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Background: Numerous observational studies have presented an association 
between Vitamin D (VD) and Alcoholic Liver Disease (ALD). However, sufficient 
evidence from Randomized Controlled Trials (RCTs) substantiating this 
correlation is scarce, thus leaving the causality of this relationship ambiguous. To 
overcome the shortcomings of traditional observational studies, we performed 
a two-sample bidirectional Mendelian randomization (MR) analysis to ascertain 
the causal relationship between VD and ALD.

Methods: We utilized summary statistics datasets from Genome-Wide 
Association Studies (GWAS) for VD and ALD. We selected genetic instruments 
that measure circulating VD levels (n  =  64,979), and retrieved ALD statistics from 
GWASs, inclusive of 1,416 cases and 217,376 healthy controls, while excluding 
chronic liver diseases such as nonalcoholic fatty liver disease, toxic liver 
disease, and viral hepatitis. Subsequent, MR analyses were performed to obtain 
effect estimates using inverse variance weighted (IVW) random effect models. 
Cochran’s Q statistic and MR-Egger regression intercept analyses were used to 
assess pleiotropy. Sensitivity analyses using the MR Egger, weighted median, 
simple mode, and weighted mode methods were also performed. Leave-one-
out analysis was used to identify SNPs with potential effect. Reverse MR analysis 
was also performed.

Results: In IVW, our MR analysis incorporated 21 independent SNPs, circulating 
VD levels had no causal effect on ALD [OR  =  0.624 (0.336–1.160), p  =  0.136] 
and ALD had no causal effect on circulating VD [OR  =  0.997 (0.986–1.008), 
p  =  0.555]. No heterogeneity or pleiotropy was observed (p  >  0.05). Other MR 
methods also agreed with IVW results.

Conclusion: This study provides the causal relationship between genetically 
predicted circulating Vitamin D levels and ALD and provides new insights into 
the genetics of ALD.
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Introduction

Alcoholic Liver Disease (ALD) stands out as a significant global 
contributor to liver-related disorders, stemming from the detrimental 
impact of prolonged and excessive alcohol consumption. Notably, 
recent years have witnessed a consistent rise in the prevalence of 
alcohol consumption and alcohol addiction on a global scale. This 
surge has consequently been linked to an escalated overall mortality 
rate, thus further accentuating the substantial clinical and 
socioeconomic burden associated with ALD. Nevertheless, within this 
intricate landscape, the interplay between ALD, genetic susceptibility, 
and environmental influences remains multifaceted. The deficiency of 
key dietary nutrients, VD being a pertinent example, has been 
identified as a potential factor in the initiation of ALD (1, 2).

Vitamin D is produced by the skin upon exposure to sunlight and 
are also obtained through the diet, exhibits diverse physiological 
functions. Post synthesis or ingestion, these hormones undergo 
hydroxylation in the liver to form 25-hydroxyvitamin D [25(OH)D], 
which is the main circulating form of VD3 in humans. VD not only 
affects bone and calcium metabolism function, but also reduces the risk 
of chronic diseases, which including diabetes, cancer, cardiovascular, 
infectious, and auto-immune diseases (3). In recent years, in the 
mechanisms of liver inflammation and injury induced by ethanol, the 
dysfunction of anti-inflammatory and antioxidant functions may 
exacerbate the progression of the disease. The anti-inflammatory and 
antioxidant effects of VD have become a focal point of research, 
particularly concerning its role in the occurrence and development of 
chronic liver diseases (4, 5). Accumulated observational studies in 
humans show an inverse relationship between VD levels, and the risk 
and severity of ALD (2, 4, 6). Despite several studies reporting 
decreased VD levels in ALD patients and suggesting potential benefits 
of enhancing VD levels, the effect of VD supplementation in these 
patients remains debatable (7). Establishing causality remains 
challenging due to potential confounders and reverse causation.

Mendelian randomization is an epidemiological tool used for 
establishing causal inference between exposure and outcomes by 
employing genetic variation as instrumental variables (IVs). This 
allows MR to overcome the limitations of traditional observational 
studies and significantly eliminating reverse causation (8). 
Nonetheless, to date, there have been no MR studies to investigate the 
causal relationship between serum VD levels and ALD.

The definition of outcome and selection of instrumental variables 
critically influence MR findings. This study aimed to assess the risk 
of ALD in the United  Kingdom Biobank (UKBB) cohort by 
conducting GWAS with a broader case definition than employed in 
previous works. Subsequently, utilizing genetic instruments derived 
from a European population’s meta-analysis GWAS on VD status, 
we conducted a two-sample bidirectional MR analysis to estimate 
first the effect of genetically predicted serum VD levels on risk of 
ALD, and reciprocally to estimate the causal effect of genetic risk for 
ALD on serum VD levels.

Materials and methods

The design of this two-sample bidirectional MR is summarized 
conclusion, which illustrated in Figure 1.

Software selection and data source

We conducted our search on the MR Base database,1 a repository 
containing a substantial number of summary statistic data from 
hundreds of GWASs (9). To mitigate any potential bias that might 
arise due to population stratification, we only included subjects of 
European genetic origin in our study. The summary statistics datasets 
for VD, publicly available and derived from GWAS meta-analyses 
concerning European individuals (n = 64,979; GWAS ID: ukb-b-
18593), served as our exposure. We sourced the ALD dataset from the 
most extensive histology-based ALD GWAS, comprising 1,416 
European ALD cases and 217,376 genetically matched controls 
(GWAS ID: finn-b-ALCOLIVER). Each dataset was obtained from the 
published summarized results of publicly available, genome-wide 
association studies.

Selection of the genetic instrument

The effect of VD levels on the risk of ALD (Variable 1, Figure 1) 
was evaluated using SNPs discovered in the Study of Underlying 
Genetic Determinants of VD, which showed an association with VD 
status. These SNPs were utilized as IVs to examine the correlation 
between genetically-inferred serum VD levels and ALD risk in the 
UKBB population cohort. A two-sample MR study of genetic variants 
linked with VD was employed as the IV, refining inference based on a 
p value threshold of 1*10−5 to capture as many potential genetic 
variants as possible. We procured summary statistics, including beta 
coefficients and standard errors, for 21 SNPs associated with VD, 
using these as IVs based on data from GWASs on VD. Conversely, 
we investigated the effect of ALD risk on VD levels using data from 
GWAS on ALD, which identified 21 standalone, genome-wide 
significant SNPs (Variable 2, Figure 1).

Statistical analysis for Mendelian 
randomization

Mendelian randomization analysis is a statistical technique that 
requires genetic variants to be related to the exposure of interest, but 
not potential confounders, to establish causal relationships (10). Our 
study followed a three-step approach to investigate the association 
between VD and the risk of ALD. Firstly, we  examined the 
independent association of SNPs with VD levels and the risk of 
ALD. Secondly, we assessed the association between each SNP and the 
risk of ALD. At the same time, we assessed the association between 
each SNP and VD levels. Lastly, we utilized two-sample bidirectional 
MR analysis, a method that leverages summary statistics from 

1 http://www.mrbase.org/

Abbreviations: ALD, Alcoholic liver disease; GWAS, Genome-wide association 

studies; SNPs, Single nucleotide polymorphisms; MR, Mendelian randomization; 

IVs, Instrumental variables; IVW, Inverse variance weighted; VD, Vitamin D; 25(OH)

D, 25-hydroxyvitamin D.
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different GWASs (11), to estimate the causal relationship between VD 
and the risk of ALD. For this analysis, we employed 21 SNPs as IVs 
obtained from the VD and ALD GWASs. By using this MR approach, 
we aimed to derive an unbiased estimate of the causal association 
between VD and the risk of ALD, while minimizing the influence of 
confounding factors (Table 1).

In this study, the IVW method amalgamates the Wald ratio 
estimates of the causal effect procured from multiple genetic variants, 
lending a consistent estimation of the causal effect of the exposure 
variable on the outcome (12). To tackle potential pleiotropy, where 
genetic variants might influence multiple variables, we incorporated 
two additional methods: MR-Egger regression and the weighted 
median estimator. MR-Egger regression addresses unbalanced 
pleiotropy, factoring in a parameter for bias, via the use of summary 
data estimates of causal effects from each genetic variant (13). It 
executes a weighted linear regression of gene-outcome coefficients on 
gene-exposure coefficients, wherein the slope embodies the causal 
effect estimate. The average horizontal pleiotropic effect across genetic 
variants is estimated by the intercept (14). The weighted median 
estimator, on the other hand, provides a consistent estimate of the 
causal effect even if up to 50% of the information comes from genetic 
variants that are not valid instrumental variables (15). Sensitivity 
analyses using the MR Egger, weighted median, simple mode, and 

weighted mode methods were also performed (13, 15, 16). As each 
method makes slightly different assumptions, a consistent effect across 
multiple methods yields the most robust evidence of causal inference. 

FIGURE 1

Overview of the two-sample MR study design used to investigate the probability of bidirectional association between serum VD and ALD. VD, Vitamin 
D; GWAS, Genome-wide association study; IVW, Inverse-variance weighted; MR, Mendelian randomization; ALD, Alcoholic liver disease; and SNP, 
Single-nucleotide polymorphism. SNPs were included if identified to be associated with ALD in the Speliotes’ GWAS with effects in the same direction 
with a p value of <1*10−5 in UKBB or were “discovered” in our GWAS in UKBB with a p value of <1*10−5.

TABLE 1 The results of heterogeneity and sensitivity test.

Methods Q df Q-val I2

Heterogeneity 

test

Vitamin D on ALD

MR Egger 19.076 19 0.452 0.004

Inverse variance 

weighted
19.327 20 0.501 0.035

ALD on Vitamin D

MR Egger 16.054 19 0.654 0.184

Inverse variance 

weighted
17.670 20 0.610 0.132

Sensitivity test

Egger regression 

intercept
Standard error

Directionality p 

value

Vitamin D on ALD

0.016 0.032 0.623

ALD on Vitamin D

0.006 0.005 0.219
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TABLE 2 Results of two-sample bidirectional MR analysis of the causal effects between Vitamin D and ALD.

Exposures Outcomes Methods
Number of 

SNPs
Beta SE p value OR 95%CI

Vitamin D on ALD

Vitamin D ALD

MR Egger 21 −0.839 0.802 0.308 0.432 0.090–2.081

Weighted median 21 −0.046 0.466 0.921 0.955 0.383–2.381

Inverse variance weighted 21 −0.471 0.316 0.136 0.624 0.336–1.160

Simple mode 21 0.274 0.888 0.761 1.315 0.231–7.502

Weighted mode 21 0.293 0.876 0.741 1.341 0.241–7.465

ALD on Vitamin D

ALD Vitamin D

MR Egger 21 −0.016 0.012 0.178 0.984 0.962–1.007

Weighted median 21 0.000 0.008 0.955 1.000 0.984–1.017

Inverse variance weighted 21 −0.003 0.006 0.555 0.997 0.986–1.008

Simple mode 21 0.004 0.015 0.774 1.004 0.976–1.034

Weighted mode 21 0.007 0.016 0.656 1.007 0.976–1.040

A higher R2 and F-statistic denote a reduced risk of weak instrument 
bias, and hold greater precision in estimations compared to MR-Egger 
analyses. Statistical significance was set to p < 0.05. We ran all Mendelian 
randomization analyses on RStudio Software (Version: 2023.06.0 Build 
421) and R Software (Version: 4.3.1) (Supplementary material 1).

Heterogeneity and sensitivity test

We assessed the heterogeneities between SNPs using Cochran’s 
Q-statistics (17) band I2 statistic (18, 19). Additionally, we  also 
conducted a “leave-one-out” analysis to explore the possibility of a 
causal association driven by a single SNP.

Results

Studies included in the meta-analysis

Instrumental variables for Mendelian 
randomization

In our analysis, we utilized a set of 21 independent SNPs identified 
from GWASs of VD and ALD as IVs. Each of these SNPs demonstrated 
a significant association with VD and ALD as per the genome-wide 
level of significance (refer to Supplementary Table S3 for more details). 
Of note, the F statistic, denoting the robustness of the IVs, was recorded 
to be 10 or above for each individual SNP variant. Conventionally, an 
F statistic under 10 typically signifies a “weak IV,” indicating that our 
study had minimal risk of weak instrument bias. The F statistic for all 
the SNPs used in the MR analysis was >10, verifying them as “strong” 
instruments. The F statistic measures the magnitude and precision of 
each SNP’s influence over VD and ALD. The individual F statistic for 
VD ranged between 20 and 23 (refer Supplementary Table S1) and for 
ALD, it ranged between 20 and 85 (refer Supplementary Table S2).

Mendelian randomization results
The IVW random method revealed no significant effect of 

serum VD levels on the risk of ALD, with an OR of 0.624 (0.336, 

1.160) and a p value of 0.136 (see Table  2 and Figures  2, 3). 
Conversely, the IVW random effect analysis also found no evidence 
of a causal effect of ALD on the odds of VD, with an OR of 0.997 
(0.986, 1.008) and a p value of 0.555 (consult Table 2 and Figures 2, 
3). The intercept of the MR-Egger test, representing the mean 
pleiotropic effect across genetic variants, was insignificantly 
different from zero, suggesting that directional pleiotropy is unlikely 
to bias the results (refer to Table 1). Furthermore, an evaluation 
involving the MR-Egger analysis, weighted median, weighted mode, 
and simple mode found no causal association between VD 
and ALD.

Heterogeneity and sensitivity test

The Cochran’s Q test was conducted to evaluate heterogeneity 
among instrumental variable estimates from individual genetic 
variants. The results did not indicate any substantial evidence of 
heterogeneity (refer to Table 1 and Figure 4). Heterogeneity is the 
variability in causal estimates obtained from each SNP. A low 
heterogeneity value signifies an increase in the reliability of MR 
estimates. Further strengthening the reliability of MR estimates, the 
I2 values also displayed low heterogeneity (refer to Table 1). In the 
“leave-one-out” analysis, each SNP was separately excluded to 
analyze its effect on the overarching IVW point estimate (refer to 
Figure 5). It was revealed that no single SNP had a significant impact 
on the IVW point estimate. This suggests that the cumulative result 
was not skewed by any particular genetic variant. A funnel plot was 
used to evaluate publication bias and directional horizontal 
pleiotropy, and it did not display any significant asymmetry. 
Furthermore, the MR-Egger regression test did not show any 
evidence of asymmetry, thereby further asserting the absence of bias 
due to directional horizontal pleiotropy (refer to Figure  4). 
Conclusively, the lack of considerable heterogeneity, low I2 values, 
outcomes of the “leave-one-out” analysis, and absence of asymmetry 
in the funnel plot and MR-Egger regression test affirm the reliability 
of the MR estimates and reduce apprehensions about potential 
analysis biases.
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Discussion

Existing studies have noted a link between serum VD levels and 
ALD (1, 2, 6). However, it is still uncertain whether this association is 
causal or the direction of the causality. In this extensive two-sample 
bidirectional MR study exploring the ViD and ALD relationship, 
we found no tangible evidence supporting a reciprocal causal link 
between serum VD levels and ALD susceptibility in a large cohort of 
European ancestry. To the best of our knowledge, this is the inaugural 
two-sample MR examination inspecting the link between serum VD 
levels and the risk of ALD within a European population.

Vitamin D deficiency is a widespread condition that has reached 
epidemic proportions in Western countries (20), primarily due to 
current lifestyle and limited dietary sources. An estimated billion 
people are deficient in VD (21). With anti-inflammatory, 
immunomodulatory, proapoptotic, and antiangiogenic effects, VD 
operates critical roles within the body (22–24), including protection 
against rickets/bone demineralization, hypertension, tumor, the 
body’s defense against infections, and autoimmune (25, 26). A 
damaging effect of VD insufficiency on the immune system could 
happen during severe chronic liver diseases (3). Besides, VD is 
involved in regulating adipose tissue inflammation, liver fibrosis, and 

FIGURE 2

Scatter plots of genetic associations between Vitamin D and ALD. The slopes of each line represent the causal association for each method. The light 
blue line represents the inverse-variance weighted estimate, the green line represents the weighted median estimate, the dark blue line represents the 
Mendelian randomization-Egger estimate, the red line represents the weighted mode estimate, and the light green line represents the simple mode 
estimate (A, Effect of Vitamin D on ALD; B, Effect of ALD on Vitamin D).

FIGURE 3

Forest plot of MR effect of the causal relationship between Vitamin D and ALD (A, Effect of Vitamin D on ALD; B, Effect of ALD on Vitamin D).
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FIGURE 4

Funnel plot to assess heterogeneity. The light blue line represents the inverse-variance weighted estimate, and the dark blue line represents the 
Mendelian randomization-Egger estimate (A, Effect of Vitamin D on ALD; B, Effect of ALD on Vitamin D).

FIGURE 5

Leave-one-out of SNPs associated with Vitamin D and ALD. Each black point represents result of the IVW MR method applied to estimate the causal 
effect between Vitamin D and ALD [(A) Effect of Vitamin D on ALD; (B) Effect of ALD on Vitamin D].

predicting antiviral effects (27–30). It also influences insulin resistance 
and abnormal fat accumulation in the liver (24, 31, 32). Recently, 
reports have indicated VD deficiency in chronic liver diseases 
regardless of the etiology (33).

There is significant scientific interest in the connection between 
VD status and ALD. Observational studies have observed decreased 
VD levels in ALD (34). VD deficiency is a contributing factor to ALD 
(6). For instance, VD was an independent cofactor linked with the 
occurrence of ASH in alcoholic patients, who frequently had severe 
VD deficiency and bridging fibrosis (2). Its mode of action might 
be connected to the activation of the NF-κB signaling pathway, which 
is associated with promoting the inflammatory response (35). A 

relationship between severe VD deficiency exists and the mortality 
rate in alcoholic cirrhotic patients (4, 31). Consequently, VD has been 
regarded as a risk aspect for the evolution of ALD. Furthermore, SNPs 
within the VD receptor (VDR) gene have a recognized association 
with chronic liver disease (36, 37). In a study conducted by Saberi et al. 
(38), they proposed that the VDR activation signal interferes with the 
transforming growth factor beta-dependent transcriptional responses 
in profibrotic genes in HSCs. The VDR agonist calcifertriol reduces 
liver fibrosis in a mouse model of liver injury. Yet, as several ALD 
patients do not exhibit low VD levels, questioning the causality of VD 
ensues. While a large body of preclinical and observational data 
proposes a relationship between VD status and risk and severity of 
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ALD (6), solid evidence from clinical intervention trials remains 
insufficient (39). A Cochrane review focusing on chronic liver disease 
in adults concluded that the current evidence does not support the use 
of VD supplements for the prevention or treatment of these conditions 
(7). Thus, it remains unclear whether VD has a causal association 
with ALD.

The MR methodology uses genetic variants linked with a 
modifiable exposure or biological intermediate to estimate the 
causal relationship between these variables and a medically 
pertinent outcome (40). MR circumvents many constraints of 
conventional epidemiological studies. The random distribution of 
genetic variants at conception minimizes confounding from 
environmental factors, thereby fortifying causal inference (41). MR 
analyses lessen confounding and reverse causality due to the 
parental random allocation of genotypes to offspring (42). To date, 
our current MR study is the first two-sample bidirectional MR 
evaluation to assess the causal role of VD for ALD in the European 
population. It merits mentioning that total serum VD incorporates 
VD bound to the VD binding protein (approximately 85%), VD 
bound to albumin (about 15%), and the fraction of free VD (less 
than 1%) (43). Contemporary studies have suggested that free or 
active serum VD may be a superior indicator of VD status compared 
with total serum VD. This is especially applicable in conditions like 
pregnancy, liver disease, or kidney disease, which influence VD 
binding protein levels (43, 44). Therefore, free VD was used as the 
phenotype in this study, and the genetic tools selected covered 
genetic variants associated with free serum VD. However, it is 
worth noting that general and clinical population-level correlations 
between free and total serum VD have mitigated this limitation to 
some extent (45). In this study, we executed five different estimation 
methods (inverse-variance weighted method, weighted median 
method, weighted mode, simple mode, and MR-Egger regression) 
for MR analyses. We  applied the two-sample MR to assess the 
association between VD and ALD in this study. The findings 
indicated a lack of genetic evidence to conclusively support a causal 
relationship between VD levels and the risk of ALD. This conclusion 
remained unwavering even in the wake of sensitivity analyses and 
further replication. In addition, we further divided VD levels into 
high or low groups and conducted a Mendelian randomization 
study on the relationship between dichotomous VD levels and ALD 
risk. Since we did not find a GWAS dataset to obtain high VD levels 
as an exposure factor, and VD deficiency is more common in 
clinical practice. Therefore, we conducted a supplementary study 
focusing on the association between VD deficiency and ALD risk. 
Our results are consistent with the current study, indicating that 
there is no causal relationship between VD deficiency and increased 
ALD risk (see Supplementary material). This may provide 
additional perspectives on the relationship between VD levels and 
ALD risk.

Divergences between conclusions may be  related to several 
reasons. On one hand, we tend to suggest that this discrepancy could 
hint at the flaw (residual confounding) of cross-sectional studies. The 
remaining association will often still be a biased estimate due to the 
existence of unknown or unmeasured confounders [sun exposure, 
physical activity, obesity, insulin resistance, different sample sizes, 
races, Body Mass Index (BMI), and so on], or imprecision in 
measured confounders (31). On the other hand, observational studies 
can be  hindered by confounding or reverse causation (46). In 

addition, given the multifaceted roles of VD in the body, its causal 
relationship with ALD may be influenced by a variety of physiological 
and environmental factors. This could potentially explain our 
observed lack of significant results.

Strengths and limitations

This research encompassed several strengths and limitations. 
Firstly, the exact function of certain SNPs remains unknown, 
potentially allowing residual bias when examining pleiotropy. 
However, we procured consistent results utilizing five MR methods 
considering pleiotropy, robust methodology, and sensitivity analyses 
that excluded SNPs with pleiotropic impacts, which is reassuring. 
Despite the fact that the SNPs used as instruments in our MR were 
extracted from GWAS in Europeans, the populations of both GWAS 
were not homogenous in terms of geographic location. It has been 
shown that there could be some gene–environment interaction in the 
effect of SNPs in the VD receptor gene on Chronic liver disease risk 
(36, 37). This raises a possibility of gene–environment interaction for 
SNPs affecting VD levels and of nonlinear effects of these SNPs on 
risk of ALD, but two-sample MR studies can only assess linear 
associations. Secondly, the study population consisted of Europeans, 
and there were differences in sample size between the VD and ALD 
datasets. Therefore, Our MR results cannot be  generalized to 
non-Europeans and potentially to Europeans residing in different 
geographic areas than those of the participants in the VD and ALD 
GWAS (47). Due to ethnic differences in exposure and outcome 
GWAS populations, we  also cannot completely rule out residual 
confounding by population stratification (46). We  believe that 
potential biases can be  avoided in the future by including more 
databases of people of non-European ancestry and increasing the 
sample size. Thirdly, owing to the unavailability of specifics about 
participant overlap between the two published GWAS summary 
datasets, it was not possible to compute potential biases arising from 
participant overlap. Last but not least, the use of two-sample 
Mendelian randomization enabled us to conduct the largest genome-
wide association study on ALD yet undertaken, improving the 
likelihood of establishing a causal relationship between VD levels and 
ALD risk. There was less likelihood of confounding and reverse 
causality bias in this study than in previous routine 
observational studies.

The future course of this research encompasses broadening the 
MR strategy to populations beyond European descent. The work will 
investigate the potential alteration of genetically forecasted VD 
influences on ALD risk and severity subject to ALD risk factors. These 
potential aspects include race, ethnicity, age, sex, BMI, and prospective 
MR analyses, employing updated GWAS samples along with 
different cohorts.

Conclusion

In conclusion, despite cross-sectional studies exhibiting an 
association between Vitamin D concentration and ALD in both 
mappings. Our study suggested that no causal relationship was found 
between Vitamin D deficiency and ALD; neither did Vitamin D 
deficiency pose a risk factor for the development of the disease. 
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Negative results are not meaningless, and many current MR studies 
have broken the conclusions of observational studies (48, 49). In the 
future, there is a need for a larger sample size and GWAS data of 
non-European ancestry patients to update the conclusion.
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