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Introduction: Rapid and accurate detection of food-borne pathogens on 
mutton is of great significance to ensure the safety of mutton and its products 
and the health of consumers.

Objectives: The feasibility of short-wave infrared hyperspectral imaging (SWIR-
HSI) in detecting the contamination status and species of Escherichia coli (EC), 
Staphylococcus aureus (SA) and Salmonella typhimurium (ST) contaminated on 
mutton was explored.

Materials and methods: The hyperspectral images of uncontaminated and 
contaminated mutton samples with different concentrations (108, 107, 106, 105, 
104, 103 and 102  CFU/mL) of EC, SA and ST were acquired. The one dimensional 
convolutional neural network (1D-CNN) model was constructed and the 
influence of structure hyperparameters on the model was explored. The effects 
of different spectral preprocessing methods on partial least squares-discriminant 
analysis (PLS-DA), support vector machine (SVM) and 1D-CNN models were 
discussed. In addition, the feasibility of using the characteristic wavelength to 
establish simplified models was explored.

Results and discussion: The best full band model was the 1D-CNN model with 
the convolution kernels number of (64, 16) and the activation function of tanh 
established by the original spectra, and its accuracy of training set, test set and 
external validation set were 100.00, 92.86 and 97.62%, respectively. The optimal 
simplified model was genetic algorithm optimization support vector machine 
(GA-SVM). For discriminating the pathogen species, the accuracies of SVM 
models established by full band spectra preprocessed by 2D and all 1D-CNN 
models with the convolution kernel number of (32, 16) and the activation function 
of tanh were 100.00%. In addition, the accuracies of all simplified models were 
100.00% except for the 1D-CNN models. Considering the complexity of features 
and model calculation, the 1D-CNN models established by original spectra were 
the optimal models for pathogenic bacteria contamination status and species. 
The simplified models provide basis for developing multispectral detection 
instruments.
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Conclusion: The results proved that SWIR-HSI combined with machine 
learning and deep learning could accurately detect the foodborne pathogen 
contamination on mutton, and the performance of deep learning models were 
better than that of machine learning. This study can promote the application of 
HSI technology in the detection of foodborne pathogens on meat.

KEYWORDS

hyperspectral imaging, deep learning, machine learning, foodborne pathogens, 
mutton

1 Introduction

Mutton is one of the most popular meats in the world due to its 
unique flavor and rich protein content (1). Because of the rich 
nutrients, it is a good substrate for the growth and reproduction of 
various microorganisms. Pathogenic bacteria are important factors 
that affect food safety and threaten human health. The current Chinese 
national standard (GB 29921–2013) for Food Safety-Limits of 
Pathogenic bacteria in Food stipulates the indicators, sampling 
schemes, limits and detection methods of pathogenic bacteria in 
different categories of food (2). Among them, the common pathogens 
in raw meat include Escherichia coli (EC), Staphylococcus aureus (SA) 
and Salmonella typhimurium (ST), etc. It is required that EC and ST 
could not be detected in 25 g of raw meat and that the SA content 
should not exceed 1,000 CFU/g. Consuming foods contaminated with 
these bacteria can cause vomiting, diarrhea or even death (3). 
Therefore, rapid, sensitive and specific detection of foodborne 
pathogens has become an urgent requirement in health safety, food 
quality control and other aspects.

The two current standards used to detect bacterial foodborne 
pathogens are conventional culture and polymerase chain reaction 
methods (4). However, these methods have some problems such as 
environmental pollution, time consuming, and strict requirements for 
operators and operating environments. Optical rapid detection 
technology can use the unique optical characteristics of microbial 
samples to identify them, which opens up new avenues for microbial 
research. Due to their fast, green and easy operation, they have shown 
good application prospects in the detection of pathogenic bacteria in 
recent years (5–7). Among them, hyperspectral imaging (HSI) 
technology can simultaneously collect spatial, spectral and radiation 
information of the object to be measured, and has become one of the 
most powerful technologies for food quality and safety detection (8). 
Currently, studies on the use of HSI to detect meat freshness (9), 
adulteration (10, 11), the total number of colonies (12) and parasites 
(13) have been widely reported. There are also many reports on the 
use of HSI combined with machine learning for the detection of 
foodborne pathogens. Kammies et al. (14) used HSI combined with 
PLS-DA to effectively distinguish gram-positive and negative bacteria 
such as EC, SA, and ST on agar plates. Feng et al. (15) used HSI and 
multi-spectral imaging combined with invasive weed optimization 
(IWO) to classify EC, Listeria monocytogenes, and SA on agar plates. 
Bonah et al. (16) used HSI to classify foodborne pathogens growing 
on agar plates, and combined with partial least squares regression 
(PLSR) algorithm to rapidly detect the content of EC and SA in fresh 
pork, and realized visual detection. Gu et al. (17) combined the HSI 

technique with commonly used optimization algorithms to classify 
EC, SA, and ST on bacteriolytic broth, plate counting agar, and 
tryptone soy agar. Unger et al. (18) developed and evaluated a low-cost 
HSI system to identify single and mixed foodborne pathogen strains 
in dairy products. The above studies were all based on the spectra of 
pathogenic bacteria colonies on the culture medium. If the pathogenic 
bacteria on the meat can be detected in situ, the process of isolation 
and culture can be avoided, so as to shorten the detection time and 
save the detection cost. However, only a few studies have examined in 
situ pathogenic bacteria of meat. Bonah et al. (19) used visible near 
infrared (Vis–NIR) HSI and partial least squares regression (PLSR) 
algorithm to rapidly monitor the content of foodborne pathogens (EC 
and SA) in fresh pork longissimus muscle. Qiu et al. (4) explored the 
feasibility of using hyperspectral imaging to establish an efficient 
classification model for qualitative detection of SA in chicken breast 
meat. When in situ detection of pathogenic bacteria in chicken and 
pork was carried out in those studies, only the content prediction and 
concentration division of a single strain were considered. In practice, 
it is not certain whether mutton is contaminated with pathogenic 
bacteria and the species of pathogenic bacteria. Therefore, it is very 
important to detect the contamination status of pathogenic bacteria 
in mutton and identify the species of pathogenic bacteria to ensure the 
safety of mutton and its products.

At present, the processing of hyperspectral data is mainly using 
traditional machine learning methods for preprocessing, feature 
wavelength extraction and modeling. With the development of 
computer technology and artificial intelligence, deep learning 
methods have been developed rapidly. It can automatically extract and 
continuously optimize features by pre-training the model, and can 
quickly process a large number of data. Better performance and higher 
accuracy make it show superior performance in spectral data 
processing, and it has been widely used in spectral data processing 
(20). Among them, convolutional neural network (CNN) is a typical 
feed-forward neural network, which can automatically extract deep 
features from the original data through convolution and pooling 
structure (10, 21). In the aspect of spectral data processing, there are 
numerous researches using one-dimensional convolutional neural 
network (1D-CNN) (22–26). At present, the application of deep 
learning in the field of rapid detection of pathogenic bacteria is mainly 
based on the microscopic scale, and there are few studies on the 
macroscopic scale. Kang et al. (27–30) used hyperspectral microscopic 
imaging (HMI) combined with various advanced deep learning 
frameworks such as long short term memory (LSTM) network, deep 
residual network (ResNet) and 1D-CNN to do in-depth research on 
pathogenic bacteria at the microscopic scale, and realized the rapid 
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classification of foodborne pathogenic bacteria at the cellular level. An 
artificial intelligence assisted HMI method was developed that directly 
processes the spectra of five common foodborne pathogens from 
different rois. In addition, Tao et al. (31) combined HMI technology 
and Buffer Net deep learning algorithm to construct an AI assisted 
system for automatic and rapid bacterial genus discrimination, which 
can identify pathogenic bacteria at the single-cell level with high 
accuracy in a cheap, fast, and automated manner. In addition, the 
existing hyperspectral band in the field of pathogen detection is 
mostly 400–1,000 nm (VNIR-HSI). The reflectance in the band range 
of VNIR-HSI is greatly affected by color. Since mutton is red, the 
influence of its own color on the spectra is large in this band range. 
The contamination of mutton by pathogenic bacteria mainly causes 
changes in the chemical composition of mutton. The spectra of 
SWIR-HSI at 1000–2500 nm are more suitable for chemical analysis 
and composition detection of substances. It can reduce the errors 
caused by mutton itself. And in situ detection of pathogenic bacteria 
in meat using SWIR-HSI has not been re-ported so far.

Therefore, the SWIR-HSI was used to detect the presence of 
pathogenic bacteria and discriminate the different species of EC, SA 
and ST on mutton in situ. The specific work is as follows: (1) 
hyperspectral images of uncontaminated mutton samples and samples 
contaminated with different concentrations of EC, SA and ST were 
collected, (2) the average spectral information of the region of interest 
for each sample were extracted for modeling analysis, (3) the 1D-CNN 
models which were suitable for the detection of pathogenic bacteria 
contamination status and the discrimination of the pathogenic 
bacteria species on mutton were constructed and the network 
structure were optimized by the structural hyperparameters, (4) the 
influence of spectral preprocessing on different models was explored, 
(5) the detection models based on characteristic wavelengths were 
established to explore the feasibility of using machine learning and 
deep learning algorithms to establish simplified models for the 
contamination status and species discrimination of foodborne 
pathogens on mutton. The study explored the feasible of using spectral 
information combined with machine learning or deep learning 
algorithms to detect EC, SA and ST contamination status and types 
on mutton and tried to provide a new idea for the detection of 
pathogenic bacteria in food.

2 Materials and methods

2.1 Preparation of bacterial suspension and 
inoculum

The bacterial strain of SA, ST and EC used in this study was 
ATCC 25923, ATCC 14028, and ATCC 21520, respectively. All 
strains were collected from the Microbiology Laboratory of Analysis 
and Testing Center of Xinjiang Academy of Agriculture and 
Reclamation Sciences. Nutrient broth medium (Beijing Land Bridge 
Technology Co., LTD. Beijing, China) was selected as the culture 
medium, while phosphate buffer solution (PBS) was used to prepare 
the decimal dilutions at 19.0 g/L and the medium for bacterial 
counting was prepared by adding bacterial agar powder to the 
nutrient broth. After autoclaving at 121°C for 15 min and cooling to 
approximately 50°C, medium making was carried out in a biosafety 
cabinet. About 15–20 mL of the cooled nutrient broth was poured 

into the Petri dish and allowed to solidify until set aside. Other 
materials used in the experiment mainly included phosphate buffer 
solution (PBS), Petri dishes with a diameter of 90 mm, inoculation 
rings, pipetting guns and their tips, centrifuge tubes, coating rods 
and distilled water. The EC, SA and ST stored at −80°C were 
inoculated into nutrient agar medium and stored in a constant 
temperature incubator at 37°C for activation and culture for 20 ± 1 h. 
The total number of colonies was determined according to 
GB4789.2–2016. The single colonies with appropriate morphology 
were inoculated in the broth and incubated at 37°C for 4 h. The 
bacteria solution was diluted 10 times gradient with PBS to obtain 7 
different concentrations of bacteria solution (108, 107, 106, 105, 104, 
103, 102 CFU/mL). After sealing and packing, the bacteria solution 
was stored at 4°C for later use.

2.2 Sample preparation

The fresh mutton (hind leg part) required for the samples was 
purchased from Friendship Supermarket (China) in Shihezi City, 
Xinjiang. After the meat was transported to the laboratory in an 
incubator, obvious fascia and tissue were removed and divided to 
make meat samples of about 50 × 30 × 10 mm. The weight of each 
sample was guaranteed to be 25 ± 1 g. The labeled samples were placed 
in a disk and sterilized for 30 min in a biosafety chamber using a 
purple light. Then the hyperspectral image data of 210 uncontaminated 
samples were collected. Different concentrations of bacteria solution 
were repeatedly blown to mix well by using a pipette gun, and then 
1 mL of bacteria solution was absorbed and evenly spread on the 
surface of meat. A total of 210 mutton samples contaminated with 
different types (EC, SA and ST) and concentrations ((108, 107, 106, 105, 
104, 103, 102 CFU/mL)) of pathogenic bacteria were collected. Among 
them, 70 samples were inoculated with EC, SA and ST, respectively, 
while 10 samples were used for each one of the inoculum levels. The 
applied samples were left in a biosafety cabinet for 25 min to ensure 
that the pathogenic bacteria were completely absorbed by the meat. 
The hyperspectral image data of sample contaminated pathogenic 
bacteria were collected after ensuring that the water remaining on the 
sample surface evaporated.

2.3 Hyperspectral image acquisition and 
spectral data extraction

The experiment was carried out at a temperature of 26 ± 1°C and 
a relative humidity of 30 ± 5%. The line scan push-sweep acquisition 
system SWIR-HSI mainly includes: Imaging spectrograph 
(ImSpector N25E 2/3, Spectral Imaging Ltd. Oulu, Finland) with 
288 bands in the wavelength range of 1,000–2,500 nm, a CCD 
camera (Zephir-2.5-320, Photon, Montreal, Canada), light source 
(six halogen with 150 W), a positioning sample table driven by a 
stepping motor, a computer equipped with data acquisition software, 
a dark box, etc. Before sample collection, spectrometer was turned 
on to preheat for half an hour. Then the operating software of the 
spectrometer and the loading platform was opened, and the focal 
length of the hyperspectral camera was adjusted to ensure that the 
images were clear and not distorted. The motor platform was 
controlled to move and the hyperspectral images of samples were 
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collected. When samples were collected in this study, the lens height 
from the sample surface was 25 cm, the displacement stage speed 
was 70.38 mm/s, and the exposure time was 3.5 ms.

In order to reduce noise and interference factors, the collected 
sample hyperspectral image data needed to be corrected in black and 
white. In this study, the original image data (IR) was corrected in black 
and white by using all-white calibration image data (IW) and all-black 
calibration image data (IB), and the corrected image data (I) was 
obtained. The Equation is as follows:

 
I I I

I I
R B

W B
=

−
−  

(1)

The whole area of the obtained mutton sample was regarded as the 
region of interest (ROIs). The ROIs of samples were extracted using 
band subtraction by ENVI 5.3 spectral processing software (ITT 
Visual Information Solutions, Boulder, CO, United  States). The 
schematic diagram of the data acquisition system and the spectral data 
acquisition process is shown in Figure 1.

2.4 Preprocessing of spectral information

Since the original spectra of the samples were noisy at wavelengths 
before 1,000 nm and after 2,400 nm, 223 spectra in the band range of 
1,000–2,400 nm were selected for subsequent analysis. When spectral 
data are obtained, the spectra may be affected by external factors and 
contain a lot of noise and other interference information. The 
interference of irrelevant information can be  removed by 
preprocessing the spectra. In this study, the methods of first derivative 
(1D), second derivative (2D), mean center (MC) and multiplicative 

scattering correction (MSC) were used to preprocess the original 
spectral data, and their effects on different models were investigated.

2.5 Dataset construction

A total of 210 mutton samples were prepared in this study, and the 
spectra information of all samples after sterilization was firstly 
collected as uncontaminated samples. Then 210 mutton samples were 
contaminated with different types and concentrations of pathogenic 
bacteria and their HSI data were collected as contaminated samples. 
A total of 420 mutton samples were used to establish the discrimination 
model of pathogen contamination status. The 210 contaminated 
samples were used to establish the discrimination model of pathogen 
contamination species. When building the model, all data sets were 
divided into training set, test set and external validation set. Firstly, 
the training set was used to train the model, and then the model 
parameters were adjusted according to the test set to obtain a more 
accurate model. Finally, the stability of the model was verified by the 
external validation set. When establishing the model, 1 contaminated 
mutton sample with each concentration of each pathogen was 
randomly selected as the external validation set, 2 samples were 
selected as the test set, and the remaining 7 samples were selected as 
the training set. The spectral data of each sample before 
uncontaminated were divided into the corresponding dataset. The 
number of samples in the training set, test set and external validation 
set for the detection model of pathogen contamination status on 
mutton was 294, 84 and 42, respectively. The number of samples in the 
training set, test set and external validation set of species discriminant 
model for mutton contamination pathogens pathogen was 147, 42 and 
21, respectively.

FIGURE 1

Schematic diagram of the SWIR-HSI acquisition system and data acquisition process.
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2.6 Characteristic wavelengths extraction

Characteristic wavelengths extraction can enhance the 
explanatory power of the analysis by removing redundant and less 
informative spectral features. It plays a crucial role in machine 
learning, but their impact on deep learning is unclear. To explore the 
feasibility of using four algorithms to establish simplified models for 
bacterial contamination status and species discrimination, the 
common characteristic wavelength extraction methods genetic 
algorithm (GA), competitive adaptive reweighting algorithm 
(CARS) and successive projections algorithm (SPA) (32, 33) were 
used to extract the characteristic wavelengths closely related to the 
bacterial contamination status and the species of pathogenic 
bacteria, and the simplified models were established based on the 
characteristic wavelengths.

2.7 Detection model construction

To explore the feasibility of using machine learning and deep 
learning algorithms to establish detection and discrimination models 
for EC, SA and ST on mutton using SWIR-HSI, the 1D-CNN network 
structures suitable for the discrimination of pathogenic bacteria 
contamination status and species were established in this study, and 
the detection model was established. At the same time, the typical 
linear modeling method partial least squares-discriminant analysis 
(PLS-DA) and the nonlinear modeling method SVM were also used 
to establish the corresponding models, and the different models 
were compared.

2.7.1 One dimensional convolutional neural 
network

The CNN network structure built in this paper is shown in 
Figure 2, which is mainly composed of two one-dimensional (1D) 
convolutional layers, two maximum pooling layers and two fully 
connected (FC) layers. The spectrum of each sample contained 223 
wavelengths, which were converted into a 1× 223 vector. After batch 
normalization, it is used as the input of 1D-CNN convolutional layer. 
The convolution kernel size and step size were set to 2 and 1, 
respectively. It is very important to learn model by properly 
configuring the number of convolution kernels (34). The number of 
kernels in the two convolutional layers was set to 128, 64, 32 and 16, 

respectively, and they were combined for model training. The optimal 
number of convolution kernels in each convolutional layer was 
determined according to the optimization results of model evaluation 
indicators. The CNN models usually add activation functions to the 
excitation layer to provide nonlinear modeling capabilities of the 
network. The commonly used activation functions are sigmoid, 
hyperbolic tangent function (tanh) and rectified linear unit (relu). 
They were used to establish CNN models, and the appropriate 
activation function was selected according to the model results. 
Adding a batch normalization layer between the convolutional and 
maximum pooling layers effectively avoids over-fitting and makes the 
debugging of hyperparameters easier. The deep features after the last 
pooling layer are flattened into one-dimensional vectors and then 
transmitted to the fully connected layer to establish the classification 
relationship between their features and the contamination status or 
species of pathogenic bacteria by the Softmax function. All samples 
were classified based on their probability for each category. To ensure 
fairness of model comparison, all 1D-CNN model training parameters 
were kept consistent. The batch size was set to 100, the maximum 
number of iterations was 200, the initial learning rate was 0.001, the 
learning rate decline was selected as ‘piecewise’, the learning rate 
decline factor is 0.1, and the ‘LearnRateDropPeriod’ was 200.

2.7.2 Partial least squares-discriminant analysis
PLS-DA mainly performs multivariate statistical analysis of the 

data. In PLS-DA analysis, the explanatory data sets X and Y of the two 
data matrices are concatenated together for multi-source classification. 
In this study, the PLS-DA can not only de-compose the spectral data 
matrix, but also enhance the decomposition of the spectral data 
matrix by using pathogen contamination status or species labels to 
increase the spectral differences of different categories and improve 
the classification ability of the model (35). Internal cross-validation of 
PLS-DA was performed using leave-one-out and 10 fold cross-
over methods.

2.7.3 Support vector machine
As a supervised learning model, SVM can map the sample space 

into a high-dimensional feature space, which enables it to 
be transformed into linearly separable problems in the feature space 
(36). When SVM was used to establish the model of contamination 
status and species of pathogenic bacteria, the Radial Basis Function 
(RBF) was selected as the kernel function, and the optimal parameter 

FIGURE 2

Structure diagram of a one dimension convolutional neural network (1D-CNN).
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combination of kernel function parameter (g) and penalty factor 
parameter (c) was sought by GA optimization algorithm.

2.8 Model evaluation and data processing 
environment

The accuracy was used to evaluate the performance of the model. 
Accuracy is the ratio of the number of correctly classified samples to 
the total number of samples. Higher accuracy indicates better model 
performance. The server environment used for model training is as 
follows: The processor is Intel(R) Core(TM)i7-10700F CPU 
@2.90GHz 2.90GHz, memory 16 GB, GPU graphics card is NVIDIA 
GeForce RTX 2060, operating system is 64-bit Windows10, The 
programming software was MatlabR2023a.

3 Results and discussion

3.1 Analysis of raw spectral data

Near-infrared spectroscopy (NIR) is used to detect the internal 
quality information of samples by the consistent frequency doubling 
and frequency joining absorption caused by the non-resonant 
vibration of hydrogen-containing groups (C-H, O-H and N-H) in the 
substance molecules (37). The average spectral reflectance curves of 
210 uncontaminated mutton samples and contaminated mutton 
samples with different species of bacteria are shown in Figure 3. The 
spectral curves of uncontaminated and contaminated mutton samples 
showed the same trend, and the average spectral curves of samples 
showed the similar trend. There were significant absorption peaks at 
1040, 1235, 1813 and 2,272 nm wavelengths, but there were some 
differences in spectral reflectance. Among them, the absorption peak 
at 1040 nm was closely related to the stretching vibration of the N-H 
bond in the molecular structure of protein, and the ab-sorption peaks 
at 1235 nm and 1813 nm were related to the secondary and primary 

frequency of the C-H bond in the molecular structure of meat organic 
components, respectively. For the spectral absorption region of 2000–
2,500 nm, the large spectral ab-sorption region is mainly caused by the 
combined frequency stretching vibration of the functional groups 
O-H, N-H and C-H, so this region shows a low spectral reflection 
value (38). For both uncontaminated and contaminated pathogenic 
samples, the mean reflectance of the uncontaminated pathogenic 
samples was higher than that of the contaminated samples. Samples 
contaminated with EC showed the highest reflectance, followed by SA, 
and ST showed the lowest. It is difficult to identify the pollution status 
and type only from the spectral reflectance. Therefore, it is necessary 
to combine ma-chine learning and deep learning algorithms to further 
establish detection models for effective detection.

3.2 Detection of pathogenic bacteria 
contamination status on mutton

The common foodborne pathogens on mutton are EC, SA and 
ST. The Chinese national standard has clear requirements for the 
contamination of pathogenic bacteria on fresh meat, among which ST 
and EC are required not to be  detected, and SA is required to 
be  controlled at 1000 CFU/g (2). Therefore, it is an important 
prerequisite to accurately distinguish whether mutton is contaminated 
with pathogenic bacteria. In this study, deep learning algorithms 
(1D-CNN) and machine learning algorithms (PLS-DA and SVM) 
were used to detect the contamination status of pathogenic bacteria in 
mutton based on the spectral information of 1,000–2,500 nm.

3.2.1 Optimization and determination of 
hyperparameters of 1D-CNN model structure

To establish a 1D-CNN model suitable for the detection of 
pathogenic bacteria contamination in mutton, the original spectra 
were used to establish a classification model, and the effects of 
convolution kernel number and activation function on the CNN 
model were investigated. The appropriate number of convolution 

FIGURE 3

Spectral curves of different samples. (A) Average spectra of uncontaminated and contaminated pathogenic mutton samples. (B) Average spectra of 
meat samples contaminated with different species of pathogenic bacteria.
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kernels was first determined according to the accuracy of the external 
validation set. When the accuracy of the external validation sets of the 
two models was the same, the appropriate number of convolution 
kernels was determined according to the accuracy of the test set. The 
appropriate number of convolution kernels enables the model to make 
full use of local and global features when training samples (39). The 
activation function was set as relu, and the optimal convolution kernel 
number parameter was selected. The results of pathogen 
contamination status detection based on full-band spectral data under 
different convolution kernel numbers are shown in Table 1.

Table 1 shows that different numbers of convolution kernels have 
an obvious im-pact on the results of the pathogen contamination 
status detection model. When the number of first convolutional layers 
is 64, the results of the external validation set outperform the models 
with the number of convolution kernels being 32 and 128. When the 
second layer convolution kernel is 16 and 32, the results of the external 
validation set are the same, but the test set with the number of 16 is 
better than the model with the number of 32. Therefore, when the 
number of convolution kernels was (64, 16), the performance of 
1D-CNN in detecting the contamination status of pathogenic bacteria 
was the best, with the accuracy of 97.62% for the external validation 
set and 90.48% for the test set, respectively. According to the reports 
of previous studies, different activation functions can also affect the 
model. When the convolution kernel of the 1D-CNN model is set to 
(64, 16), the effects of three activation functions, sigmoid, tanh and 
relu, on the detection model of pathogenic bacteria contamination 
status were discussed, and the results were shown in Table 2.

As shown in Table 2, when using the1D-CNN models with three 
different activation functions to establish the detection models of 
pathogenic bacteria contamination status on mutton, the accuracy of 
all datasets was greater than 85%, indicating that three activation 
functions can be  used to construct the 1D-CNN models for the 
detection of pathogenic bacteria contamination status on mutton. 
However, when the activation function is sigmoid, the performance 
of the model is significantly worse than that of tanh or relu. In 
addition, the accuracy of the test set and the external validation set of 

the sigmoid model was quite different, indicating that the stability of 
the model was not good. The results of training set and external 
validation set of tanh and relu models were the same, while the 
accuracy of test set of tanh model was higher than that of relu model. 
Therefore, tanh activation function is more suitable for establishing 
the detection model of pathogenic bacteria contamination in mutton. 
In the follow-up study, the number of convolution kernels in the 
pathogen contamination status detection model built by 1D-CNN was 
all (64, 16), and the activation function was tanh.

3.2.2 Influence of different spectral data 
preprocessing on the model

The methods of 1D, 2D, MC and MSC were used to preprocess 
full-band spectral data. The PLS-DA, SVM and 1D-CNN models for 
the detection of pathogenic bacteria contamination on mutton were 
established using the preprocessed spectral data, and the effects of 
spectral preprocessing on different models were discussed. The results 
are shown in Table 3.

Table 3 shows that for PLS-DA and SVM models, the models 
established by the 2D preprocessed spectra are better than that of the 
original spectra. Compared with the model without preprocessing, 
the accuracy of test set of PLS-DA model was improved by 0.34%. 
The accuracy of the test set and the external validation set of the 
SVM model was increased by 5.28 and 10.38%, respectively, which 
indicated that 2D processing can significantly improve the nonlinear 
relationship between spectral data and contamination conditions. 
For the 1D-CNN model, the model without preprocessing had the 
best effect, and the accuracy of the model decreased after 
preprocessing. The results showed that the 1D-CNN model was 
easier to mine the spectral features related to contamination status 
from the original spectral data. In conclusion, 2D preprocessing 
could effectively achieve baseline correction of spectral data and 
remove background interference to enhance the detection 
performance of PLS-DA and SVM models. The spectral data used for 
subsequent feature extraction were preprocessed spectra by the 
2D method.

TABLE 1 1D-CNN models for pathogenic bacteria contamination status on mutton based on different numbers of convolution kernels.

Number of convolution kernels Accuracy

Training set Test set External validation set

(128,64) 99.66% 86.90% 97.62%

(128,32) 99.67% 88.10% 95.24%

(128,16) 98.64% 83.33% 92.86%

(64,32) 99.66% 88.10% 97.62%

(64,16) 100.00% 90.48% 97.62%

(32,16) 99.66% 90.48% 95.24%

TABLE 2 1D-CNN models for pathogenic bacteria contamination status on mutton based on different activation functions.

Activation function Accuracy

Training set Test set External validation set

Relu 100.00% 90.48% 97.62%

Tanh 100.00% 92.86% 97.62%

Sigmoid 94.90% 85.71% 95.24%
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3.2.3 Extraction of spectral characteristic 
wavelengths

The methods of CARS, GA and SPA were used to extract 
characteristic wave-lengths related to the contamination status of 
pathogenic bacteria on mutton. Among them, the main parameters of 
GA for feature wavelength extracting are set as follows: the initial 
population is 64, the mutation probability is 0.005, the genetic 
iteration number is 100, and the convergence rate is 0.5. The 
distribution of the characteristic wavelengths extracted using different 
methods in the full band is shown in Figure 4.

The number of characteristic wavelengths extracted using CARS, 
GA and SPA was 33, 35 and 15, respectively. The characteristic 
wavelengths extracted by GA were scattered in the range of 1,000–
1,600 nm, and were mainly densely distributed in the range of 1,687–
1810 nm, 1881–2007 nm and 2,152–2,400 nm. The characteristic 
wavelengths extracted using CARS were also distributed in the 

1,071–1,253 nm and 1875–2,328 nm ranges, as well as in the vicinity 
of 1,000, 1,020, 1,543, 1,586, 1,693 and 1712 nm. The characteristic 
wavelengths extracted by SPA were mainly distributed at 1008–
1385 nm and 2,196, 2,252 and 2,284 nm. Although there are differences 
in the distribution of spectral wavelength variables obtained from 
screening by different methods, these bands contribute significantly 
to the identification model for the presence or absence of pathogenic 
bacteria in mutton. The main reason was that when mutton was 
contaminated by pathogenic bacteria, the spectral curves obtained by 
using HSI were the spectra under the joint action of pathogenic 
bacteria and mutton. The bands with large differences in reflectance 
between the spectral curves of pure mutton and mutton contaminated 
by pathogenic bacteria were selected as the characteristic bands, and 
these bands are mainly related to the intensity change of functional 
group, including O-H, N-H and C-H, caused by pathogenic bacteria 
(40, 41). Different characteristic wavelengths were used to establish 

TABLE 3 Results of the detection model for pathogenic bacteria contamination status on mutton established by spectral data after different 
preprocessing method.

Model Pretreatment method Accuracy

Training set Test set External validation set

1D-CNN

None 100.00% 92.86% 97.62%

1D 99.98% 85.71% 95.24%

2D 100.00% 89.26% 95.24%

MC 97.96% 90.48% 95.24%

MSC 99.66% 86.90% 90.48%

PLS-DA

None 92.18% 90.14% 89.29%

1D 89.12% 85.71% 83.33%

2D 92.85% 90.48% 89.29%

MC 86.73% 83.33% 79.76%

MSC 87.07% 85.37% 83.33%

SVM

None 93.20% 86.39% 79.76%

1D 98.30% 88.10% 88.76%

2D 99.32% 91.67% 90.14%

MC 83.33% 77.38% 74.83%

MSC 96.94% 78.57% 80.95%

FIGURE 4

Distribution of characteristic wavelengths extracted by different methods in the full band. (A) GA. (B) CARS. (C) SPA.
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simplified models for the detection of pathogenic bacteria 
contamination in mutton, and the effects of characteristic wavelength 
extraction on PLS-DA, SVM and 1D-CNN models were discussed. 
The results are shown in Table 4.

Table 4 shows that for PLS-DA, SVM and 1D-CNN models, the 
models constructed by the characteristic wavelengths extracted by GA 
have the better effect. The results showed that GA was more effective 
than CARS and SPA in extracting the key spectral features related to 
contamination status of pathogenic bacteria on mutton. Compared 
with the model established by full band, the accuracy of the training 
set and test set of GA-PLS-DA and GA-SVM model decreased, while 
the accuracy of the external validation set increased. This could 
be attributed to the fact that GA may lose a small amount of useful 
information when extracting spectral features of uncontaminated and 
mutton samples contaminated with pathogenic bacteria. Compared 
with the 1D-CNN model the Tanh activation function established by 
full band (Table 2), the training set, test set and external validation set 
of the 1D-CNN model established by characteristic wavelengths were 
reduced by 1.36, 8.34 and 2.38%, respectively.

3.2.4 Model comparison and optimal model 
selection

The methods of PLS-DA, SVM and 1D-CNN were used to 
establish the detection models of pathogenic bacteria contamination 
on mutton. For the models established by the full band spectra, the 
optimal model was the 1D-CNN model established by the original 
spectra, and its training set, test set and external validation set were 
100.00, 92.86 and 97.62%, respectively (Table 3). For PLS-DA and 
SVM models, the effects of the models established after 2D 
preprocessing were all the best models, and the performance of SVM 
was better than that of PLS-DA. For the simplified models built by the 
characteristic wavelengths, the models built by the 35 characteristic 
wavelengths extracted by GA were all the optimal models. According 
to the comprehensive results of the three datasets, the optimal model 
was GA-SVM. The training set, test set and external validation set of 
the optimal simplified model GA-SVM were 94.22, 89.29 and 95.24%, 
respectively (Table 4). Compared with the 1D-CNN model established 
by the full band spectra, its training set, test set and external validation 
set were reduced by 5.78, 3.47 and 2.38%, respectively. In conclusion, 
the optimal model for the detection of pathogenic bacteria 

contamination on mutton is the 1D-CNN model established by the 
original spectra. Due to the powerful ability to extract feature and 
handle both linear and nonlinear relationships of 1D-CNN model, it 
showed a significant detection advantage over PLS-DA and SVM 
models. At the same time, the original band was used to establish the 
detection model, which omitted the preprocessing and feature 
extraction process, and the detection efficiency was improved. This 
conclusion was similar to previous studies (42–44). In addition, the 
simplified model established by using the characteristic bands reduced 
the complexity of the characteristics. Although the accuracy was 
slightly lower than that of the full-band model, the characteristic 
bands could provide some reference when developing a low-cost 
multispectral detector. Low-cost multispectral detectors were more 
suitable for real-time and rapid detection of large quantities of samples.

3.3 Establishment of the discrimination 
models of pathogenic bacteria species 
contaminated on mutton

After the detection of the contamination status of pathogenic 
bacteria on mutton, the discrimination of the species of pathogenic 
bacteria is particularly important. The limit requirements for different 
types of pathogenic bacteria on mutton are different. Rapid and 
accurate discrimination of pathogenic bacteria can effectively realize 
the safety detection of pathogenic bacteria. In this study, PLS-DA, 
SVM and 1D-CNN were used to establish the discrimination models 
of pathogenic bacteria species contaminated in mutton.

3.3.1 Optimization and determination of 
hyperparameters of 1D-CNN model structure

In order to establish a 1D-CNN model for the discrimination of 
pathogenic bacteria contaminated in mutton, the original spectra were 
used to construct a classification model, and the effects of convolution 
kernel number and activation function on the CNN model were 
investigated. The activation function was set to relu, and the different 
convolution kernel numbers in Table 5 were used to establish the 
pathogen species discrimination model.

The results showed that the number of convolution kernels had no 
significant effect on the results of the pathogen species discrimination 

TABLE 4 Results of detection models for pathogenic bacteria contamination status on mutton established by characteristic wavelengths extracted by 
different methods.

Model Method of feature 
band screening

Number of bands Accuracy

Training set Test set External validation 
set

1D-CNN

CARS 33 96.94% 85.71% 92.86%

GA 35 98.64% 84.52% 95.24%

SPA 15 94.56% 75.00% 95.24%

PLS-DA

CARS 33 86.73% 82.14% 83.33%

GA 35 89.12% 86.90% 92.86%

SPA 15 90.14% 82.14% 92.86%

SVM

CARS 33 98.98% 90.48% 90.48%

GA 35 94.22% 89.29% 95.24%

SPA 15 93.57% 86.90% 92.86%
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model. The accuracy of all models was 100.00%. The results showed 
that the 1D-CNN model was very suitable for establishing the 
discrimination model of pathogenic bacteria in mutton. According to 
the fact that the smaller the convolution sum, the smaller the 
computational cost of the model, the 1D-CNN with convolution 
sum of (32, 16) was selected to establish the pathogen species 
discrimination model.

When the convolution kernel of the 1D-CNN model was set to 
(32, 16), the effects of three activation functions (sigmoid, tanh and 
relu) on the pathogen species dis-crimination model were investigated. 
The results showed that all three activation functions could be used to 
establish the pathogen species discrimination 1D-CNN model, and 
the type of activation function had little effect on the model (Table 6). 
When the activation functions were relu or sigmoid, the accuracy of 
the test set of the model was 97.62%, and the accuracy of other data 
sets was 100.00%. Therefore, tanh activation function was selected to 
establish the discriminant model of pathogenic bacteria in mutton. In 
the subsequent study, the number of convolution kernels in the 
pathogen species discrimination model established by 1D-CNN was 
(32, 16), and the activation function was tanh.

3.3.2 Effects of spectral preprocessing on 
different models

Different pre-processed spectral data were used to establish 
discrimination models of pathogenic bacteria species contaminated 
in mutton, and the effects of different processing methods on PLS-DA, 
SVM and 1D-CNN models were discussed. The results are shown in 
Table 7.

Table 7 shows that for the PLS-DA model, the model with 2D 
preprocessing has the best effect, and the model performance is 
slightly improved compared with no pre-treatment. For the SVM 
model, the performance of the 2D pre-processing model was 
significantly improved. Compared with the model based on the 
original spectra, the accrary of the training set, test set and external 
validation set was improved by 11.56, 19.05 and 14.29%, respectively. 

The results showed that 2D preprocessing effectively strengthened the 
nonlinear relationship between spectral data and pathogenic bacteria 
species. For the 1D-CNN model, the effects of all models were 
100.00%, indicating that preprocessing had no effect on the 1D-CNN 
model. The above studies indicated that spectral preprocessing could 
improve the performance of PLS-DA and SVM models (45), but 
had no effect on the 1D-CNN models, when building species 
discrimination models of pathogenic bacteria in mutton.

3.3.3 Extraction of spectral characteristic 
wavelengths

The methods of GA, CARA and SPA were used to extract the 
characteristic wave-lengths associated with pathogenic bacteria 
species in mutton. The distribution of characteristic wavelengths 
extracted using different methods in the full band is shown in Figure 5.

Figure 5 shows that that the characteristic wavelengths screened 
by GA mainly include 1,030, 1,102, 1,340, 1,680, 1705, 1724, 1762, 
1960 and 1976 nm, and the distribution of characteristic bands is 
relatively dense in the range of 1,203–1,266, 1,397–1,561 and 1831–
1900 nm. The characteristic wavelengths screened by CARS were 
mainly distributed in the range of 1,033–1,064 and 1,649–2,158 nm, 
and also distributed around 1,115, 1,178, 1,222–1,335, 1,404, 1,529, 
1,542, 1,592, 2,350 nm. The characteristic wavelengths screened by 
SPA were mainly distributed in the vicinity of 1,310, 1,385, 2,240, 1820 
and 2,390 nm, and also distributed in the range of 1,002–1,052, which 
contained most of the peaks and trough after the second derivative 
treatment. The characteristic bands mainly related to the difference 
between different pathogenic bacteria. Then the characteristic bands 
extracted by different methods were used to establish the pathogen 
species discrimination model, as shown in Table 8.

As shown in Table 8, the all datasets accuracy of PLS-DA and 
SVM models con-structed with characteristic wavelengths extracted 
by GA, CARS and SPA for discriminating the species of pathogenic 
bacteria on mutton was 100.00%. It shows that all of three methods 
could effectively extract the key spectral features of different types of 

TABLE 6 1D-CNN model for pathogenic bacteria species discrimination based on different activation functions.

Activation function Accuracy

Training set Test set External validation set

Relu 100.00% 97.62% 100.00%

Tanh 100.00% 100.00% 100.00%

Sigmoid 100.00% 97.62% 100.00%

TABLE 5 1D-CNN models for pathogenic bacteria species discrimination based on different numbers of convolution kernels.

Number of convolution kernels Accuracy

Training set Test set External validation set

(128,64) 100.00% 100.00% 100.00%

(128,32) 100.00% 100.00% 100.00%

(128,16) 100.00% 100.00% 100.00%

(64,32) 100.00% 100.00% 100.00%

(64,16) 100.00% 100.00% 100.00%

(32,16) 100.00% 100.00% 100.00%
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pathogenic bacteria. Compared with the full-band model, the 
accuracy of PLS-DA and SVM was improved. Because the number of 
characteristic wavelengths extracted by SPA was smallest, the PLS-DA 

and SVM models established by the characteristic wave-lengths 
extracted by SPA were faster. Therefore, SPA combined with machine 
learning can be effectively used to establish simplified models for the 

FIGURE 5

Distribution of characteristic wavelengths extracted by different methods. (A) GA. (B) CARS. (C) SPA.

TABLE 8 Results of discrimination models for pathogenic bacteria species established with characteristic wavelengths extracted by different methods.

Model Method of feature 
band screening

Number of bands Accuracy

Training set Test set External validation set

1D-CNN CARS 42 100.00% 95.24% 100.00%

GA 42 100.00% 97.61% 100.00%

SPA 29 100.00% 92.86% 100.00%

PLS-DA CARS 42 100.00% 100.00% 100.00%

GA 42 100.00% 100.00% 100.00%

SPA 29 100.00% 100.00% 100.00%

SVM CARS 42 100.00% 100.00% 100.00%

GA 42 100.00% 100.00% 100.00%

SPA 29 100.00% 100.00% 100.00%

TABLE 7 Results of discrimination models for pathogenic bacteria species based on the spectra with different pretreatment methods.

Model Pretreatment method Accuracy

Training set Test set External validation set

1D-CNN None 100.00% 100.00% 100.00%

1D 100.00% 100.00% 100.00%

2D 100.00% 100.00% 100.00%

MC 100.00% 100.00% 100.00%

MSC 100.00% 100.00% 100.00%

PLS-DA None 99.32% 97.62% 100.00%

1D 98.64% 100.00% 100.00%

2D 99.32% 100.00% 100.00%

MC 98.64% 97.62% 100.00%

MSC 99.32% 97.62% 100.00%

SVM None 88.44% 80.95% 85.71%

1D 100.00% 92.86% 100.00%

2D 100.00% 100.00% 100.00%

MC 88.44% 85.71% 80.95%

MSC 98.64% 85.71% 80.95%
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species discrimination of pathogenic bacteria contaminated in 
mutton. On the contrary, for the 1D-CNN model, the accuracy of the 
models based on the characteristic wavelengths extracted by different 
methods was lower than that of the full-band model, indicating that 
the feature extraction lost some features available (44).

3.3.4 Comparison of model preferences
The methods of PLS-DA, SVM and 1D-CNN were used to 

establish the species discrimination models of pathogenic bacteria 
in mutton. For the full-band model, the accuracy of all datasets of 
2D-SVM and all 1D-CNN models was 100.00%, and the model effect 
was satisfactory. For the model built by the characteristic 
wavelengths, the PLS-DA and SVM models based on the 
characteristic band had good effects, and the accuracy of all datasets 
was 100.00%. However, the accuracy of the 1D-CNN model based 
on the characteristic wavelengths was lower than that of the full 
band. The results showed that for the machine learning model, 
preprocessing could improve model accuracy, and feature extraction 
could effectively remove the features that were not related to the 
pathogen species in the full-band spectral information. Although the 
model based on the characteristic wavelengths had a good effect, and 
the simplified model could provide a basis for the development of 
multispectral detection instruments, it needed to go through the 
process of manual preprocessing and feature extraction, which 
increased the complexity of establishing species discrimination 
models of pathogenic bacteria in mutton using SWIR-HSI. When the 
1D-CNN model was used, the effect of the model based on the 
original spectrum was optimal, and its end-to-end detection mode 
effectively improved the efficiency of model detection. In conclusion, 
considering the computational complexity of features and models, 
the 1D-CNN model based on the original spectra was the optimal 
model when the SWIR-HSI was used for the discrimination the 
species of pathogenic bacteria in mutton.

At present, the traditional culture method is the most common 
and reliable means of pathogenic bacteria detection, but it needs 
professional operators and strict testing environment, and the 
detection time is long and the efficiency is low. Compared with the 
traditional culture detection of pathogenic bacteria, HSI can be more 
quickly used to rough select the contamination status of pathogenic 
bacteria in mutton and discrimination their types. However, in the 
early stage of the research, due to the small amount of data, the 
generalization performance of the built model was not strong. In 
the follow-up study, we  should consider the influence of multiple 
factors on the model, such as the presence of indigenous microbiota, 
breeds and parts of mutton, etc., to enhance the generalization 
performance of the model, so that the method proposed in this study 
was more feasible.

4 Conclusion

The feasibility of using SWIR-HSI (1000–2,500 nm) combined 
with traditional machine learning and deep learning methods to 
detect the pathogenic bacteria contamination on mutton was 
explored in this study. The 1D-CNN model which was suitable for 
detection the contamination status and species of pathogenic 
bacteria in mutton was constructed and optimized according to the 

full-band spectra. The effects of different preprocessing methods 
and characteristic wavelengths extraction on different models are 
explored. The results showed that the number of convolution 
kernels and the type of activation function in the 1D-CNN model 
could significantly affect the detection model for contamination 
status of pathogenic bacteria on mutton, but had little effect on the 
discrimination model of the contaminated pathogenic bacteria on 
mutton. For the detection of pathogenic bacteria contamination 
status on mutton, 2D preprocessing could improve the accuracy of 
PLS-DA and SVM, but it had no effect on the 1D-CNN model. 
Using GA method to extract characteristic wavelengths could 
simplify the input of the model and reduce the complexity of the 
model. The overall results showed that the 1D-CNN model based 
on the original spectra was the best model for the detection of 
pathogenic bacteria contamination status on mutton. For the 
species discrimination of pathogenic bacteria contaminated on 
mutton, the spectral preprocessing affected the model in the same 
way as the contamination detection model. The 2D preprocessing 
method could effectively improve the accuracy of PLS-DA and SVM 
models, while it had no effect on 1D-CNN model. When GA, CARS 
and SPA were used to extract the characteristic wavelengths to 
establish the simplified model, the performance of the 1D-CNN 
model was reduced compared with that of the full-band model. But 
the effects of PLS-DA and SVM models based on characteristic 
wavelengths were satisfactory. In conclusion, the combination of 
SWIR-HSI with traditional machine learning and deep learning 
methods could effectively detect the contamination status and 
identify the species of pathogenic bacteria in mutton, and the 
performance of deep learning model was better than that of 
machine learning. The results provide theoretical basis and technical 
support for the effective realization of rapid nondestructive 
detecting of pathogenic bacteria. For future research, the detection 
limit of GB29921-2013 for different pathogenic bacteria will 
be considered too quickly distinguish their concentration levels, 
and the detection limit of SWIR-HSI for pathogenic bacteria 
detection will be discussed.
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