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Background: Epidemiologic research suggests that gut microbiota alteration

(dysbiosis) may play a role in the pathogenesis of metabolic syndrome (MetS).

Dysbiosis can influence Trimethylamine N-oxide (TMAO) a gut microbiota-

derived metabolite, as well as kynurenine pathways (KP), which are known as a

new marker for an early predictor of chronic diseases. Hence, the current study

aimed to investigate the association between KYN and TMAO with MetS and its

components.

Methods: This case-control study was conducted on 250 adults aged 18 years

or over of Tehran University of Medical Sciences (TUMS) Employee’s Cohort

study (TEC) in the baseline phase. Data on the dietary intakes were collected

using a validated dish-based food frequency questionnaire (FFQ) and dietary

intakes of nitrite and nitrate were estimated using FFQ with 144 items. MetS was

defined according to the NCEP ATP criteria. Serum profiles TMAO and KYN were

measured by standard protocol.

Result: The mean level of TMAO and KYN in subjects with MetS was 51.49 pg/mL

and 417.56 nmol/l. High levels of TMAO (≥30.39 pg/mL) with MetS were

directly correlated, after adjusting for confounding factors, the odds of MetS in

individuals 2.37 times increased (OR: 2.37, 95% CI: 1.31–4.28, P-value = 0.004),

also, high levels of KYN (≥297.18 nmol/L) increased odds of Mets+ 1.48 times,

which is statistically significant (OR: 1.48, 95% CI: 0.83–2.63, P-value = 0.04).

High levels of TMAO compared with the reference group increased the odds
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of hypertriglyceridemia and low HDL in crude and adjusted models (P < 0.05).

Additionally, there was a statistically significant high level of KYN increased odds

of abdominal obesity (P < 0.05).

Conclusion: Our study revealed a positive association between serum TMAO

and KYN levels and MetS and some of its components. For underlying

mechanisms and possible clinical implications of the differences. Prospective

studies in healthy individuals are necessary.

KEYWORDS

kynurenine, trimethylamine N-oxide, metabolic syndrome, dysbiosis 2, gut microbiota
metabolites

Introduction

The World Health Organization (WHO) defines metabolic
syndrome (MetS) as a pathological state consisting of obesity,
insulin resistance, high blood pressure, elevated lipid levels, and
waist-to-hip ratio (WHR); MetS occurs if at least three of the
above-mentioned parameters are observed (1). It is estimated that
34% of Americans suffer from metabolic syndrome (2). Based
on data from the Tehran Lipid and Glucose Study (TLGS), the
prevalence of metabolic syndrome in adult adolescents in Iran
was 24% in women and 42% in men (3). In addition, the whole
incidence of metabolic syndrome in individuals 20 years of age
and older was found to be 550.9 per 10,000; for men, it was
794.2 per 10,000, and for women, it was 443.5 per 10,000 (4).
Numerous variables, such as chronic inflammation, autonomic
disorders, and oxidative stress, are linked to the etiology of
MetS (5). Several lines of recent scientific research suggest that
alterations in the gut microbiota play a crucial role in the
pathogenesis of MetS (6, 7). With the extensive westernization
of lifestyle, changing the gut microbiota composition (dysbiosis)
and its metabolites such as Trimethylamine N-oxide (TMAO),
as well as affecting cellular pathways like the Tryptophan
(TRP) pathway to produce kynurenine (KYN), has received
more attention than previously due to their possible roles as
an early predictor of cardiovascular disease (CVD) and MetS
(8–10).

Trimethylamine N-oxide is an organic compound, gut
microbiota-derived metabolite, which has recently been found as a
new potentially important reason for increased atherosclerosis and
MetS (11). Of all the pro-atherosclerotic mechanisms postulated for
TMAO the most important are, a rise in vascular inflammation, the

Abbreviations: TLGS, Tehran lipid and glucose study; ANCOVA, analysis
of covariance; BMI, body mass index; CVD, cardiovascular diseases;
DBP, diastolic blood pressure; FBS, fasting blood sugar; FFQ, food
frequency questionnaire; HC, hip circumference; HDL-C, high-density
lipoprotein cholesterol; KYN, kynurenine; KP, kynurenine pathway; LDL-
C, low-density lipoprotein cholesterol; IL6, interleukin; IDO, indoleamine
2, 3-dioxygenase; IPAQ, international physical activity questionnaire; MetS,
metabolic syndrome; NCEP ATPIII, national cholesterol education program
adult treatment panel III; SBP, systolic blood pressure; SES, social
economic status; SD, standard deviation; TRP, tryptophan pathway; TMAO,
trimethylamine N-oxide; TC, total cholesterol; TG, triglycerides; WC, waist
circumference; WHR, waist-hip ratio; WHO, World Health Organization.

platelet hyper-responsiveness, the blockage of reverse cholesterol
transport, reducing high-density lipoprotein cholesterol (HDL) in
the liver, and affecting bile acids metabolism (12, 13). So TMAO
may promote dyslipidemia via regulating cholesterol balance (14).
Several systematic reviews and meta-analysis studies found a dose-
dependent relationship between circulating levels of TMAO and
elevated cardiovascular risk and mortality in humans (15–18).
However, there is controversy about the specific role of TMAO
in the pathogenesis of MetS, as a collection of cardiometabolic
risk factors consisting of abdominal obesity, disrupted lipid profile,
high blood sugar, and hypertension which predispose individuals
to CVD (11). The kynurenine pathway (KP), which is known as the
TRP degradation pathway, can be influenced by the gut microbiota
(19). TRP is an exogenous amino acid that is metabolized to KYN
by indoleamine 2, 3-dioxygenase (IDO) (20). Inflammatory factors
like LPS-derived pathogenesis microorganisms or interleukin (IL-
6) can induce IDO activation (21). KP appears to be involved in the
development of many chronic inflammatory metabolic disorders,
including Mets, and atherosclerosis, all of which are commonly
recognized as risk factors for CVD (22–24). TRP degradation
via KP has been reported to increase in patients with ischemic
heart disease and atherosclerotic lesions (23). Furthermore, it has
been shown that elevated IDO activity and KYN are positively
correlated with overweight and dyslipidemia (23, 25). However,
studies on the relationship between the KYN pathway and
dyslipidemia are still ambiguous and contradictory. For example,
in an experimental study on IDO-deficient mice, an increase in TG
levels was observed along with a decrease in HDL (26), while in
another animal study, it was observed that one of the downstream
metabolites of the KP (3-hydroxy anthranilic acid) by decreasing
hepatic fat accumulation, lowered plasma levels of triglyceride
(TG) and cholesterol and improving atherosclerosis in LDLR−/−

mice (27).
Altogether, the literature suggests a connection between the KP

pathway and TMAO and some components of MetS. However,
most of these data derive from experimental research in animals,
and little is known about its relevance in human cohorts. Further
research needs to clarify the pathway and cellular-molecular
mechanism in this context which may lead one to consider whether
plasma KYN and TMAO can be a new risk factor for predicting
MetS in predisposed persons. So, the primary aim of the current
study is the measurement of gut microbiota metabolites such as
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KYN and TMAO and the main goal is to investigate the mentioned
metabolites association with MetS and its components in adults.

Materials and methods

Study population and research design

The design of a recent study is case-control that was carried
out from 2018 to 2020 on a subsample of subjects ages ranging
from 20 to 50 years and participated in the Tehran University
of Medical Sciences (TUMS) Employee’s Cohort study (TEC).
The Ethics Committee of the TUMS evaluated and approved
the study protocol (IR.TUMS.MEDICINE.REC.1401.064) and all
participants filled out consent at the beginning (28). Subjects
free of any acute or chronic disease history, such as polycystic
ovary syndrome (PCOS), cancers, diabetes mellitus, hepatic,
intestinal disorder, infectious diseases, and, kidney disease
entered the study. Adherence to specific/unusual dietary intake,
alcohol consumption, significant body weight changes, pregnancy,
and lactation, during the last year, were considered also as
exclusion criteria. In addition, subjects taking medications that
influence body weight and/or glucose and/or lipid-lowering
drugs and probiotics were not eligible to take part in the
current study. Also, participants with energy intake of less
than 800 or more than 4200 (kcal/day) were excluded. Eligible
Participants have been categorized into two separate groups;
the first group included 125 MetS subjects based on National
Cholesterol Education Program Adult Treatment Panel III
(NCEP ATP III) definition and the other group consisted of
125 non-MetS subjects based on a random number table of
subjects selected.

Sample size

The sample size was computed according to the following
formula:

N =
[(

Z1−α + Z1−β

)2 (SD2
1+SD2

2
)]

/12

β = 20%, and α = 0.05 Then, with 95% confidence and 80%
power (29, 30), 125 cases and 125 control aged 20–50 years were
required in this case-control study.

Dietary intake measurement

A self-administered, 144-item food frequency questionnaire
(FFQ) that has been previously validated was used to collect
usual dietary intake information (31). The FFQ covered the
following items: mixed dishes (cooked or canned), dairy products
(dairy, butter, and cream), grains (different types of bread, cakes,
biscuits, and potato), vegetables, fruits, miscellaneous food items,
and beverages (including sweets, fast foods, nuts, desserts, and
beverages). To estimate the quantity of food intake common
portion sizes were considered. Participants’ food frequency intakes
were reported using nine multiple-choice response categories,

ranging from “never or less than once a month” to “6 or more
times per day.” Utilizing the national nutrient databank of the
US Department of Agriculture (USDA), daily nutrient intakes
were determined. At last, obtained data were analyzed by the
NUTRITIONIST 4 (First Data Bank, San Bruno, CA, USA) food
analyzer (32).

Biochemical indicators assessment

All participants’ blood samples were collected between 8:00
and 9:30 AM after 12 to 14 h of overnight fasting. Then the
blood samples were centrifuged for 10 min at 3000 rpm to
obtain the plasma, were aliquoted to microtubes, and immediately
stored for further analysis. Fasting blood sugars (FBS), low-density
lipoprotein (LDL-C), Total cholesterol (TC), TG, and HDL-C
were measured via enzymatic colorimetric method and phosphor
tungstic acid. Serum concentrations of KYN and TMAO were
measured using enzymatic methods. Analyses were carried out
using available commercial kits (Shanghai Crystal Day Biotech,
Shanghai, China).

Assessment of blood pressure

We measured systolic blood pressure (SBP), and diastolic blood
pressure (DBP), three times from the right hand and in a sitting
position, using a standardized mercury sphygmomanometer, at
time intervals of 20 min, 2, and 4 h after admission, and we reported
the average of these 3 measurements for the subjects.

Anthropometric measurements

To measure each subject’s body weight, a calibrated digital
scale was used to the nearest 0.1 kg when they were wearing
light clothes without shoes. For measuring height, non-elastic
tape, accurate to approximately 0.1 cm was used in a normal
standing position with barefoot. Waist circumference (WC) was
assessed, using a soft tape meter with a precision of 0.1 cm at
the end of a normal exhale from the narrowest part of the waist.
The hip circumference (HC) was estimated by placing an elastic
measuring tape with 0.1 cm precision on the most noticeable,
marked area of the buttocks. By dividing WC by HC, WH) was
calculated to compute body mass index (BMI), using the formula
weight/height2 (kg/m2).

Mets and the definition of its
components

National cholesterol education program ATP III suggests
diagnostic criteria for defining MetS. Having at least 3 of the
following metabolic abnormalities was considered as MetS based
on NCEP ATP III definition (33, 34): (1) Hyperglycemia as
FBS≥ 100 mg/dL (5.6 mmol/L), (2) Hypertriglyceridemia as serum
TG ≥ 150 mg/dL (1.69 mmol/L), (3) Low HDL-C as serum HDL-
C < 40 mg/dl (1.03 mmol/l) in men and < 50 mg/dl (1.29 mmol/l)
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in women, (4) Hypertension as BP ≥ 130/85 mmHg, and (5)
Abdominal obesity as WC > 90 cm in men and >80 cm in women.
However, according to NCEP ATP III, modified for the Iranian
population, abdominal obesity was considered as WC > 95 cm.

Other variables measurements

Based on the validated and reliable self-report International
Physical Activity Questionnaire (IPAQ), physical activity (PA) was
assessed (35). With this instrument PA level in the last week
was estimated and the output data was presented as metabolic
equivalent (MET). Due to the frequency and time spent, the
intensity of the PA level was determined. Finally, scores were
computed and PA was categorized into light, moderate, high,
and very high-intensity activities, then total MET-min/week was
obtained by adding up the scores of various activities. Furthermore,
the other variables such as occupation, education, marital, and
social socioeconomic status (SES) were assessed via a self-report
socio-demographic questionnaire.

Statistical analysis

For checking data normality, the Kolmogorov-Smirnov test
was employed. MetS status was separated into two groups based
on NCEP ATPIII criteria; patients with MetS and without MetS.
To examine the relationship between qualitative variables in the
case and control groups, the chi-square test for crude and the
Cochran-Mantel-Hansel chi-square test with adjustments factors
were used. For quantitative variables, the t-test and Mann-Whitney
test were used. Binary logistic regression was used to estimate
the crude and adjusted odds ratio (OR) with a 95% confidence
interval (CI) for the odds of MetS. We considered age, sex,
energy intake, BMI, and physical activity as potential confounders
in the adjusted model. In all of the tests, P-value < 0.05 was
considered significant. All statistical analyses were done using SPSS
software version 25.

Results

Study population characteristics

The present study included 250 Iranian men and women. The
mean values of age, weight, height, and BMI of participants were
41.27 (8.70) years, 76.60 (15.85) kg, 165.76 (9.16) cm, and 27.24
(4.48) kg/m2, respectively. A total of 26.8 and 73.2 percent of the
participants were male and female, respectively. A total of 80.3%
of the participants were married and 3.6% of them had moderate
physical activity.

Characteristics of the study population
based on MetS

Characteristics of participants are presented based on MetS
in Table 1. According to statistical analyses in two groups with

TABLE 1 Characteristics of study population based on MetS.

Variables With
MetS n
= 125

Without
MetS

n = 125

P-
value

P-
value*

Demographic

Age (year) 40.78
(8.58)

41.73
(8.82)

0.40 0.41

Sex

Male 22
(32.8)

45
(67.2)

0.001 0.001

Female 103
(56.3)

80
(43.7)

Anthropometric

Weight (kg) 81.86
(15.85)

71.60
(12.88)

<0.001 <0.001

Height (cm) 167.08
(9.15)

164.51
(9.03)

0.03 0.01

BMI
(kg/m2)

27.20
(4.40)

27.27
(4.57)

0.90 0.88

WHR 0.88
(0.08)

0.83
(0.08)

<0.001 <0.001

WC (cm) 95.19
(10.72)

86.08
(10.44)

<0.001 <0.001

HC (cm) 106.77
(9.39)

102.44
(6.71)

<0.001 0.001

Blood parameters

TG (mg/dl) 205.91
(104.76)

108.18
(57.78)

<0.001 <0.001

HDL
(mg/dl)

40.77
(6.13)

46.42
(9.43)

<0.001 <0.001

LDL (mg/dl) 107.50
(30.36)

103.95
(24.26)

0.32 0.79

TC (mg/dl) 193.12
(45.25)

175.59
(34.88)

0.001 0.010

FBS (mg/dl) 104.83
(47.08)

83.97
(9.99)

<0.001 <0.001

Blood pressure

SBP
(mmHg)

117.99
(20.13)

114.42
(14.29)

0.11 0.12

DBP
(mmHg)

78.48
(13.23)

75.20
(9.85)

0.03 0.02

Metabolites

TMAO
(pg/mL)

51.49
(42.06)

37.50
(29.07)

0.002 <0.001

KYN
(nmol/l)

417.56
(290.98)

369.52
(276.72)

0.18 0.20

Qualitative variable

Marriage status

Single 31
(61.2)

19
(38.8)

0.07 0.08

Married 94
(47)

106
(53)

Education level

≤Diploma 46
(51.2)

42
(48.8)

0.56 0.48

(Continued)
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TABLE 1 (Continued)

Variables With
MetS
n = 125

Without
MetS

n = 125

P-
value

P-
value*

University
educated

79
(48.8)

83
(51.2)

Job group

Office 60
(47.2)

67
(52.8)

0.97 0.91

Clinical 34
(50.7)

33
(49.3)

Technical 21
(60)

14
(40)

Security 10
(47.6)

11
(52.4)

Socio-economic status

Low 5
(50)

5
(50)

0.54 0.55

Moderate 115 (50.9) 111 (49.1)

High 5 (35.7) 9 (64.3)

Physical activity

Low 119 (49.4) 122 (50.6) 0.30 0.31

Moderate 6 (66.7) 3 (33.3)

BMI, body mass index; WHR, weight to hip ratio; WC, waist circumference; HC,
hip circumference; TG, triglyceride; HDL, high-density lipoprotein; LDL, low-density
lipoprotein; TC, total cholesterol; FBS, fasting blood sugar; SBP, systolic blood pressure;
DBP, diastolic blood pressure; TMAO, trimethylamine N-Oxide; KYN, kynurenine.
Quantitative variables as means (±SD) obtained from the independent t-test.
Qualitative variables N (%) obtained from the chi-square analysis. P-value < 0.05 were
considered significant, bolding in Table.
P-value* for adjustment model, based on age, energy intake, physical activity, sex and
BMI.

and without MetS, in terms of anthropometric measurements,
there was a significant difference between weight, height, WHR,
WC, and HC participants (P < 0.05). So that the average of
these measurements was higher in MetS+ than in individuals
without MetS, which was statistically significant in both crude and
adjusted models (age, energy intake, physical activity, and sex)
(P < 0.05).

In addition, among the blood parameters, the average levels of
TG, TC, and FBS in MetS+ were higher than those of MetS-, and
this difference was statistically significant (P < 0.05).

The mean value of TMAO in MetS+ was 51.49 pg/mL and
in MetS- was 37.50 pg/mL, which was significant in both crude
(P = 0.002) and adjusted models (P < 0.001). Although the mean
value of KYN was higher in MetS+ (417.56 nmol/l) than in MetS-
(369.52 nmol/l), it was not statistically significant (P > 0.05).

Dietary intake among subjects based on
MetS

In Table 2, the dietary intake of the study participants
based on MetS is presented. In the crude and adjusted model,
there was no significant difference between the average intake
of macronutrients and micronutrients of MetS+ and MetS-
(P > 0.05).

TABLE 2 Dietary intake among subjects based on MetS.

Variables With
MetS

n = 125

Without
MetS

n = 125

P-
value

P-
value*

Macronutrient

Energy
(kcal/day)

2656.77
(684.47)

2630.82
(714.45)

0.79 –

Cho (gr/day) 372.32
(103.33)

376.18
(105.99)

0.79 0.23

Fat (gr/day) 87.79
(30.89)

84.57
(27.80)

0.43 0.33

Protein
(gr/day)

102.53
(28.42)

99.99
(29.53)

0.53 0.40

Micronutrient

Minerals

Ca (mg/day) 988.71
(400.83)

963.67
(337.74)

0.63 0.62

P (mg/day) 1202.81
(438.75)

1162.44
(395.34)

0.49 0.46

Mg (mg/day) 238.39
(76.31)

238.20
(79.51)

0.98 0.84

Fe (mg/day) 19.91
(6.03)

19.96
(6.09)

0.95 0.50

Zinc (mg/day) 7.84
(2.56)

7.63
(2.44)

0.56 0.53

Copper
(mg/day)

1.19
(0.49)

1.20
(0.50)

0.88 0.64

Na (mg/day) 3211.45
(963.02)

3065.73
(976.69)

0.28 0.18

K (mg/day) 3008.71
(1107.95)

3005.57
(1086.20)

0.98 0.87

Vitamins

A (IU/day) 1923.49
(2101.10)

1896.31
(1459.19)

0.91 0.90

D (µg/day) 1.60
(1.53)

1.48
(1.21)

0.53 0.58

E (mg/day) 3.12
(1.09)

3.13
(1.05)

0.94 0.86

K (mg/day) 150.42
(70.88)

154.69
(69.27)

0.66 0.59

C (mg/day) 115.17
(55.54)

115.75
(54.39)

0.94 0.93

B1 (mg/day) 2.15
(0.61)

2.15
(0.58)

0.96 0.76

B2 (mg/day) 1.75
(0.71)

1.68
(0.63)

0.46 0.42

B3 (mg/day) 27.78
(7.79)

27.36
(7.96)

0.70 0.81

B6 (mg/day) 1.37
(0.67)

1.42
(0.57)

0.58 0.39

B12 (mg/day) 3.91
(2.65)

3.32
(2.15)

0.08 0.09

B9 (µg/day) 285.77
(99.32)

295.84
(110.48)

0.49 0.29

Other

Fiber (gr/day) 17.64
(5.87)

18.21
(6.26)

0.50 0.32

All data are presented as mean (±SD). P-values < 0.05 were considered significant. P-value*
for adjustment model, based on energy intake.
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The correlation between MetS and its
components with TMAO and KYN
metabolites

According to Pearson correlation analysis, there was a positive
and statistically significant correlation between TMAO levels and
MetS+ (r = 0.176, P = 0.005), hypertriglyceridemia (r = 0.128,
P = 0.04), abdominal obesity (r = 0.121, P = 0.05) and low HDL
(r = 0.146, P = 0.02). It should be noted that despite the positive
correlation between TMAO levels and hyperglycemia (r = 0.033,
P = 0.601), this relationship was not statistically significant.

Moreover, there was a positive and statistically significant
correlation between KYN levels and abdominal obesity (r = 0.128,
P = 0.04). Also, despite the positive correlation between KYN levels
and MetS+ (r = 0.172, P = 0.25), hypertriglyceridemia (r = 0.008,
P = 0.90), hyperglycemia (r = 0.068, P = 0.28), hypertension
(r = 0.022, P = 0.73), this correlation was not statistically significant
(Table 3).

The association of TMAO and KYN
metabolites and odds of MetS and its
components

Binary logistic regression was used, in both crude and adjusted
models (for confounder potential variables such as age, energy
intake, physical activity, BMI, and sex), to assess the association
between TMAO and KYN metabolites and odds of MetS and its
components (Table 4). In this study, we divided TMAO and KYN
into two groups based on the median. Also, TMAO < 30.39 pg/mL
and KYN < 297.18 nmol/L were selected as the reference
group.

In the crude model, there was a significant direct relationship
between high levels of TMAO and odds MetS+ (OR = 2.03, 95%
CI = 1.23–3.37, P = 0.006), remaining significant after adjusting
for confounding variables (age, energy intake, physical activity,
BMI, and sex) (OR = 2.37, 95% CI = 1.31–4.28, P = 0.004).
Also, the odds of MetS in individuals with high levels of TMAO
is 2.03 times higher than the reference group, increased to 2.37

TABLE 3 The correlation between TMAO and KYN metabolites with
MetS and its components.

Variables TMAO (pg/mL) KYN (nmol/L)

r P-value r P-value

Mets+ 0.176 0.005 0.172 0.25

Components of MetS

Hypertriglyceridemia 0.128 0.04 0.008 0.90

Hyperglycemia 0.033 0.60 0.068 0.28

Abdominal obesity 0.121 0.05 0.12** 0.04

Hypertension −0.140 0.52 0.022 0.73

Low HDL 0.146 0.02 −0.027 0.67

TMAO, trimethylamine N-Oxide; KYN, kynurenine; MetS, metabolic syndrome; TG,
triglyceride; FBS, fasting blood sugar; WC, waist circumference; BP, blood pressure; HDL,
high-density lipoprotein. P-values < 0.05 were considered significant, bolding in Table.
*Correlation is significant at the 0.01 level (2-tailed). **Correlation is significant at the 0.05
level (2-tailed).

times after adjustment. High levels of TMAO increase the odds of
hypertriglyceridemia (OR = 1.67, 95% CI = 1.01–2.75, P = 0.04)
and low HDL (OR = 1.92, 95% CI = 1.09–3.38, P = 0.02) in the
crude model, and this association maintains even after adjusting
for confounding factors (for hypertriglyceridemia: (OR = 1.99,
95% CI = 1.11–3.54, P = 0.01), for low HDL: (OR = 1.95,
95% CI = 1.04–4.06, P = 0.05). Odds of abdominal obesity
were 1.63 times higher in individuals with high levels of TMAO
than in the reference group, although this association was not
statistically significant (OR: 1.63, 95% CI: 0.98–2.69, P = 0.19).
After adjustment with confounding variables, despite the reduction
of odds to 1.52 times compared to the reference group, it
became statistically significant (OR = 1.52, 95% CI = 0.80–2.87,
P = 0.05).

In the crude model, although the analyses showed that
high levels of KYN increased the odds of Mets+ 1.33 times
compared to the reference group, but was no significant statistical
relationship (OR = 1.33, 95% CI = 0.81–2.19, P = 0.25).
However, after adjustment, the odds of Mets+ have been increased
to 1.48 times compared to the reference group, which is
statistically significant (OR: 1.48, 95% CI: 0.83–2.63, P = 0.04).
Additionally, there was a marginal significant between high levels
of KYN and abdominal obesity (OR = 1.68, 95% CI = 1.01–
2.77, P = 0.06), after adjusting for confounding variables, the
odds of abdominal obesity in individuals with high levels
of KYN were 1.81 times higher than the reference group
(P = 0.04).

Discussion

To the best of our knowledge, this survey is the first
study that investigated two types of metabolites obtained from
gut microbiome (Serum KYN and TMAO) with MetS and its
components in the Iranian population. The present study showed
that there is a positive correlation between TMAO and MetS. In the
findings of our study, it was observed that high levels of TMAO can
increase the odds of hypertriglyceridemia and abdominal obesity
and can have a reducing effect on low HDL. In the case of KYN, the
odds of MetS could be increased after adjusting for confounders,
in addition, individuals with high levels of KYN were more likely
to have abdominal obesity. As one of the basic risk factors for
cardiovascular diseases and all-cause mortality, MetS plays an
important role in people’s health (36). Despite its widespread in
different countries, including America, as well as its rising graph
in Iran, it has attracted a lot of attention in recent years (36–
38). The findings of the present study showed that people with
MetS had higher DBP, TG, LDL, TC, FBS, WHR, WC, and HC
than people without MetS. People with MetS also had lower HDL
than the other group without this disorder. In another study,
people with MetS had higher BMI, DBP, TG, SBP, body weight,
FBS, WC, and lower HDL compared to healthy people(39). Today,
studies are reporting on the role of metabolites obtained from
the gut microbiome in the pathogenesis of MetS, and TMAO
and KYN are among the metabolites investigated in this study
(6, 7).

TMAO is a metabolite that is produced by the microbial
metabolism of choline from animal food sources and L-arginine
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TABLE 4 The association of TMAO and KYN metabolites and odds of MetS and its components.

Variables High levels TMAO (≥30.39 pg/mL) High levels KYN (≥297.18 nmol/L)

β OR 95%CI P-value β OR 95%CI P-value

Mets+ Crude 0.71 2.03 1.23–3.37 0.006 0.28 1.33 0.81–2.19 0.25

Adjusted 0.86 2.37 1.31–4.28 0.004 0.39 1.48 0.83–2.63 0.04

Hypertriglyceridemia Crude 0.51 1.67 1.01–2.75 0.04 −0.03 0.96 0.59–1.59 0.89

Adjusted 0.68 1.99 1.11–3.54 0.01 −0.03 0.96 0.54–1.69 0.89

Hyperglycemia Crude 0.16 1.17 0.64–2.13 0.60 0.32 1.72 0.97–2.52 0.28

Adjusted 0.05 1.05 0.52–2.09 0.88 0.28 1.75 1.05–3.61 0.42

Abdominal obesity Crude 0.48 1.63 0.98–2.69 0.19 0.51 1.68 1.01–2.77 0.06

Adjusted 0.42 1.52 0.80–2.87 0.05 0.59 1.81 1.05–3.44 0.04

Hypertension Crude −0.22 0.80 0.40–1.58 0.52 0.11 1.12 0.57–2.21 0.73

Adjusted −0.08 0.91 0.43–1.94 0.82 0.22 1.25 0.59–2.62 0.54

Low HDL Crude 0.65 1.92 1.09–3.38 0.02 −0.11 0.88 0.51–1.54 0.67

Adjusted 0.67 1.95 1.04–4.06 0.05 −0.25 0.77 0.38–1.57 0.47

TMAO, trimethylamine N-Oxide; KYN, kynurenine; MetS, metabolic syndrome. P-values < 0.05 were considered significant, bolding in Table. P-value for adjustment model, based on age,
energy intake, physical activity, BMI and sex. TMAO<30.39 pg/mL, KYN<297.18 nmol/L, MetS-, normal values of TG, FBS, WC, BP and HDL were the reference group.

from meat. The L-arginine metabolism pathway leads to the
production of two other intermediate metabolites, namely
crotonobetaine, and γ-butyrobetaine, which ultimately cause
TMAO (40). In the present study, TMAO levels in people with
MetS were about 51.49 (pg/mL), and in people without this
disease, it was 37.50 (pg/mL). In another study, the circulating
levels of TMAO in people with MetS were about 10.65 ± 1.62
(µM), and in people without this disease, it was reported as
6.82 ± 3.17 (µM) (11). In our study, we observed that levels
higher than 30.39 pg/mL could increase the odds of MetS. In
the other study, the acceptable cut-offs for circulating levels of
TMAO for predicting the presence of MetS was ≥ 8.74 µM
(11). (The reason for the different expression of the measurement
units is the use of various kits in the measurement of TMAO
and KYN and as the level of TMAO depends on various factors
including age, gender, race species of the microbiome, and food
intake, maybe the level of TMAO in our study was low). In
the case of TMAO, there was a significant positive correlation
between high levels of TMAO and MetS, which increased odds after
adjusting for confounders, and also, there was a positive correlation
between TMAO and abdominal obesity and also with low HDL.
The studies conducted on TMAO reveal the destructive effects
of this metabolite, such as the formation of macrophage foam
cells (41), endothelial dysfunction (42), vascular inflammation and
activation of inflammation (43–46), increased platelet reaction and
thrombosis (47, 48), and reduced cholesterol reverse transport (49).
Meanwhile, diet plays a key role in TMAO production. In a study
conducted in 2023 by Meng Wang et al., more meat consumption
can increase the risk of atherosclerotic cardiovascular disease
through increasing metalloids such as TMAO (40). According to
the studies conducted on TMAO, this metabolite can cause insulin
resistance by blocking the hepatic insulin signaling pathway and
also by causing inflammation in adipose tissue in mice, which are
themselves one of the components of MetS (50). Meanwhile, insulin
signaling suppresses flavin-containing monooxygenase 3 (FMO3),
which is the enzyme that produces TMAO (51). So in people with

insulin resistance or obese people, the level of the FMO3 enzyme
increases(51, 52). Moreover, FMO3 can induce the production of
FoxO1, which is responsible for regulating some gluconeogenic
genes and as a result, adjusting glucose production in the liver.
The findings indicate that the suppression of FMO3 through the
inhibition of FoxO1 can prevent blood fat, hyperglycemia, and
atherosclerosis (51). According to the studies, high levels of TMAO
can increase lipid metabolism disorders and inflammatory response
(43, 47, 50). Based on the evidence, TMAO can be a factor in the
occurrence of obesity as well as the basis of obesity-related disorders
such as body weight, BMI, and visceral fat index (VAI), and VAI
itself can reduce insulin sensitivity (11, 52–54). With the help of
new findings, TMAO is considered as a prospective indicator for
detecting MetS (11). The evidence of the present study shows that
there was a positive and statistically significant correlation between
TMAO levels and hypertriglyceridemia. In a study conducted by
Lin Ding et al in 2018, mice with the apoE genotype were fed a
diet containing TMAO for 8 weeks. The result of the study was
the fat in the serum of mice, and the possibility of inhibiting the
synthesis of hepatic bile acid is considered the reason for this
increase in fat (55).

Kynurenine is a metabolite that is created in the human
body in 90% of the way of metabolizing TRP and can be
directly or indirectly affected by factors such as diet and gut
microbiota (10). Diet can alter KYN levels in the body. In the
study conducted by Sandra Tillmann and her colleagues in 2021,
it was shown that a methyl-deficient diet can regulate the KYN
pathway (56). From other studies in this field, the relationship
between the ketogenic diet, ginseng polysaccharides intake, a
diet with limited calories, and a high-fat diet has been reported
(57–59). In this study, the relationship of KYN levels obtained
from serum on MetS and its components was investigated. The
findings of the present study show that high levels of KYN
increase the odds of MetS. There are not many studies on the
relationship between KYN and MetS and its components. The
relationship between inflammation and depression is not hidden
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from anyone and many studies have shown the relationship
between these two disorders (60–63), but in the meantime, KYN
also plays its role under the influence of inflammation (64).
In the study published in 2010 by Gregory F et al., despite
considering inflammation as one of the important factors of
MetS, it reveals the role of inflammation on KYN (64). So
inflammation can change the pathway of TRP synthesis to KYN
production by inducing the transcription of one of the rate-limiting
enzymes of the TRP /KYN pathway, called indoleamine 2,3-
dioxygenase (IDO). Furthermore, KYN can cause the development
of MetS through neurotoxic and prooxidative, apoptotic effects
as well as positive regulation of phospholipase A2, prostaglandin,
5-lipoxygenase, arachidonic acid, nitric oxide synthase, and
leukotriene cascade (64). picolinic acid and quinolinic acid are
two intermediary metabolites in the metabolism of KYN, and the
increase of KYN causes the increase of these two metabolites.
These metabolites can increase lipid peroxidation through the
stimulation of nitric oxide synthase (NOS) and the mediation
of 3-hydroxy anthranilic and 3-hydroxykynurenine acids, and
as a result, through the stimulation of arachidonic acid release,
the activation of inflammatory factors such as leukotrienes,
through the activation of arachidonate 5-lipoxygenase (5-LOX)
and prostaglandins, through the active action of cyclooxygenase
(COX) (Melillo et al., (65); Oxenkrug, (66)). Xanthurenic acid is
another metabolite in the KYN-nicotinamide adenine dinucleotide
pathway that creates an antigenic compound unrecognizable from
insulin by reacting with insulin and eventually causes insulin
resistance by reducing insulin sensitivity (67–70). According
to studies, IDO has been reported to be inversely related
to high-density lipoprotein and directly related to C-reactive
protein (71, 72). The present study shows that there is a
correlation between KYN levels and abdominal obesity. In the
study conducted by Judith A. Finkelstein et al., free TRY was
decreased in the blood of obese mice (73). Harald Mangge
and colleagues showed that there is a relationship between
KYN/TRP and MetS, BMI, and abdominal obesity, so that
the higher this ratio, the more relationship was observed, and
also MetS and this ratio both affect each other (74). In a
study conducted on people with HIV in 2020, the ratio of
quinolinic acid to kynurenic acid increased due to abdominal
obesity, which means that the pro-inflammatory pathway of
KYN metabolism is activated and the result of this pathway can
increase systemic inflammation and decrease anti-inflammatory
molecules (75).

Limitations

Finally, we acknowledge several limitations that need to be
considered for this study, mainly resulting from being a case-
control study design that can not preclude causal inferences from
the Serum KYN and TMAO Levels novel biomarkers associated
with MetS and its components in adults. Secondly, to investigate
the metabolites obtained from the gut in this research, metabolites
were measured in serum, and serum factors can be affected
by many different conditions of a person. Thirdly, although
an acceptable number of confounders were controlled in this
study, the presence of residual confounders cannot be denied.

Fourthly, investigations with a larger sample size must evaluate
this association.

Strengths

This study used novel biomarkers for assessing the Serum
KYN and TMAO Levels which is a new approach and consists
of a new view and it is the first study that examines these
two biomarkers simultaneously. This study is based on a case-
control study that was investigated on two groups of MetS.
This is the first study that evaluates Serum KYN and TMAO
with MetS along with its components. A wide range of
confounding factors have been taken into account to achieve
reliable results.

Conclusion

The result of this investigation shows that there was a
positive correlation between TMAO and MetS and its components.
Also, we observed a positive correlation between KYN and
abdominal obesity. Also, our study showed that high levels
of TMAO (≥30.39 pg/mL) can increase the odds of MetS,
hypertriglyceridemia, abdominal obesity, and low HDL. Moreover,
high levels of KYN (≥297.18 nmol/L) can raise the odds of
MetS and abdominal obesity. Therefore, the metabolites obtained
from the gut microbiome can have effects on MetS and the
risk of cardiovascular diseases, and it is very important to
pay more attention to these metabolites with a larger sample
size in the future.
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