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Maize hydroxycinnamic acids: 
unveiling their role in stress 
resilience and human health
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Maize production is pivotal in ensuring food security, particularly in developing 
countries. However, the crop encounters multiple challenges stemming from 
climatic changes that adversely affect its yield, including biotic and abiotic 
stresses during production and storage. A promising strategy for enhancing 
maize resilience to these challenges involves modulating its hydroxycinnamic 
acid amides (HCAAs) content. HCAAs are secondary metabolites present in 
plants that are essential in developmental processes, substantially contributing 
to defense mechanisms against environmental stressors, pests, and pathogens, 
and exhibiting beneficial effects on human health. This mini-review aims 
to provide a comprehensive overview of HCAAs in maize, including their 
biosynthesis, functions, distribution, and health potential applications.
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1 Introduction

Maize (Zea mays L.) stands as one of the most critical staple crops worldwide, providing 
sustenance for billions of people. However, maize production encounters several challenges, 
including biotic and abiotic stresses that can substantially impact yield and global food security 
(1). One promising avenue to address these challenges is the modulation of 
bioactive compounds.

Hydroxycinnamic acid amides (HCAAs) constitute a group of secondary metabolites 
widely distributed across the plant kingdom, with roles extending to developmental processes 
including sexual differentiation, cell division, growth, and senescence (2). HCAAs also assume 
significance in plant stress responses, including defense against insect herbivory, resistance to 
multiple pathogen infections (3), and resilience to abiotic stresses such as drought, salinity, 
and mechanical injury (4–7). As valuable antioxidants, HCAAs also hold the potential to 
mitigate various chronic human diseases (8–13) (Figure 1A). Nevertheless, the specific roles 
of HCAAs in maize are still not completely understood.

HCAAs represent polymers synthesized through the condensation of hydroxycinnamic 
acid (HCA) and either mono- or polyamines (PAs) via the phenylpropanoid pathway (PPP). 
They derive from phenylalanine and tyrosine and possess a C3–C6 carbon skeleton with a 
series of hydroxylations and methylations on the aromatic ring, resulting in diverse structural 
patterns (14). The process initiates with the enzyme phenylalanine ammonia-lyase (PAL), 
which catalyzes the conversion of phenylalanine into trans-cinnamic acid. Subsequently, 
cinnamate 4-hydroxylase (C4H) transforms cinnamate into p-coumaric acid, and 4-coumarate 
CoA ligase (4CL) converts it into p-coumaroyl CoA. These reactions constitute a critical step 
in the PPP, responsible for the biosynthesis of various secondary metabolites, including 
flavonoids, anthocyanins, lignin, and other compounds (Figure 1B).
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FIGURE 1

Maize hydroxycinnamic acid amides. (A) The diverse roles of plant hydroxycinnamic acid amides in the developmental processes, defense responses, 
and impact on human health. (B) Hydroxycinnamic acid amides (HCAAs) biosynthetic pathway. Phenylpropanoid pathway (PPP): Phenylalanine 
ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H), cinnamate 3-hydrolase (C3H), 4-coumaroyl-coenzyme A ligase (4CL), caffeoyl-CoA 
o-methyltransferase (CCoAOMT). Flavonoid pathway: Chalcone synthase (CHS), chalcone isomerase (CHI). Lignins: Cinnamoyl CoA reductase (CCR), 
cinnamyl alcohol dehydrogenase (CAD). HCAAs: Agmatine N-coumaryl transferase (ACT), putrescine hydroxycinnamoyl transferase (PHT), tyramine 
N-hydroxycinnamoyl transferase (THT). Amino acids: tyrosine decarboxylase (TyDC), ornithine decarboxylase (ODC).
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Understanding the genetic mechanisms controlling HCAA 
production in maize becomes vital. Genome-wide association studies 
(GWAS) and quantitative trait loci analyses (QTL), coupled with 
untargeted metabolomics have revealed genes regulating HCAA 
biosynthesis. Studies have shown disparities in HCAA abundances 
among cultivars, which are further affected by environmental factors 
such as growing locations and seasons, serving as dominant 
parameters driving metabolite profile variability in corn (15, 16). 
GWAS and QTL analysis in kernels and leaves have elucidated the 
genetic architecture of these traits in various maize inbred lines. 
Metabolomics analyses have unveiled a wide range of metabolic 
variations in analyzed populations, identifying key candidate genes 
responsible for the novel metabolites involved in phenolic and HCAA 
formation (17–19). However, limited efforts have been directed 
toward increasing their concentration in maize (20).

The most prevalent HCA derivatives in maize include p-coumaric, 
ferulic, caffeic, and sinapic acids. Research suggests that HCAs offer 
several agronomic advantages, and their content can potentially 
be  enhanced via conventional or biotechnological breeding. Such 
enhancement could improve the resistance of the crop to 
environmental and storage-related stresses, and find applications in 
natural dietary supplements, functional ingredients, and active 
additives for cosmetics (15, 21).

Despite its paramount significance as a crop, further research is 
warranted to comprehend metabolic disparities among maize varieties 
and to explore the chemical diversity, abundance, and biological 
properties of maize HCAAs. This review summarizes current 
knowledge regarding this compound family in maize, including its 
role in stress responses and its potential for conferring health benefits 
to humans.

2 Diversity of HCAAs in maize tissues 
and genotypes

Maize, extensively studied for its nutritional benefits, contains 
bioactive compounds, dietary fiber, vitamin A, and lysine. In 
comparison to other cereals, exhibits the highest levels of bound 
ferulic acid and total phenolics (22). Sweet maize is distinguished by 
its higher free phenolic and flavonoid content than regular corn. 
Various corn varieties exhibit ferulic and p-coumaric acids as the 
predominant phenolic compounds. Pigmented maize varieties, such 
as blue and purple, showcase a diverse variety of phenolic acids and 
anthocyanins not commonly found in their yellow counterparts (23). 
Some flavonoids, including eriodictyol, luteolin, isoorientin, and 
maysin, are prevalent in pollen, silk, and tassel of maize but are less 
frequently detected in the seeds. Although certain flavanol-
anthocyanins have been identified in maize, their quantification 
remains to be studied. The accumulation of phenolic acids, including 
gallic acid, chlorogenic acid, syringic acid, and HCA, can be attributed 
to the expression of PAL during cultivation (16). Additionally, cell 
wall-bound phenolics, such as ferulic acid, may be associated with 
specific tissue morphological structures (24).

Notably, nearly four decades ago, an abundance of peculiar 
conjugates was discovered in the male reproductive organs of maize, 
as reported by Martin-Tanguy et al. in 1978. These conjugates were 
identified as hydroxycinnamic acid amides, with ferulic acid 
specifically linked to the individual amino groups of putrescine and 

spermidine (25). Despite their discovery long ago, little research has 
reported their role in maize.

HCAAs represent a group of conjugated PAs, encompassing 
cinnamic acid, coumaric acid, caffeic acid, ferulic acid, and sinapic 
acid, which combine to form acylated PAs (10, 26). HCAAs 
predominantly exist as esters located within subcellular compartments 
such as vacuoles, the cell wall, or the cytosol (3). Numerous HCAs and 
HCAAs have been previously identified in maize genotypes of 
diverse origins.

The highest concentrations of HCAAs were detected in the outer 
tissues of the maize kernel, specifically in the pericarp and aleurone 
fraction, constituting up to 75% of the total HCAA content in the 
grain. The germ contained the second-highest concentration of 
HCAAs, whereas nearly none were detected in the endosperm (15). 
Alternatively, these phenolic amides are found as co-pigments in 
colored maize and contribute significantly to anthocyanin coloration, 
particularly putrescines for red and spermidine for blue-colored 
varieties (27). HCAAs not only exhibit variations between genotypes, 
kernel colors, and ecological factors but also vary across different 
stages of plant development (11).

Diferuloylputrescine and p-coumaroyl-feruloylputrescine were 
identified as abundant PA conjugates in lipid extracts of maize kernels 
(28). Subsequent variations of these compounds have been associated 
with genetic sources, varieties, and altitude of origin. Maize varieties 
with elevated HCAA concentrations were preferentially selected at 
lower altitudes (15). In such cases, the pericarp and aleurone layers 
exhibited a higher HCAA concentration. This highlights the 
significant potential of key genes in the HCAA pathway for application 
in stress resistance breeding strategies.

A recent study evaluated 66 hybrids for hydroxycinnamic acid 
concentration in the grain, along with field yield and test weight. The 
findings suggest that breeding maize for improved HCA concentration 
is not only feasible but could also facilitate the production of dietary 
supplements or natural food additives while enhancing resistance to 
biotic and abiotic stresses during both the growing season and grain 
storage (20).

3 Role of HCAAs in maize response to 
stress

Plants have harnessed the utility of hydroxycinnamic acid amides 
in combating biotic stress and adapting to environmental changes. 
These compounds can activate defense genes, strengthen cell walls, 
regulate oxidative stress, and promote lignin accumulation 
(Figure 1A). Consequently, HCAAs play a crucial role in the survival 
and growth of plants under challenging conditions. While a 
comprehensive understanding of the general function of HCAAs in 
plant immunity is available elsewhere (3), this discussion will focus on 
their role in maize responses to stress.

3.1 Transcriptional regulation of defense 
genes

One of the mechanisms plants employ in response to stress 
signals is the transcriptional regulation of genes involved in 
secondary metabolic synthesis. In maize, there is strong evidence 
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of the upregulation of the HCAA pathway following Puccinia 
sorghi infection. Genes associated with defense responses and 
secondary metabolism, such as those related to the 
phenylpropanoid, flavonoid, and terpenoid pathways, are induced 
in response to this stress. Metabolome analyses have confirmed the 
accumulation of chlorogenic acid, caffeic acid, and ferulic acid in 
all lines analyzed, along with an increase in coumaric acid and its 
flavonoid derivatives in resistant lines (21). Families of 
transcription factors, including WRKY and MYB, have been 
reported to regulate the biosynthesis of secondary metabolites, 
including HCAAs (29). For instance, the MYB transcription factor 
yellow seed 1 is associated with maize protection against 
Colletotrichum sublineolum infection (30).

3.2 Cell wall properties

Recent studies suggest that HCAAs are bound to the 
arabinoxylans of the cell wall, leading to increased cell wall thickness 
and enhanced strength. This effect serves to restrict the penetration 
and infection of pathogens (3). Several reports also have revealed the 
importance of these compounds in postharvest insect resistance. 
Phenolic compounds bound to the cell wall are involved in the 
resistance of maize against the Mediterranean corn borer Sesamia 
nonagrioides. Researchers evaluated various maize genotypes with 
differing HCA contents and borer resistance levels. They also 
investigated the relationships between several cell wall-bound 
phenolic compounds, including ferulic acid and its dimers, 
p-coumaric acid, and syringyl lignin subunits. The results showed 
significant correlations between both ferulic acid and its dimers and 
p-coumaric acid with the damage inflicted by S. nonagrioides larvae, 
as measured by tunnel lengths (31).

Another study explored the contribution of cell wall components in 
the pericarp to resistance against the maize weevil (Sitophilus zeamais) 
across nine different genotypes of tropical maize. The study examined six 
parameters related to susceptibility to the weevil, including 
measurements of certain HCAs. The results indicated that cell wall cross-
linking components play a role in enhancing kernel resistance against 
S. zeamais (32). Substantial progress has been made through recurrent 
selection and the improvement of a maize population against the maize 
weevil and the larger grain borer (Prostephanus truncatus). Comparison 
of the phytochemical composition of the pericarp cell wall before and 
after selection revealed a 42% increase in cell wall-bound components, 
including ferulic and diferulic acids. Moreover, the endosperm exhibited 
an 18% increase in free phenolic acid (33).

Maize cell wall secondary metabolites also play a role in abiotic 
stress responses. Recent findings have revealed how cell walls undergo 
remodeling in response to salinity stress. Cell wall secondary 
metabolites, particularly cellulose, matrix polysaccharides, and lignin, 
are affected by salt stress in both the roots and stems of seedlings and 
mature plants. Furthermore, the expression of genes and the activity 
of enzymes involved in PPP biosynthesis increase under salt stress 
conditions. Also, metabolite profiling has confirmed the accumulation 
of secondary metabolites in response to salinity stress (6). Similarly, 
plant cell walls can be strengthened by lignin and callose deposition. 
Lignin, predominantly deposited in secondary cell walls, acts as a 
physical barrier to limit the spread of pathogens (34). On the other 
hand, callose deposition can prevent pathogens from entering 

epidermal cells. HCAAs can enhance the synthesis of lignin and the 
deposition of callose (35).

3.3 Emerging functions and roles

Plants produce hormones that aid in their defense against 
pathogens and induce disease resistance. The hormone jasmonic acid 
(JA) regulates the biosynthesis of secondary compounds, including 
HCAAs (21). The accumulation of HCAAs is induced by JA and 
ethylene signals, whereas salicylic acid (SA) plays a crucial role in 
initiating plant defense. The introduction of SA stimulates the 
production of ferulic acid, p-coumaric acid, and sinapic acid, which 
enhances plant resistance. Then, p-coumaric acid can trigger JA 
signaling-mediated induction of phenylpropanoid biosynthesis, 
contributing to disease resistance (3).

The accumulation of HCAAs also improves the resistance of 
maize to multiple pathogens, including fungi such as Aspergillus flavus 
(36, 37) and Fusarium (38), as well as herbivores including Spodoptera 
littoralis (39), and the aforementioned insects.

Maize genotypes exhibit varying levels of HCAAs and present a 
valuable resource for targeted breeding programs aimed at developing 
resilient cultivars (15). Moreover, the underexplored genetic diversity 
within maize, notably in  local landraces, offers an avenue for 
discovering novel traits that can be  incorporated into modern 
varieties. Furthermore, the presence of various compounds in 
pigmented maize varieties adds another layer of value, with potential 
applications for human health (23, 40, 41).

4 Maize-derived HCAAs: implications 
for health

The HCAA family exhibits a wide array of biological activities, 
ranging from antifungal and antimicrobial properties to anti-
inflammatory and anticancer properties (Figure  1A). Given the 
abundance of these compounds in various food sources, there exists 
an opportunity to explore their chemical diversity and develop analogs 
with enhanced potency. Notably, HCAAs may also be  present in 
maize-derived products, such as cornbread, commonly known as broa 
(42, 43). Evidence suggests that diferuloylputrescine, isolated from 
corn bran, has demonstrated efficacy in inducing apoptosis in human 
leukemia U937 cells (44). While HCAA quantification demands the 
utilization of multiple analytical techniques, recent progress in this 
field has rendered the discovery of new conjugates with potential 
health benefits more attainable (45).

4.1 Antioxidant and anti-inflammatory 
properties

HCAA molecules are distinguished by their heightened 
antioxidant activity, attributed to the presence of amide species, which 
also enhances their stability under physiological conditions and 
during delivery methods. Unlike esters, which can be readily broken 
down by the hydrolase enzymes in the human body, amides are better 
suited for oral administration, offering potential anti-inflammatory 
(46), antioxidant (16), and antimelanogenic benefits (9, 47).
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The antioxidant capabilities of corn bran have been demonstrated 
via three distinct in vitro assays, involving mushroom tyrosinase and 
B16 melanoma cells. N,N‘-dicoumaroyl-putrescine, N-p-coumaroyl-N‘-
feruloylputrescine, N,N‘-diferuloyl-putrescine, and their related HCAs, 
p-coumaric acid and ferulic acid, have demonstrated melanogenesis 
inhibitory activity. These compounds exhibit the potential to serve as 
natural antioxidants and skin-whitening agents (9).

4.2 Implications in gut health

Diverse studies have revealed the positive effects of HCAs on gut 
health (48). For instance, the Peruvian purple maize variety AREQ-
084, distinguished by its high hydroxycinnamic acids and dietary fiber 
content, also contains phenolic components such as anthocyanins, 
which exhibit potential health benefits. These bioactive compounds 
promote gut health by influencing the activity of beneficial probiotic 
bacteria like Lactobacillus helveticus and Bifidobacterium longum, but 
without adversely affecting the pathogenic Helicobacter pylori. The 
anthocyanin-linked coloring properties of purple maize can 
be  harnessed in the development of probiotic-functional foods, 
leading to new avenues for improving gut health (49, 50).

4.3 Effect on lipid metabolism

Research indicates that HCAA molecules may play a pivotal 
role in regulating diseases associated with metabolic syndrome, 
including obesity, diabetes, insulin resistance, and hypertension. 

HCAAs derived from corn, such as N-p-coumaroyl-N‘-
feruloylputrescine and N,N‘-diferuloylputrescine, exhibit 
inhibitory effects on α-glucosidase, an enzyme responsible for 
catalyzing the final step in dietary carbohydrate digestion, leading 
to the suppression of post-meal glucose levels (49, 51) also 
demonstrated the potential health benefits of HCAAs via in vitro 
assay models targeting hyperglycemia (α-glucosidase and 
α-amylase inhibition) and obesity (lipase inhibition). These 
findings suggest that HCAAs may serve as promising candidates 
for the regulation of lipid metabolism and related disorders, 
potentially mitigating the adverse effects associated with 
obesity (8).

5 Current analytical challenges

Metabolomics in maize has significantly improved in recent years, 
enabling the quantification and profiling of a wide range of compounds 
(18). However, due to the extensive diversity in plant metabolism, it is 
nearly impossible to comprehensively determine the metabolome 
using a single protocol. In recent years, research has been conducted 
to identify and quantify HCAAs in various tissues of maize genotypes, 
utilizing diverse analytical techniques (Table 1).

The analysis of HCAAs is conducted through various methods, 
including liquid chromatography (LC) and LC coupled with mass 
spectrometry (LC–MS). Nevertheless, despite numerous attempts, the 
distribution of HCAAs has only been identified within specific tissues 
and maize genotypes. Moreover, annotating HCAAs from untargeted 
metabolomics data poses challenges due to the limited availability of 

TABLE 1 Research conducted in the past 5  years whereby HCAAs were identified and/or quantified in different tissues of maize genotypes by using 
different analytical techniques.

Genotypes Tissue Purpose Analytical 
technique

Compounds Reference

White, red, and orange 

maize from race Cabanita

Kernels Characterization of primary and 

secondary metabolites at 

different maturity stages and in 

vitro analysis for health-related 

properties

UHPLC p-coumaric acid derivatives, ferulic acid 

derivatives, total HCA

(11)

IBM RIL population and 

parental strains

Leaves and 

whole seed

QTL mapping of metabolites 

through an untargeted approach

DLI-ESI MS Feruloyl putrescine, coumaroyl 

putrescine, N(1), N(8)-bis(coumaroyl)

spermidine, N,N′-bis-(p-coumaroyl)-N″-

feruloyl spermidine

(17)

Near-isogenic lines H95 

and H95:Rp1-D

Seedlings To understand the resistance 

mechanisms against Puccinia 

sorghi

UHPLC-HRMS 4-coumaric acid, caffeic acid, ferulic acid, 

sinapic acid, chlorogenic acid

(21)

32 Mexican landraces Pericarp, 

endosperm, and 

germ

To determine the content and 

localization of HCAA in maize 

kernels

HPLC-PDA Diferuloyl putrescine, feruloyl putrescine, 

cinnamoyl putrescine, caffeoyl putrescine 

and coumaroyl putrescine

(15)

Maize seeds (Unspecified 

genotype)

Whole seed Creation of a novel and complete 

database of HCAAs

UHPLC-HRMS N,N′-bis-feruloyl-putrescine, N,N′-(p-

coumaroyl)-feruloyl-putrescine, N,N′-bis-

(p-coumaroyl)-spermidine N,N′-(p-

coumaroyl)-feruloyl-spermidine and 

N-trans-feruloyl-putrescine

(14)

UHPLC, Ultra high-performance liquid chromatography; DLI, Direct liquid introduction; ESI, Electrospray ionization; MS, Mass spectrometry; HRMS: High-resolution MS; HPLC, High-
performance liquid chromatography; PDA, Photodiode array.
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authentic commercial references and the absence of HCAA entries in 
existing MS databases (14). A novel method for detecting plant 
HCAAs is needed to comprehensively analyze all types of HCAAs.

Due to the absence of accurate methodologies, Li et al. (14) devised 
a comprehensive workflow for the deep annotation of HCAAs using 
UHPLC-high resolution MS (UHPLC-HRMS) in conjunction with an 
in-silico database of HCAAs. This in-silico database was constructed 
including 846 HCAAs derived from common phenolic acids and PA/
aromatic monoamine substrates, representing potential biosynthetic 
pathways for plant-specialized HCAA structures. To establish 
characteristic MS/MS fragmentation patterns of HCAAs, reference 
mixtures were used. This comprehensive study successfully identified a 
total of 79 HCAAs, including 42 compounds newly identified in maize, 
wheat, and rice, and 20 that have never been reported to exist in plants. 
These results highlight the potential of the developed method to identify 
HCAAs in plants even in the absence of prior knowledge regarding 
HCAA distributions (14).

Furthermore, recent advances in analytical protocols have facilitated 
the rapid detection of HCAA compounds through direct injection into a 
mass spectrometer. These compounds exhibit distinctive fragmentation 
patterns during MS analysis, significantly simplifying the annotation of 
metabolites (52, 53). However, modern techniques need to be explored 
for the precise quantification of molecules in maize tissues. Recent strides 
in analytical instrumentation, including infrared spectroscopy (54) and 
ambient mass spectrometry (55), have the potential to revolutionize our 
capacity to analyze the molecular composition of maize plants, offering 
exciting prospects for agricultural research and crop improvement.

6 Discussion and conclusion

The current knowledge about HCAAs in maize is limited, 
particularly regarding their distribution, concentrations, and diversity 
across maize germplasm. Despite its abundance, maize diversity remains 
understudied. The greatest diversity of maize germplasm resides in its 
center of origin, Mexico, where over 60 maize landraces have been 
documented (56). These genetic resources hold immense potential for 
identifying novel, advantageous traits that can be  introgressed into 
modern maize varieties, enhancing their adaptation to climatic change. 
Although the biosynthetic pathway of HCAAs is known, a comprehensive 
study of novel HCAAs is still lacking. It is also unclear whether HCAAs 
are solely storage compounds or actively functional.

Compared to other plants (3, 35) the lack of knowledge about 
HCAAs in maize emphasizes the need for dedicated efforts to expand 
databases and conduct integrative multi-omic studies. These studies 
could help uncover the diversity of HCAAs and identify their 
production mechanism and genotypes with higher concentrations. 
Addressing these gaps is crucial for formulating targeted breeding 
strategies to increase HCAA levels due to the pivotal roles these 
compounds play in plant defense responses. This can involve 
harnessing the natural genetic diversity of maize to identify and 
develop elite cultivars enriched in compounds. Moreover, genetic 
engineering techniques such as CRISPR/Cas could offer opportunities 
to manipulate and increase HCAA content (57).

Current advancements in analytical methods have resulted in the 
identification and synthesis of a wide range of HCAA standards (14). 
However, studies focused on identifying potential or novel HCAAs 
in maize have been scarce (18). To address these limitations, future 

research should prioritize the elucidation of HCAA structures, 
interactions, and synergistic effects with other bioactive compounds. 
The combined application of analytical methods and technologies, 
including high-throughput metabolomics coupled with 
advancements in computer science fields (data mining, machine 
learning, etc.) can contribute to more precise, cost-effective, and 
efficient studies (58).

HCAAs, known for their antioxidant and anti-inflammatory 
properties, also emerge as a promising resource for various 
therapeutic human applications. Their potential to positively 
influence gut health and lipid metabolism offers significant 
prospects for enhancing human well-being. However, their 
potential requires further animal studies and clinical trials to 
understand their safety and efficacy.

Exploring the natural genetic diversity of maize and harnessing 
elite cultivars enriched in beneficial compounds stands as a promising 
approach to elevating HCAA content. This not only contributes to 
agricultural advancements but also opens doors to understanding the 
functional roles of these compounds within maize, impacting both 
crop production and potential human health benefits.
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