains. For each dairy, 
three seasoning times were selected, and were 12, 20, and 36 months 
for GP and 12, 24, and 36 months for PR.

2.2 Collection of the spectra

A portable NIR instrument (Alba GraiNit, Padova, Italy), working 
within the spectral range 950–1,650 nm, was used on 3 selected spots 
of each cheese samplealong the radius of the cheese wheel (as 
indicated in Figure 1), for a total of 54 spectra collected. The spectra 
(average of 27 spectra within PDO type) are plotted in Figure 2A for 
Grana Padano and (Figure 2B) for Parmigiano Reggiano.

An Alpha300 R confocal Raman microscope (WITec, Ulm, 
Germany) was used to acquire the Raman spectra using a 532 nm laser 
at 40 mW and a 10x/0.25 objective. The integration time was 1 s and 
the number of accumulations 20. In this case, 10 individual spectra 
were collected for each cheese sample in each location (3 spots) for a 
total of 540 Raman spectra collected. The spectra (average of 270 
spectra within PDO type) are plotted in Figure 3A for Grana Padano 
and (Figure 3B) for Parmigiano Reggiano.

2.3 Composition analyses

The chemical composition (moisture, protein, lipids) was 
analyzed on all the cheese samples. Briefly, the cheese samples 
were grinded (Thermomix TM6, Vorwerk), and approximately 2 g 

FIGURE 1

Example of a cheese sample analyzed and related spots (1: paste 
near the crust; 2: middle sample paste; 3: core of the entire
cheese wheel).
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of grinded cheese sample was weighed and used for moisture and 
fat analysis using the microwave moisture analyzer (Smart 5 
Turbo) and Nuclear Magnetic Resonance (NMR) fat analyzer 
(CEM Corporation). The microwave moisture analyzer applies 
microwave radiation to the sample, causing the water molecules 
to heat up and evaporate. The moisture content is then determined 
by measuring the weight loss of the sample before and after the 
microwave treatment. For the determination of fat, the NMR can 
distinguish the signal produced by hydrogen protons present in 
fats from that produced by all other sources of protons in food 
matrices, such as carbohydrates and proteins. The instrument is 
validated according to the AOAC regulations [Peer-Verified 
Method 1:2004 according to (16)]. The protein content of cheese 
samples was determined by Kjeldahl method (17). The steps 
typically involve digestion of the sample with concentrated 
sulfuric acid, conversion of nitrogen to ammonium sulfate, and 
subsequent measurement of the ammonia produced. The protein 
content is then determined using the total nitrogen content.

2.4 Texture properties

Texture traits of all the cheese samples were determined using a 
Texture Analyzer (XT2i, Stable Micro Systems, Ltd., Godalming, 
Surrey, UK) with a Warner–Bratzler shear device [50 Newton (N) 

load cell; 2 mm/s crosshead speed]. For each cheese, 1 cylinder-
shaped core sample was taken (1 cm2 cross sectional area; 3 cm long). 
Texture data were reported as hardness (defined as the maximum 
shear force, expressed in N), adhesiveness (describes the work 
needed to overcome attractive force between food and other 
surfaces, expressed in N/s), resilience (which referred to the degree 
to which the cheese regains its original shape during the biting 
process, expressed in %), cohesiveness (the tendency of cheese to 
remain together, and resist breaking into several pieces, during 
compression), springiness (a measure of ability that the deformed 
cheese returned to the initial position after the removal of the force, 
expressed in %), gumminess (the energy required to disintegrate a 
semi-solid food to a state ready for swallowing, expressed in N), 
chewiness (the work needed to masticate a solid food to a state ready 
for swallowing, expressed in N/s), respectively.

2.5 Chemometric analyses

2.5.1 Editing of the spectra, data fusion and 
Bayesian models

Before data fusion and spectra analysis, each instrument’s raw 
absorbance values of each wavelength of the spectra were centered and 
scaled to a null mean and a unit variance. Then, samples having a large 
spectral distance (i.e., Mahalanobis distance >3) were considered 

FIGURE 2

Absorbance spectra (the solid lines represent the average absorbance and the broken lines the mean ± 1 SD) of NIR portable instrument for Grana 
Padano (GP) (A); Parmigiano Reggiano (PR) (B).

FIGURE 3

Absorbance spectra (the solid lines represent the average absorbance and the broken lines the mean ± 1 SD) of the Raman instrument for Grana 
Padano (GP) (A); Parmigiano Reggiano (PR) (B).
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outliers and removed from the calibration dataset. After scaling, the 
NIR and Raman spectra were concatenated and stored as single matrix 
to be used for the spectra analysis. This is called low-level data fusion 
(18, 19). No other mathematical preprocessing was applied to the 
spectra. The matrix comprises m-rows (number of individual samples) 
and n columns (measurement variables from each source). In this 
study, fusion data comprised a total of 2,000 variables with the Raman 
and NIR instrument contributing for 1,600 and 400 wavelengths, 
respectively.

The calibration models built using the Bayesian approach (15) 
were developed by using the Bayesian Generalized Linear Regression 
[BGLR; (20)] package, available in R software (21). Each trait was 
regressed to a new pool of wavelengths using the following equation:

 
y

j

t
= + +∑¼ x ² eij j i

Where μ is the overall mean, xij are the NIR, Raman or fused 
spectra’s x axis, i is the sample (from 1 to 54), t is the number of 
wavelengths of the studied spectra (400 for NIR and 1,600 for 
Raman), and j the wavelengths (950 to 1,650 nm for NIR, and 
from −50 to 4,000 rel cm−1 for Raman), βj are the regression 
coefficients, and ei is the residual assumed to be independently 
and identically distributed with a normal distribution with mean 
equal to 0 and variance equal to s2

e. The Bayes B model 
implemented in the package we  used incorporates prior 
information about the model parameters and updates this 
information based on the observed data to estimate the effects of 
wavelengths on the phenotypes (15).

2.5.2 Editing of the spectra and PLSR models
PLSR models were performed with the software Unscrambler 

(Aspen Tech, MA, USA). For the classification of the seasoning and 
PDO type of each cheese sample, PLS-DA models have been 
performed by Solo, version 9.2.1 (Eigenvector Research, Inc., 
Wenatchee, WA, USA). The different parameters were obtained from 
the different reference methods and were used as reference values for 
the model.

For the PLSR and PLS-DA model construction, from the total 54 
spectra, 36 were selected by the Kennard-Stone (21) algorithm and 
used as calibration samples and the following 18 were kept as 
validation set. By doing this, the final model will have the maximum 
spectral variability to reach the best prediction capability.

The spectral pretreatments used to construct the PLSR and 
PLS-DA models included standard normal variate (SNV) (22), 
used to correct baseline shifts and variations in intensity across 
spectra; Savitzky–Golay Derivatives with second-order 
polynomial fitting (1st D and 2nd D) (23), to reduce high-
frequency noise in a signal due to its smoothing properties and to 
reduce low-frequency signal (e.g., due to offsets and slopes) using 
differentiation and the second-order derivatives to highlight 
spectral features; smoothing (moving average, MA) (24); linear 
baseline correction (BLC) (25) and orthogonal signal correction 
(OSC), used to remove unwanted variations in the X- data that are 
unrelated to interest response (Y) (26). The selected pretreatments 
allowed the reduction of multiplicative effects derived from  

the physical characteristics of the samples and allowed the 
enhancement of the differences between spectra that will allow the 
performance of the desired classifications and quantitative 
models. The MA and BLC were necessary only for Raman spectra, 
as MA was useful to reduce the noise, whereas BLC corrected the 
curvature caused by the fluorescence effect.

2.5.3 Cross-validation models

2.5.3.1 Bayesian approach
For the classification of the seasoning and PDO type of each 

cheese sample and the prediction of the chemical composition and 
texture traits, a random cross-validation was applied, in which 80% of 
the total records were randomly selected and used to build the 
equation (calibration set; CAL), and the remaining 20% of records 
were used to test the model (validation set; VAL). To account for 
sample variability, the procedure was repeated 10 times for the 
classification and 5 times for the quantification. The results were 
averaged over the replicates. The standard deviation (SD) across the 
replicates was also calculated. The coefficient of determination (R2

VAL), 
the root mean squared error of validation (RMSEVAL) and relative error 
of prediction (RSEP%) were used to assess the models’ performances. 
As the Bayesian approach uses a linear regression model, it was 
necessary to establish a decision criterion for interpreting the 
predicted values. For the prediction of the PDO, the label were 
switched to numerical value (0 for GP and 1 for PR) and a critical 
threshold was set up at 0.5. All predicted value <0.5 are attributed to 
GP while values >0.5 are classified as PR. For the prediction of the 
seasoning time, the model used the numerical value in months and 
the predicted values were divided in 3 classes: “young” (<17 months), 
“mid” (17–28.5 months) and “old” (>28.5 months). The ranges were 
decided in order to distinguish the 3 seasoning times and allowing the 
comparison between PDO (as their seasoning time was not the same). 
The percentage of attribution of each class was also calculated to assess 
the model’s accuracy.

2.5.3.2 PLSR and PLS-DA approaches, and data fusion
Previously to any calibration or classification model an exploratory 

analysis was done to find the combination of pretreatments that 
provided better discrimination between PDO and ripening 
times classes.

For each instrument, prior to data fusion and spectra analysis, 
the raw absorbance values of each wavelength of the spectra were 
centered and scaled to a null mean and a unit variance. Then, 
samples having a large spectral distance (i.e., Mahalanobis 
distance >3) were considered outliers and removed from the 
calibration dataset. After scaling, the NIR and Raman spectra 
were concatenated and stored as a single spectra matrix that 
could be  used for the spectra analysis. The matrix comprises 
m-rows (number of individual samples) and n columns 
(measurement variables from each source). Fusion data 
comprised a total of 2,000 variables, with the Raman and NIR 
instruments contributing for 1,600 and 400 wavelengths, 
respectively. Calibration models were constructed using the PLSR 
algorithm and internally validated by cross-validation (the leave-
one-out method for PLSR and venetian blinds for PLS-DA). The 
coefficient of determination (R2

VAL), the root mean squared error 
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of validation (RMSEVAL) and relative error of prediction (RSEP%) 
were used to assess the models’ performances.
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Where yi is the reference value for validation set sample i, ŷi is the 
predicted value for validation set sample i, and n is the number of 
samples in the validation set.

The optimum number of latent variables was determined from a 
plot of the explained variance against the number of factors. Then, the 
initial model was refined by selecting those factors resulting in the 
lowest relative standard error for prediction (RSEP%), bias, and SD for 
the validation set.

For the classification, the percentage of attribution of each class 
was also calculated to assess the model’s accuracy.

Then, a permutation tests were conducted on the Bayesian and 
PLS models to assess their predictive performance and rule out 
potential overfitting to the spectral data’s inherent structure. The tests 
involved randomly shuffling the class labels (PDO and age) 500 times 
and refitting the models to each shuffled dataset. From this test 
we constructed a null distribution representing the range of outcomes 
expected under the assumption of no true relationships between the 
spectral data and the class labels. A key indicator of a model’s genuine 
predictive ability is its performance relative to this null distribution. If 
only a small percentage of the permuted datasets yields results 
comparable to or better than those of the original model, it suggests 
that the original model’s performance is unlikely to be attributable to 
chance associations or overfitting. Instead, it provides evidence that 
the model has successfully captured meaningful patterns in the 
spectral data that are genuinely predictive of the class labels (27). Since 
only 2% of the permutations yielded results comparable to or better 
than those of the original Bayesian models for all spectral matrices, 
and none of the permutations achieved results similar to the developed 
PLS model (data not shown), the results will not be further discussed, 
as the model actually predicted the class label (PDO or age) from the 
spectral data, without overfitting to a casual structure of the data.

3 Results and discussion

3.1 Prediction of seasoning and PDO type: 
Bayesian vs. PLS-DA across different type 
of spectra

Table 1 reports the descriptive statistics for composition traits and 
texture properties of the two types of PDO cheeses: PR and GP PDO 
cheeses. As regards to the chemical composition, the PR had a slightly 
higher moisture content (27.5%) compared to GP (26.7%), with 

similar CV (9 and 8%, respectively, for PR and GP). Moreover, PR 
contained more fat (33.7%) and less protein (34.3%) contents, 
compared to GP (30.1 and 32.4%, respectively, for fat and protein). 
Regarding texture properties, the hardness of both cheeses was similar, 
with PR having a mean hardness of 18.38 N and GP of 18.33 N. The 
CV values were relatively high, indicating some variability within each 
cheese type (15 and 19%, respectively) probably due to the wide range 
of seasoning of the analyzed samples. Adhesiveness refers to the ability 
of a cheese sample to stick or adhere to surfaces. Parmigiano Reggiano 
showed higher adhesiveness (−0.76 N/s) compared to GP (−0.47 N/s). 
Both had negative values, indicating that the cheese sample exhibited 
a low tendency to stick or adhere to surfaces. This can be a desirable 
characteristic for some types of cheese, like the hard ones. The CV was 
high (30 and 66%, respectively), which could be due to the different 
ripening times within each PDO cheese. Both cheeses exhibited 
similar resilience values (9.30 and 9.20%, respectively, for PR and GP) 
with higher CV for GP (9 and 14%, respectively). Cohesiveness 
quantifies the degree to which a cheese sample resists falling apart or 
fragmenting when it is bitten, chewed, or compressed. It provides 
insights into the cheese’s ability to maintain its integrity and internal 
structure during consumption, and from this point of view the two 
PDO had similar values (0.27 and 0.26, respectively, for PR and GP). 
As regards to springiness, this was higher in GP (54.8%) compared to 
PR (47.3%), with also higher CV (27 and 20%, respectively). Both 
cheeses had similar gumminess values (4.98 N and 4.87 N, respectively, 
for PR and GP), with higher CV for GP (23 and 28%, respectively). 
Grana Padano was also slightly chewier (2.82 N/s) than PR (2.45 N/s), 
with also higher CV (51 and 42%, respectively).

3.2 Prediction of seasoning and PDO type: 
Bayesian vs. PLS-DA across different type 
of spectra

Tables 2, 3 show the numbers of correctly and wrongly 
identified samples for the seasoning and PDO type by using the 
Bayes B model (Table 2) and the PLS-DA model (Table 3) with 
NIR, Raman and fused (NIR + Raman) spectra, respectively. 
Regarding the seasoning and PDO identification (Table 2), the NIR 
technique performed relatively well with accuracy ranging from 
75% (Young) to 90% (Mid) and with a correct % of identification 
of 69% for GP and 59% for PR. The Raman performed poorly on 
the seasoning time, with a correct identification of 12 and 17%, 
respectively, for young and old ripening times, but achieved better 
results for mid seasoning (83%). The exact reasons for the observed 
performances can be multifaceted. However, some potential factors 
contributing to the poor results for young and old ripening times, 
when using a Bayesian approach, could include the dataset size, as 
in a small dataset, the observed information may not 
be comprehensive enough to fully capture the complexity of the 
relationship between Raman spectra and the ripening times of 
cheese. For the PDO identification, Raman achieved 83% accuracy 
for GP and 78% for PR. Regarding the results from the data fusion, 
this is the first work the authors are aware of, presenting results 
about data fusion on the prediction of PDO type and seasoning 
time. The spectra fusion provided consistent results with accuracies 
from 64 to 77% for the seasoning time, and high accuracy for both 
GP and PR (89%). As regards to PLS-DA used for the seasoning 
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TABLE 2 Identification of seasoning and PDO using the Bayes B Model 
with NIR, Raman, and Fused Spectra.

Correctly 
identified

Wrongly 
identified

% of 
identification

NIR

Seasoning1

Young 26 8 75

Mid 27 3 90

Old 27 9 77

PDO2

GP 37 17 69

PR 27 19 59

Raman

Seasoning

Young 4 30 12

Mid 25 5 83

Old 6 30 17

PDO

GP 45 9 83

PR 36 10 78

Fused

Seasoning

Young 26 8 77

Mid 23 7 77

Old 23 13 64

PDO

GP 48 6 89

PR 41 5 89

1Seasoning: young = 12 months; mid = 24 months; old = 36 months; 2 PDO: GP = Grana 
Padano; PR = Parmigiano Reggiano.

identification (Table  3), NIR achieved relatively high accuracy, 
ranging from 66 to 88%. For the PDO identification, NIR achieved 
perfect accuracy (100%) for GP and high accuracy (88%) for 
PR. Raman exhibited moderate accuracy, ranging from 50 to 75% 
for the seasoning time, but it achieved 100% accuracy for both 
PDO cheeses. The fusion of the spectra provided good accuracy, 
from 66 to 83% for the identification of the seasoning time, and 
was excellent for GP (100%) and good (77%) for PR. Comparing 
the two chemometric approaches, the Bayes B Model achieved very 
good accuracy for some categories within seasoning and PDO type 
but overall, the PLS-DA models consistently outperformed the 
Bayes B in terms of accuracy across all the instruments (NIR, 
Raman, and fused spectra). In particular, PDO identification using 
the PLS-DA models showed very high accuracy, with GP being 
correctly identified at 100% in all three type of spectra. As reported 
by Silva et al. (28), the chemometric methods most commonly used 
for the differentiation between cheese samples by origin, were 
mainly linear discriminant analysis, principal component analysis 
and the PLS-DA methods. For example, Karoui et al. (29) reached 
a 91% classification rate to determine the geographic origin of 
Gruyère PDO and L’Etivaz PDO Swiss cheeses. Yet again, in the 
study by Ottavian et al. (30), the use of PLS-DA demonstrated its 
value in differentiating NIR spectra in relation to the production 
period of Asiago d’Allevo cheeses, yielding 100% correct 
classification. A result that is comparable to that attained with the 
direct assessment of chemical properties. On the contrary, the 
Bayesian methods have not yet been applied to the infrared spectra 
of dairy products for the authentication of cheeses or 
discrimination purposes. However, Li Vigni et al. (31) used a class-
modeling applied to Raman spectra of Parmigiano Reggiano PDO 
cheese samples to discriminate it from other cheese types. Their 
preliminary results were promising, showing sensitivity and 
specificity of 100% for the test set. In the case of data fusion, 
comparing the results from the integration of the spectra from NIR 

and Raman and the individual techniques, it comes that, when 
using the Bayesian model, the fusion of the data increased the 
performances in the prediction of the early seasoning (<12 months) 
and the identification of the PDO type. For the mid and old 
seasoning, the data fusion did not improve (mid seasoning, 77% 
vs. 90 and 83%, respectively, for fused vs. NIR and Raman) or 
improved only partially (old seasoning, 17% for Raman) the 
correct % of identification (Table 2). When using PLS-DA, the data 
fusion had the best prediction accuracy for the mid and old 
seasoning, improved the prediction over Raman for the early 
seasoning, did not change for the GP, and reduced the correct % of 
identification for PR (Table 3). It is interesting to note that in some 
cases, the fusion was not helpful to the improvement of the 
prediction accuracy, and this could be due to the fact that NIR and 
Raman may capture similar information about the sample that can 
be  redundant, which in turn does not provide additional 
information (32). Other studies applied NIR and Raman spectra 
fusion for food authentication in other matrices: Márquez et al. 
(33) tested two data fusion strategies (mid and high level) 
combined with a multivariate classification approach for the 

TABLE 1 Descriptive statistics (Mean  ±  SD, and CV) of composition and 
texture properties of Parmigiano Reggiano and Grana Padano cheese 
samples.

PDO cheese

Parmigiano 
reggiano

Grana padano

Chemical composition, % Mean CV Mean CV

Moisture 27.5(±2.6) 9 26.7(±2.1) 8

Fat 33.7(±1.3) 4 30.1(±2.9) 10

Protein 32.4(±3.0) 9 34.3(±2.0) 6

Texture properties

Hardness, N 18.38(±2.8) 15 18.33(±3.4) 19

Adhesiveness, N/s −0.76(±0.2) 30 −0.47(±0.0.3) 66

Resilience, % 9.30(±0.8) 9 9.20(±1.3) 14

Cohesiveness 0.27(±0.03) 11 0.26(±0.1) 19

Springiness, % 47.3(±9.4) 20 54.8(±14.6) 27

Gumminess, N 4.98(±1.2) 23 4.87(±1.4) 28

Chewiness, N/s 2.45(±1.0) 42 2.82(±1.4) 51
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identification of adulteration of hazelnut paste with almond. Their 
sensitivity and specificity values were between 96–100% and 
88–100% for the mid- and high-level data fusion strategies, 
respectively. Wang et al. (34) developed chemometric models using 
Vis–NIR and Raman spectral data fusion for the assessment of 
commercial infant formula storage temperature and time, with a 
RMSEVAL of 0.7 for the mid-level data fusion to predict storage time 
at both 20° and 37°C. Again, Bragolusi et  al. (19) in their 
preliminary study on the differentiation of Italian and Greek extra 
virgin olive oil, they merged NIR and Raman spectra by low and 
mid-level fusion and submitted to PLS-DA analysis. In cross-
validation the accuracy was 94% for the low-level and 97% for the 
mid-level fusion.

3.3 Prediction of chemical composition 
and texture properties: Bayesian vs. PLSR 
for NIR

Tables 4, 5 report the prediction statistics of the composition 
and texture properties of cheese deriving from the Bayesian and 

PLSR procedures using NIR spectra from the cheese samples. As 
regards the Bayesian approach (Table 4), the R2

CAL values for fat, 
protein, and moisture ranged from 0.11 (fat) to 0.50 (moisture), with 
quite high SD (from ±0.05 to ±0.13), suggesting substantial 
variability in the model’s performance. Indeed, the errors of 
calibration were also high (from 1.57 to 2.91% for RMSECAL and 
from 5.8 to 9.2% for RSEC%). Obviously, the results in the validation 
set were not accurate enough to be used at the dairy industry level, 
with R2

VAL < 0.50 within composition traits and high RSEP% (from 
8 to 9%). Results from the texture properties were even worse, 
especially if we consider that the R2

CAL values were lower than the 
R2

VAL values. This fact could be due to the randomness in the data 
split (35) and/or the small sample size and/or to overfitting due to 
the complexity of the model (36). It is worth mentioning that the 
effectiveness of a chosen approach (Bayesian of PLSR in this study) 
depends on the specific characteristics of the data and the nature of 
the trait to be predicted. In some cases, Bayesian modeling with 
informative priors can provide valuable insights even with small 
datasets, as well as PLSR may be  a more practical and less 
computationally demanding option. Indeed, results from the PLSR 
procedure (Table  5) generally showed better results than the 
Bayesian approach. Overall, the R2

CAL ranged from 0.37 (chewiness) 
to 0.89 (protein) with lower RSEC% (from 2.4 to 39%) compared to 
the Bayesian approach (RSEC% from 5.8 to 43%; Table 4). The R2

VAL 
values were good for moisture (0.69) and fat (0.63), with generally 
higher values compared to the Bayesian model, although for some 
traits, the R2

VAL was higher than the R2
CAL (adhesiveness). Comparing 

the two chemometric approaches, the Bayes B model using NIR 
spectra appeared to have some limitations in predicting both the 
composition and texture properties of cheese. The model’s 
performance varied across different traits, but with generally low R2 
values and relatively high errors. This suggests that the model may 
require further refinement or the inclusion of additional features to 
improve its predictive accuracy for these cheese properties. In 
contrast, the PLSR procedure using NIR spectra appeared to 
be more effective in predicting both the composition and texture 
traits of cheese. However, these results may, in part, be attributed to 
the inherent constraints associated with the small sample size, 
underscoring the importance of considering the potential impact of 
limited data in interpreting the predictive capabilities of the model. 
There is an extensive amount of literature on the application of PLSR 
and NIR spectroscopy to the prediction of cheese chemical 
composition. In diverse kinds of cheeses and curds, all predictions 
of fat and the majority of predictions of protein and moisture/dry 
matter can be  deemed excellent [R2 > 0.90; (37–39)]. NIR 
spectroscopy is, therefore highly suitable for predicting main 
chemical components like fat, protein, and moisture, and it has also 
been proved to be  effective for monitoring the compliance of 
nutritional labels with EU tolerance limits of a wide varety of food 
products (40). However, it is not stable for predicting chemicals with 
small amounts in cheese products [e.g., minerals, fatty acids; (41)] 
since the amount of chemicals can alter the accuracy of prediction. 
NIR has a great degree of spectrum stability, which has made it quite 
popular at the industry level (42). However, literature related to NIR 
spectroscopy for cheese quality evaluation has become less in recent 
years (43) because applications for evaluating other attributes are 
inadequate, and innovative chemometric methods are not 
extensively used in research.

TABLE 3 Identification of seasoning and PDO using the PLS-DA Models 
with NIR, Raman, and Fused Spectra.

Correctly 
identified

Wrongly 
identified

% of 
identification

NIR

Seasoning1

Young 7 1 88

Mid 4 2 66

Old 4 1 80

PDO2

GP 10 0 100

PR 8 1 88

Raman

Seasoning

Young 3 2 60

Mid 6 2 75

Old 3 3 50

PDO

GP 11 0 100

PR 0 8 100

Fused

Seasoning

Young 2 1 66

Mid 7 2 77

Old 5 1 83

PDO

GP 10 0 100

PR 7 2 77

1Seasoning: young = 12 months; mid = 24 months; old = 36 months; 2 PDO: GP = Grana 
Padano; PR = Parmigiano Reggiano.
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TABLE 5 Prediction statistics of composition and texture properties of cheese deriving from the PLS regression procedure using NIR spectra from paste cheese samples.

NIR
Composition Texture

Fat Protein Moisture Adhesiv. Chewiness Cohesiv. Gumminess Hardness Resilience Springiness

Prediction statistics1

R2
CAL 0.86 0.89 0.70 0.42 0.37 0.47 0.67 0.52 0.42 0.55

RMSECAL 1.09 0.88 1.24 0.23 1.12 0.03 0.81 2.14 0.82 8.06

RSEC% 3.4 2.4 4.6 34.2 39.6 11.4 22.7 12.0 9.0 16.0

Slope 0.86 0.89 0.70 0.42 0.37 0.47 0.67 0.52 0.42 0.55

R2
VAL 0.63 0.33 0.69 0.44 0.17 0.29 0.14 0.20 0.18 0.49

RMSEVAL 1.68 2.12 1.37 0.23 0.76 0.03 0.94 2.79 0.89 10.26

RSEP% 5.4 6.7 4.99 37.5 27.6 11.5 18.8 14.00 9.4 17.9

Bias 0.03 −0.08 0.28 −6.55 −17.25 0.01 340.34 −844.69 −0.09 −0.08

1R2 CAL and R2
VAL, coefficient of determination for the calibration and the validation; RMSECAL and RMSEVAL, Root Mean Square error for the calibration and validation; RSEC% and RSEP%, Relative error for the calibration and the validation; Slope of the calibration 

equation; Prediction bias, average difference between the predictions and the labels in dataset in absolute value.

TABLE 4 Prediction statistics (Mean  ±  SD of the 5 replicates) of composition and texture properties of cheese deriving from the Bayesian model Cross-Validation procedure using NIR spectra from paste cheese 
samples.

NIR
Composition Texture

Fat Protein Moisture Adhesiv. Chewiness Cohesiv. Gumminess Hardness Resilience Springiness

Prediction statistics1

R2
CAL 0.11 ± 0.05 0.39 ± 0.10 0.50 ± 0.13 0.22 ± 0.05 0.16 ± 0.09 0.01 ± 0.21 0.11 ± 0.05 0.08 ± 0.03 0.20 ± 0.16 0.26 ± 0.14

RMSECAL 2.91 ± 0.33 2.18 ± 0.15 1.57 ± 0.24 0.28 ± 0.01 1.05 ± 0.19 0.03 ± 0.01 1.11 ± 0.12 2.58 ± 0.48 0.95 ± 0.15 10.56 ± 1.60

RSEC% 9.20 ± 2.0 6.60 ± 0.5 5.80 ± 0.9 43.4 ± 1.7 41.4 ± 7.3 12.3 ± 3.1 23.0 ± 2.6 14.3 ± 2.7 10.4 ± 1.7 21.0 ± 3.2

Slope −1.00 ± 1.96 0.33 ± 0.52 0.57 ± 1.15 0.23 ± 2.19 0.01 ± 3.07 1.73 ± 3.80 −0.72 ± 2.47 −2.13 ± 2.92 −0.97 ± 1.74 0.93 ± 2.27

R2
VAL 0.12 ± 0.15 0.25 ± 0.32 0.47 ± 0.31 0.24 ± 0.21 0.37 ± 0.23 0.59 ± 0.29 0.25 ± 0.33 0.29 ± 0.32 0.34 ± 0.21 0.54 ± 0.26

RMSEVAL 2.89 ± 1.31 2.58 ± 0.71 2.41 ± 0.82 0.18 ± 0.07 1.50 ± 0.59 0.06 ± 0.03 1.56 ± 0.48 3.61 ± 1.31 1.51 ± 0.49 13.52 ± 5.86

RSEP% 9.10 ± 4.1 7.80 ± 2.1 8.90 ± 3.0 28.9 ± 11.1 58.8 ± 23.3 20.6 ± 9.3 32.3 ± 9.9 20.0 ± 7.3 16.4 ± 5.3 26.9 ± 11.7

Bias −0.68 ± 3.12 0.69 ± 2.63 0.64 ± 2.50 0.00 ± 0.20 0.55 ± 1.53 0.02 ± 0.06 0.70 ± 1.50 1.47 ± 3.60 0.34 ± 0.21 0.54 ± 0.26

1R2 CAL and R2
VAL, coefficient of determination for the calibration and the validation ± Standard Deviation; RMSECAL and RMSEVAL, Root Mean Square error for the calibration and validation ± Standard Deviation; RSEC% and RSEP%, Relative error for the calibration 

and the validation ± Standard Deviation; Slope of the calibration equation ± Standard Deviation; Prediction bias, average difference between the predictions and the labels in dataset in absolute value ± Standard Deviation.
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3.4 Prediction of chemical composition 
and texture properties: Bayesian vs. PLSR 
for Raman

Tables 6, 7 report the prediction statistics of composition and 
texture properties of cheese deriving from the Bayesian and PLSR 
procedures, respectively, using Raman spectra from the cheese 
samples. As regards the Bayesian approach (Table 6), the R2

CAL values 
for composition traits ranged from 0.28 (protein) to 0.72 (fat) and 
were higher compared to the R2

CAL values obtained with the same 
procedure using NIR spectra (Table 4). The errors of calibration were 
still high (from 1.58 to 2.58% for RMSECAL and from 5.8 to 7.7% for 
RSEC%), but in the case of fat, the error was-3% lower than RSEC% 
of fat predicted with the same procedure applied to the NIR spectra. 
The results in the validation set were good, with R2

VAL ranging from 
0.46 (moisture) to 0.74 (fat) within composition traits, although 
RSEP% were still high (from 5 to 9%). Fat percentage was the trait 
predicted at best with the highest R2

VAL (0.72) and the lowest RSEP% 
(5.3%). Indeed, it is acknowledged that fat molecules, which are 
primarily composed of carbon-hydrogen (C-H) bonds and carbon–
carbon (C-C) bonds, exhibit characteristic vibrational modes that are 
readily detected by Raman spectroscopy. The vibrational frequencies 
of these bonds are unique to fats, providing a distinct Raman signature 
(44, 45). On the contrary, fitting statistics for the texture properties 
were poor, with R2

CAL values ranging from 0.19 to 0.43 and high 
calibration errors. Consequently, results in validation were not 
satisfactory, with R2

VAL values from 0.08 to 0.45. As aforementioned, 
this could be due to the randomness in the data split, the small sample 
size, and/or to overfitting due to the complexity of the model (35, 36). 
Moreover, compared to the same approach applied to the NIR spectra 
(Table  4), texture properties were worse predicted using the 
Raman spectra.

Results from the PLSR procedure (Table  7) generally showed 
better results than the Bayesian approach. The R2

CAL ranged from 0.59 
(protein) to 0.93 (moisture) with lower RSEC% (from 1.1 to 4.8%) 
compared to the Bayesian approach, as well as for texture properties, 
whose R2

CAL ranged from 0.64 to 0.99. Although the calibration 
statistics were satisfactory, the R2

VAL values were > 0.50, only for half of 
the traits examined. Compared to the fitting statistics using the same 
approach applied to the NIR spectra, the use of Raman spectra showed 
better results, both in terms of composition and texture properties and 
in general, also compared to the use of NIR and Raman spectra with 
the Bayesian models. Raman spectroscopy is less used than NIR 
spectroscopy, but it has gradually become a new analytical method for 
the structure identification of substances (46). In the dairy cheese 
industry field, Raman spectra were used to discriminate adulterated 
spreadable cheese with 100% accuracy and 95% confidence and to 
predict starch content with R2

VAL of 0.98 (12). Recently, Zhang et al. 
(47) combined Raman spectroscopy with a machine learning model 
for cheese product identification, with an average identification 
accuracy rate of 98%.

3.5 Prediction of chemical composition 
and texture properties: Bayesian vs. PLSR 
for fused spectra

There are no studies in the literature on integrating spectrum 
signals derived from various spectroscopic techniques or comparing 

different chemometric procedures at the dairy sector level. However, 
data fusion is a developing practice since collecting spectral data is 
becoming easier. The primary goal is to optimize the information 
gathered in order to take advantage of the synergies between the 
various types of information provided by diverse approaches (48). 
Data fusion can be  done using low, mid, or high-level fusion 
techniques. Low-level data fusion involves the direct fusion (e.g., 
simple concatenation) of raw data from several sources. Tables 8, 9 
report the prediction statistics of composition and texture properties 
of cheese deriving from the Bayesian and PLSR procedures, 
respectively, using the fused spectra (NIR + Raman) from the cheese 
samples. As also proved by the results above, different spectroscopic 
techniques can provide complementary information about a sample 
(e.g., chemical composition, structure). Therefore, integrating data 
sources from different spectroscopic techniques can provide a more 
comprehensive understanding of the cheese quality, and also increase 
the robustness of a prediction model (33, 49). As regards the Bayesian 
approach (Table 8), the R2

CAL values for composition traits ranged 
from 0.59 (protein) to 0.93 (moisture) and were much higher 
compared to the R2

CAL values obtained with the same procedure using 
NIR and Raman spectra (Tables 4, 6). The R2

VAL of composition traits 
improved with respect to the NIR prediction (0.41, 0.30, and 0.53 of 
fused vs. 0.12, 0.25, and 0.47 of NIR, respectively, for fat, protein, and 
moisture) and with respect to the moisture content predicted by using 
Raman spectra (R2

VAL = 0.46). Results in calibration for texture 
properties were also much more improved (R2

CAL ranging from 0.18 
to 0.49) with also lower errors (RSEC% from 10 to 41%) compared to 
NIR spectra, whereas if compared to the Raman, the R2

CAL values were 
lower, with similar errors. In validation, some texture traits benefited 
from the fusion of the spectra from the two instruments (e.g., hardness 
and resilience), whereas others were better predicted with NIR (e.g., 
adhesiveness, cohesiveness, springiness) or Raman (e.g., chewiness, 
gumminess) only. So, the fusion of the two techniques (NIR and 
Raman) with the Bayesian model tended to have moderate calibration 
and prediction performance across most attributes, with some 
variation in the quality of results. This might be  the result of the 
complementing information that NIR and Raman provide regarding 
the structure and composition of the cheese, as well as the possibility 
that the performance of the model is impacted by the variability in the 
cheese samples and the quality of the spectroscopic data. However, 
Raman spectra generally outperformed both fused and NIR spectra, 
with higher R2

CAL and R2
VAL values and lower RMSEVAL and RSEP% for 

several attributes. The NIR spectra exhibited the lowest calibration 
and prediction performance compared to the other two types 
of spectra.

Results from the PLSR procedure (Table 9) generally showed 
good results but worse results compared to the Bayesian approach 
using the fused spectra. The R2

CAL values for composition traits 
ranged from 0.54 (moisture) to 0.86 (protein), although the 
RSEC% were better (from 3 to 5%) compared to the Bayesian 
approach. In validation, the accuracy of the PLSR was still worse 
than the Bayesian (R2

VAL from 0.15 to 0.42). The model for texture 
properties was better in calibration (R2

CAL from 0.19 to 0.77) than 
the Bayesian but with scanty predictive accuracy (R2

VAL from 0.02 
to 0.23). Comparing the three techniques using the PLSR method, 
the results from the Raman spectra generally exhibited higher 
R2

CAL and R2
VAL values compared to fused and NIR spectra, 

indicating better calibration and predictive ability for most 
attributes. Raman spectra also had lower RSEC% and RSEP% 
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TABLE 6 Prediction statistics (Mean  ±  SD of the 5 replicates) of composition and texture properties of cheese deriving from the Cross-Validation procedure using Raman spectra from paste cheese samples.

Raman
Composition Texture

Fat Protein Moisture Adhesiv. Chewiness Cohesiv. Gumminess Hardness Resilience Springiness

Prediction statistics1

R2
CAL 0.72 ± 0.07 0.28 ± 0.06 0.64 ± 0.12 0.26 ± 0.08 0.38 ± 0.15 0.41 ± 0.10 0.29 ± 0.16 0.19 ± 0.07 0.41 ± 0.15 0.43 ± 0.07

RMSECAL 1.89 ± 0.30 2.58 ± 0.10 1.58 ± 0.24 0.27 ± 0.02 1.02 ± 0.14 0.03 ± 0.01 1.08 ± 0.14 2.47 ± 0.40 0.97 ± 0.09 10.29 ± 0.68

RSEC% 5.9 ± 1.0 7.7 ± 0.3 5.8 ± 0.9 41.7 ± 3.0 40.3 ± 5.7 12.2 ± 2.0 22.4 ± 3.0 13.7 ± 2.2 10.5 ± 1.0 20.5 ± 1.4

Slope 0.12 ± 0.15 0.25 ± 0.32 0.47 ± 0.31 0.51 ± 1.59 5.89 ± 6.75 0.78 ± 3.54 −4.25 ± 3.47 −1.81 ± 2.05 −0.52 ± 7.65 2.58 ± 2.94

R2
VAL 0.74 ± 0.17 0.50 ± 0.28 0.46 ± 0.31 0.18 ± 0.16 0.39 ± 0.35 0.16 ± 0.16 0.42 ± 0.37 0.08 ± 0.06 0.14 ± 0.12 0.45 ± 0.43

RMSEVAL 1.69 ± 1.11 2.49 ± 0.35 2.52 ± 0.81 0.22 ± 0.06 1.47 ± 0.47 0.05 ± 0.02 1.53 ± 0.50 3.61 ± 1.24 1.16 ± 0.22 12.27 ± 2.23

RSEP% 5.3 ± 3.5 7.5 ± 1.1 9.3 ± 3.0 35.1 ± 8.9 56.7 ± 18.5 19.8 ± 6.4 31.7 ± 10.3 20.0 ± 6.9 12.6 ± 2.4 24.4 ± 4.4

Bias −0.97 ± 1.75 0.51 ± 2.53 0.58 ± 2.62 0.00 ± 0.27 0.53 ± 1.44 0.02 ± 0.05 0.61 ± 1.51 1.36 ± 3.62 0.09 ± 1.20 4.27 ± 11.97

1R2 CAL and R2
VAL, coefficient of determination for the calibration and the validation ± Standard Deviation; RMSECAL and RMSEVAL, Root Mean Square error for the calibration and validation ± Standard Deviation; RSEC% and RSEP%, Relative error for the calibration 

and the validation ± Standard Deviation; Slope of the calibration equation ± Standard Deviation; Prediction bias, average difference between the predictions and the labels in dataset in absolute value ± Standard Deviation.

TABLE 7 Prediction statistics of composition and texture properties of cheese deriving from the PLS regression procedure using Raman spectra from paste cheese samples.

Raman
Composition Texture

Fat Protein Moisture Adhesiv. Chewiness Cohesiv. Gumminess Hardness Resilience Springiness

Prediction statistics1

R2
CAL 0.86 0.59 0.93 0.64 0.99 0.82 0.88 0.96 0.96 0.88

RMSECAL 1.15 1.82 0.62 0.19 0.14 0.02 0.43 0.54 0.19 4.30

RSEC% 1.1 4.8 2.3 30.3 4.8 6.2 8.5 2.9 2.1 8.0

Slope 0.86 0.59 0.93 0.64 0.99 0.82 0.88 0.96 0.96 0.88

R2
VAL 0.52 0.48 0.48 0.25 0.59 0.63 0.25 0.51 0.49 0.63

RMSEVAL 1.75 1.89 1.50 0.25 0.83 0.03 1.08 2.61 0.84 7.92

RSEP% 5.4 6.2 5.6 33.6 29.6 9.8 21.6 14.2 9.1 15.7

Bias 0.28 −0.84 0.08 −0.40 57.79 0.01 117.33 83.68 0.04 −0.80

1R2 CAL and R2
VAL, coefficient of determination for the calibration and the validation; RMSECAL and RMSEVAL, Root Mean Square error for the calibration and validation; RSEC% and RSEP%, Relative error for the calibration and the validation; Slope of the calibration 

equation; Prediction bias, average difference between the predictions and the labels in dataset in absolute value.
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TABLE 8 Prediction statistics (Mean  ±  SD of the 5 replicates) of composition and texture properties of cheese deriving from the Cross-Validation procedure using fused NIR and Raman spectra from paste cheese 
samples.

Fused
Composition Texture

Fat Protein Moisture Adhesiv. Chewiness Cohesiv. Gumminess Hardness Resilience Springiness

Prediction statistics1

R2
CAL 0.77 ± 0.13 0.58 ± 0.09 0.75 ± 0.11 0.32 ± 0.06 0.32 ± 0.07 0.39 ± 0.13 0.20 ± 0.08 0.18 ± 0.06 0.41 ± 0.09 0.49 ± 0.09

RMSECAL 1.79 ± 0.30 1.96 ± 0.21 1.16 ± 0.26 0.26 ± 0.01 1.00 ± 0.18 0.03 ± 0.01 1.08 ± 0.13 2.47 ± 0.44 0.93 ± 0.13 9.31 ± 1.41

RSEC% 5.90 ± 1.0 7.70 ± 0.3 5.80 ± 0.9 40.8 ± 1.5 39.4 ± 7.2 11.6 ± 3.1 22.4 ± 2.7 13.7 ± 2.4 10.2 ± 1.4 18.5 ± 2.8

Slope 1.09 ± 0.96 0.53 ± 0.33 0.74 ± 0.70 0.35 ± 0.89 −1.10 ± 3.41 −0.13 ± 2.86 −3.26 ± 2.56 −4.75 ± 7.47 −2.73 ± 3.35 0.61 ± 1.49

R2
VAL 0.41 ± 0.25 0.30 ± 0.33 0.53 ± 0.41 0.19 ± 0.19 0.29 ± 0.34 0.34 ± 0.43 0.39 ± 0.29 0.49 ± 0.45 0.57 ± 0.32 0.37 ± 0.29

RMSEVAL 2.58 ± 1.03 2.37 ± 0.54 1.83 ± 0.96 0.21 ± 0.04 1.48 ± 0.57 0.05 ± 0.02 1.58 ± 0.49 3.71 ± 1.25 1.35 ± 0.32 12.65 ± 4.80

RSEP% 8.10 ± 3.2 7.10 ± 1.6 6.70 ± 3.5 32.6 ± 5.8 58.1 ± 22.2 19.9 ± 8.6 32.6 ± 10.2 20.6 ± 6.9 14.7 ± 3.4 25.2 ± 9.5

Bias −1.24 ± 2.51 0.52 ± 2.42 0.87 ± 1.87 0.02 ± 0.21 0.60 ± 1.48 0.02 ± 0.06 0.68 ± 1.53 1.39 ± 3.71 0.16 ± 1.40 5.24 ± 12.61

1R2 CAL and R2
VAL, coefficient of determination for the calibration and the validation ± Standard Deviation; RMSECAL and RMSEVAL, Root Mean Square error for the calibration and validation ± Standard Deviation; RSEC% and RSEP%, Relative error for the calibration 

and the validation ± Standard Deviation; Slope of the calibration equation ± Standard Deviation; Prediction bias, average difference between the predictions and the labels in dataset in absolute value ± Standard Deviation.

TABLE 9 Prediction statistics of composition and texture properties of cheese deriving from the PLS procedure using Fused Spectra from paste cheese samples.

Fused
Composition Texture

Fat Protein Moisture Adhesiv. Chewiness Cohesiv. Gumminess Hardness Resilience Springiness

Prediction statistics1

R2
CAL 0.82 0.86 0.54 0.77 0.39 0.62 0.19 0.42 0.53 0.50

RMSECAL 1.24 1.05 1.58 0.14 1.00 0.03 1.03 2.17 0.74 9.32

RSEC% 3.9 3.2 5.3 20.9 33.9 9.8 21.9 11.9 8.9 17.2

Slope 0.82 0.86 0.54 0.77 0.39 0.62 0.19 0.42 0.53 0.50

R2
VAL 0.42 0.15 0.19 0.21 0.02 0.22 0.02 0.02 0.23 0.07

RMSEVAL 2.14 2.17 2.08 0.31 1.24 0.03 1.31 3.64 0.99 10.78

RSEP% 6.7 6.5 7.6 46.4 49.8 11.2 25.6 18.9 10.5 22.4

Bias −0.09 0.35 −0.04 40.2 452.66 −0.01 −655.20 −594.50 −0.22 3.99

1R2 CAL and R2
VAL, coefficient of determination for the calibration and the validation; RMSECAL and RMSEVAL, Root Mean Square error for the calibration and validation; RSEC% and RSEP%, Relative error for the calibration and the validation; Slope of the calibration 

equation; Prediction bias, average difference between the predictions and the labels in dataset in absolute value.
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values, suggesting better precision and accuracy in calibration 
and prediction. The NIR spectra showed moderate performance, 
with R2

CAL and R2
VAL values falling between those of Raman and 

fused spectra. For some attributes (e.g., fat, protein, moisture), 
NIR spectra outperform fused spectra regarding R2 and R2

VAL 
values. Adhesiveness, chewiness, and cohesiveness had relatively 
low R2

CAL and R2
VAL values in all three type of data, suggesting that 

they might be challenging to predict using these spectroscopic/
chemometric techniques. In the scientific literature, the highest 
number of publications incorporating data fusion techniques is 
alcoholic beverages (27%) [e.g., (18)] followed by fruit and 
vegetables (17%) [e.g., (50)] and oils (13%) [e.g., (19)]. Milk and 
dairy products cover the smallest percentage (only 5%) (49), 
therefore, it is difficult to compare our results with the current 
literature. However, it is important to mention that simply 
combining data from various instruments (in this case, NIR and 
Raman) does not automatically improve prediction accuracy. For 
example, data fusion may not be  advantageous if the single 
instruments produce extremely comparable information or if one 
of them introduces excessive noise. It is critical to examine the 
uniqueness of the information provided by each instrument and 
carefully consider whether the benefits of fusion outweigh the 
obstacles and potential drawbacks, such as redundancy and noise 
amplification (51, 52). This consideration becomes particularly 
pertinent in the context of a small sample size, where the 
potential benefits of data fusion must be carefully interpreted.

So, the most effective method was the PLS-DA approach 
applied to NIR for classifying seasoning time, and to Raman 
spectra for classifying PDO type. The NIR, coupled with the PLS 
technique, was the best one for chemical traits. With the 
exception of cohesiveness (Raman) and resilience (NIR/Raman) 
with a RSEP% lower than 10%. On the other hand, no 
chemometric strategy nor spectroscopic technique for predicting 
texture achieved good prediction levels to be employed in the 
dairy industry.

4 Conclusion

This proof of principle study provides new insights into the 
application of chemometric approaches for predicting the 
characteristics of GP and PR PDO cheeses. Specifically, it focused 
on the use of NIR and Raman spectra and their integration to 
achieve these predictions, as well as the potential to distinguish 
between the two PDO and their various ripening stages. As 
regards the classification models, the PLS-DA achieved the 
greatest results, correctly identifying the PDO type at 100%. The 
findings were enhanced by the data fusion in 60% of the cases 
using the Bayesian approach and 40% using the PLS-DA 
approach. As regards the prediction of chemical composition and 
texture traits, the Bayesian technique using Raman spectra for fat 
provided the greatest performance in validation. It is important 
to highlight that the accuracy of predictions did not consistently 
improve with data fusion. This suggests that the effectiveness of 
data fusion may vary depending on the specific analysis and the 
methods employed. It may be  necessary to carefully consider 
when and how to apply data fusion in such studies. Mathematical 
spectra treatment before and after fusion may enhance prediction 

accuracy, especially when dealing with inherently distinct 
techniques. Moreover, larger dataset of high quality data is 
needed to improve the statistical power of the analysis. This can 
also help to validate the models and reduce the risk of overfitting.
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