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Marine microalgae 
Schizochytrium demonstrates 
strong production of essential 
fatty acids in various cultivation 
conditions, advancing dietary 
self-sufficiency
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Introduction: Polyunsaturated fatty acids (PUFAs) are essential nutrients that 
humans obtain from their diet, primarily through fish oil consumption. However, 
fish oil production is no longer sustainable. An alternative approach is to produce 
PUFAs through marine microalgae. Despite the potential of algae strains to 
accumulate high concentrations of PUFAs, including essential fatty acids (EFAs), 
many aspects of PUFA production by microalgae remain unexplored and their 
current production outputs are frequently suboptimal.

Methods: In this study, we optimized biomass and selected ω-3 PUFAs production 
in two strains of algae, Schizochytrium marinum AN-4 and Schizochytrium 
limacinum CO3H. We examined a broad range of cultivation conditions, 
including pH, temperature, stirring intensity, nutrient concentrations, and their 
combinations.

Results: We found that both strains grew well at low pH levels (4.5), which 
could reduce bacterial contamination and facilitate the use of industrial waste 
products as substrate supplements. Intensive stirring was necessary for rapid 
biomass accumulation but caused cell disruption during lipid accumulation. 
Docosahexaenoic acid (DHA) yield was independent of cultivation temperature 
within a range of 28–34°C. We also achieved high cell densities (up to 9 g/L) and 
stable DHA production (average around 0.1 g/L/d) under diverse conditions and 
nutrient concentrations, with minimal nutrients required for stable production 
including standard sea salt, glucose or glycerol, and yeast extract.

Discussion: Our findings demonstrate the potential of Schizochytrium strains to 
boost industrial-scale PUFA production and make it more economically viable. 
Additionally, these results may pave the way for smaller-scale production of 
essential fatty acids in a domestic setting. The development of a new minimal 
culturing medium with reduced ionic strength and antibacterial pH could further 
enhance the feasibility of this approach.
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1 Introduction

Polyunsaturated fatty acids (PUFAs) are beneficial for human 
health and physiology. PUFAs constitute a large group of fatty acids 
(FAs) that contain more than one double bond (C=C), starting either 
three (ω-3), six (ω-6), or nine (ω-9) atoms away from the terminal 
methyl group in their chemical structure. Among the ω-3 PUFAs, 
α-linoleic acid (18:3n-3; ALA), eicosapentaenoic acid (20:5n-3; EPA), 
and docosahexaenoic acid (22:6n-3; DHA) are of particular interest, 
as they have been demonstrated to prevent heart attacks and reduce 
the risk of cardiovascular disease (1) and inflammation-related 
events (2).

Due to the limited ability of the human body to synthesize 
certain FAs, such as EPA or DHA, the primary source of these 
essential FAs is a well-balanced diet. At present, most ω-3 FAs are 
produced by the fish industry, particularly through the extraction 
of fish oil from salmon, mackerel, and herring. However, the current 
scale of fishing, which has reached a historical maximum and 
continues to grow, is no longer sustainable (3). Moreover, global 
warming, which is responsible for the unprecedented increase in 
ocean temperatures, along with increasing pollution has adverse 
effects on the growth of many planktonic organisms, which, in turn, 
negatively affect natural fish populations and ultimately interfere 
with fish PUFA production. Water contamination by pollutants, 
such as heavy metals, has already put considerable constraints on 
the production of fish oil (4).

To protect marine ecosystems and follow the principles of 
sustainability and climate responsibility, it is necessary to seek 
alternative PUFA sources. While seeds of plants, such as flax, 
primrose, and hemp, contain considerable amount of PUFAs (3), 
these are only short-chain ω-3 PUFAs with little EPA and 
DHA. Because fish obtain most PUFAs from phytoplankton (5), the 
production of PUFAs by microalgae has been studied for decades. 
Many algae strains can produce DHA and EPA (6), and some 
eukaryotic microalgae, such as Botryococcus braunii or 
Nannochloropsis sp., can accumulate up to 70% of lipids in their 
biomass (7). Marine microalgae, such as Nannochloropsis sp. or 
Nitzschia sp., combine the advantage of high DHA accumulation 
capacity (8) with the possibility of cultivation in salt water, which 
has the potential to substantially reduce production costs (9) while 
avoiding the need to compete for scarce freshwater resources.

Of all marine microalgae, thraustochytrids, strains from the 
order Thraustochytrida are considered to be  the most suitable 
candidates for PUFA production (6). During heterotrophic 
cultivation, Thraustochytrida can accumulate PUFAs at rates as 
high as 10 g L−1 d−1 (10), which is significantly higher compared 
with other microalgae such as Nannochloropsis (11) or Tisochrysis 
(12) during autotrophic or mixotrophic cultivation, as shown in 
Supplementary Table S1. Interestingly, the production of 
extracellular enzymes by thraustochytrids has been reported (13, 
14), as well as other high-value products such as squalene and 
carotenoids, with health beneficial properties (15, 16). Squalene, for 
example, plays a key role in plants and animals as a precursor of 
many steroids, hormones, and vitamin D synthesis. There is also 
evidence for the capability of some Schizochytrium sp. strains to 
produce exopolysaccharide, which exhibits a broad spectrum of 
antiviral activities (17). Schizochytrium sp. can produce DHA at the 
rate of 7–10 g L−1 d−1 (10, 18). Similarly, the strain Aurantiochytrium 

sp. can produce DHA up to 8.1 g L−1 d−1 (19). However, such an 
exceptional PUFA production requires high concentrations of 
nutrients in the cultivation medium so as to reach cultures with 
high cell density. A typical cultivation medium for thraustochytrids 
contains high concentrations of C source (glucose or glycerol), N 
source (yeast extract, peptone, and sodium glutamate), and 
micronutrients. Such substrates, however, may increase the price of 
the final product by as much as 30% (20). There are, however, 
alternative substrates that have been shown to provide sufficient 
nutrition. These include spent osmotic solution from the candied 
fruit industry (21), spent brewery yeast (22), orange peel extract 
(23), sugar cane molasses, cheese whey, and expired orange juice 
(24). These alternative extracts can reduce the price of the final oil 
containing 35–40% of DHA to USD 30 per liter (20). However, an 
often cited bottleneck in expanding PUFA production by 
thraustochytrids is the necessity to optimize the cultivation 
conditions, including nutrient content for every single new isolate 
(1, 25).

This study focuses on the optimization of biomass and DHA 
production in one representative Schizochytrium marinum AN-4 and 
one novel Schizochytrium limacinum CO3H strain of the order 
Thraustochytrida (hereafter referred to as AN-4 and CO3H, 
respectively). It is demonstrated that both of these strains reach stable 
DHA production under a variety of cultivation conditions, making 
them ideal candidates for extensive PUFA production. Both strains can 
grow at pH as low as 4.5. Such a pH level creates a hostile environment 
for bacteria, thus reducing the risk of bacterial contamination and 
finally resulting in a more affordable bioproduct. Additional factors 
that cut the operational costs of DHA production still further included 
moderate temperature (28°C), only 20% temporal requirements for 
intensive stirring, and reduced concentrations of nutrients (carbon, 
nitrogen, and salt) in the cultivation medium. High DHA yields by 
CO3H, equivalent to those that have been reported for AN-4 (26), are 
recorded here for the first time. This study demonstrates that both 
AN-4 and CO3H strains may contribute toward an economically 
feasible DHA production. It further identifies the factors that are likely 
to lower operation costs and reduce contamination risks during DHA 
production by marine microalgae. The presented setup combines 
automated optimization of growth conditions in a turbidostatic 
culturing regime with DHA production optimization in batch cultures, 
amounting to an efficient, fast, and reliable PUFA optimization method.

2 Materials and methods

2.1 Algal strains

The strains Schizochytrium marinum AN-4 and Schizochytrium 
limacinum CO3H were obtained from the culture collection at the 
Department of Biochemistry and Microbiology at the University of 
Chemistry and Technology in Prague (Czechia). The stock cultures 
were maintained in 250 mL Erlenmeyer flasks containing Chang 
medium (18) supplemented with micronutrients (see 
Supplementary Table S2 for details), glycerol (50 g L−1), and yeast 
extract (3.6 g L−1). The flasks were kept in an Orbital Shaker-Incubator 
ES-20 (Biosan, Latvia) and were shaken at 150 rpm at 28°C. The stock 
cultures were replenished weekly with fresh medium.
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2.2 Experimental setup

2.2.1 Optimization of Schizochytrium growth in 
turbidostat cultivations

Optimal values of temperature, pH, and shear stress for biomass 
accumulation by both Schizochytrium strains were identified in 
FMT-150 photobioreactors [400 mL, PSI, Czechia (27, 28)] in a 
turbidostat regime. Culture density was maintained within a defined 
density range by diluting the culture suspension with fresh medium in 
response to the continuously monitored optical density of the culture 
suspension at 680 nm (OD680). The OD680 range was set to 0.18–0.21, 
corresponding to 2 × 109 cells L−1. The initial OD680 was ~0.05 (5 × 108 
cells L−1). Specific growth rates were evaluated online by the increase 
in the OD680 signal at each dilution step using an exponential regression 
model (29). This allowed the stability of Schizochytrium growth to 
be evaluated virtually in real time: a typical time window necessary for 
the application of the regression model is between 30 and 45 min. After 
a shift in cultivation conditions, the initial five dilution steps were 
considered transient, and the specific growth rate was evaluated 
starting with the 6th dilution step (Figure 1A) using an own-developed 
algorithm implemented into FMT-150 operating software. The growth 
was considered stable (i.e., fully acclimated to a given set of conditions, 
Figure 1B) when the following criteria were met:

a) The linear trend stability of five subsequent growth rates (μ), as 
calculated from OD680 increase within turbidostat dilutions was <1.5% 
of the average growth rate calculated as follows:

 

trendStability m
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(1)

where m is the linear trend slope calculated using the standard 
linear regression method and.

b) coefficient of variation (CV) was <3%.
In the turbidostat regime, the Schizochytrium cultures (300 mL) 

were bubbled by air (400 mL min−1) and cultivated under the 
temperature of 19–38°C and a pH of 3.7–6.8 and agitated by rotations 
of a magnetic stirrer bar with circular velocities of 0.22–1.57 m s−1. pH 
was maintained at desired levels by the addition of 0.1 N NaOH and 
HCl via peristaltic pumps (PSI, Czechia). The pH optimization was 
therefore carried out in a combined turbidostat and pH-stat regime. 
A summary of all cultivation conditions used during the turbidostat 
experiments is shown in Supplementary Table S3.

2.2.2 Optimization of PUFA production in batch 
cultivations

After the initial optimization of Schizochytrium growth in a 
turbidostat, the biomass and FA production were quantified in a 
batch regime using identical bioreactors (400 mL). The conditions 
for the batch cultivation were based on the turbidostat experiments: 
the temperature range of 28–34°C, pH of 4.5–6.5, stirrer bar 
circular velocities of 0–1.1 m s−1, Biosal® (Zangrando, Italy) or 

FIGURE 1

Optimization of Schizochytrium growth in a turbidostat. (A) Example of temperature optimization. Culture density was kept within a defined OD680 
range, and a specific growth rate was calculated from OD680 increase between the dilution events preceding and following each growth period. After 
growth stabilization, the conditions were shifted to the next defined level. At the onset of the cultivation condition shift, the growth rate from the initial 
five periods was considered transient, and growth stability was evaluated starting with the 6th period as described in Equation (1). Growth was evaluated 
as stable when a linear trend of five subsequent growth rates was <1.5% of the average growth rate, and at the same time, the coefficient of variation 
was <3%. (B) Temperature, stirring speed, and pH dependency of Schizochytrium AN-4 (gray circles) and CO3H (black triangles) growth. The values 
represent all measured replicates, and the dashed lines represent data interpolation by a 2nd order polynomial regression model. A full list of conditions 
is shown in Supplementary Table S3.
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Chang (18) medium both with and without microelement 
supplementation (as shown in Supplementary Table S2), with 
glucose or glycerol in the concentrations of 15, 25, or 50 g L−1, and 
yeast extract in the concentrations of 3.6 or 7.2 g L−1 constituting 
C and N sources, respectively. A detailed list of cultivation 
conditions is shown in Supplementary Table S4. All cultures 
(400 mL) were bubbled by air (400 mL min−1). The effect of oxygen 
increase on DHA production was tested by aeration with 50% O2 
in the air mixture (medical quality, Siad Czechia) over the initial 
24–96 h. The cells were cultivated in the batch regime for 190 h. 
Samplings for biomass and FA content were performed between 48 
and 190 h.

2.3 FA composition and productivity

Lipids in the microalgae biomass were quantified following the 
procedure proposed by Liang et al. (30). In brief, the dried cell 
pellet was flooded with methanol and disrupted with beads using 
a bead-beater. The mixture was transferred to a 50 mL glass 
centrifuge tube, mixed with chloroform (chloroform:methanol 
ratio 2:1, v/v), vortexed, and allowed to stand for 24 h. Thereafter, 
the tube was centrifuged, the supernatant was collected, the 
solvent was vaporized, and the oil remaining in the flask 
was weighed.

The FAs in lipid extracts were converted to fatty acid methyl esters 
(FAMEs) by hydrolysis and methylation in a 0.5 mL of 0.5 M 
methanolic sodium hydroxide solution for 30 min at 
80°C. Subsequently, after the mixture had been allowed to cool down 
to laboratory temperature, 200 μL of 14% BF3 (boron trifluoride) in 
methanol (Sigma–Aldrich, United States) was added directly to the 
mixture of fatty acids and 0.5 M methanolic sodium hydroxide in the 
reaction vials, and the vials were re-heated and kept at 80°C for 
additional 30 min. The resulting FAMEs were transferred to heptane 
and analyzed using an Agilent 6890 Plus series II gas chromatograph 
(Agilent Technologies, United States) coupled with a flame ionization 
detector (GC/FID) on an SP-2560 column (100 m × 0.25 mm I.D., 
0.20 μm). Individual FAMEs were quantified using external 
commercial standards GLC-10 and GLC-30 (Supelco 37 Component 
FAME Mis, Supelco, United States). The GC/FID conditions were as 
follows: oven 140°C (5 min), 4°C min−1 to 240°C (15 min); injector 
250°C; detector 260°C; helium carrier gas, 20 cm s−1 at 175°C; 
injection 1 μL with 100:1 split.

Biomass production by Schizochytrium strains was determined by 
the assessment of cellular dry weight using analytical balances 
(Sartorius, Germany).

2.4 Statistics

The effect of the cultivation conditions on DHA productivity was 
evaluated through a factorial ANOVA followed by Tukey’s HSD post-
hoc test. Variables failing the ANOVA normality or homogeneity of 
variance assumptions (using Lilliefors, Shapiro–Wilk, Bartlett’s, 
Cochran’s, and Hartley’s tests, respectively) were transformed before 
the ANOVA testing, using log, square root, and arcsine 
transformations. Statistical testing was performed in Statistica 
software (Tibco, United States).

3 Results

3.1 Optimization of Schizochytrium growth 
in a turbidostat

Throughout all turbidostat experiments, the specific growth rates 
of both Schizochytrium strains varied between 0.12 and 0.53 h−1 
(doubling time 5.7–1.3 h). The initial temperature optimization 
revealed a temperature optimum of 28–34°C, saturating 
Schizochytrium growth by more than 95% (Figure 1B).

Additional evaluation concerned the effect of stirring and 
pH. Increasing the stirring rate improved the growth of both strains 
(0.4 h−1), but only up to a point, beyond which the strains were 
exposed to shear stress. The CO3H strain was more sensitive to shear 
stress than AN-4: the optimum stirrer bar circular velocity was 
identified as 0.7–1 m s−1 for both strains. The stirring rate of 1.4 m s−1 
reduced CO3H growth by 45%, whereas the corresponding decrease 
for AN-4 was only 3% (Figure 1B).

The decrease of pH from 6.5 to 4.5 reduced the growth rate of the 
AN-4 strain by 2%, and the growth rate of CO3H reduced by 15% 
(Figure 1B). Despite this slight growth inhibition, pH 4.5 was set for 
batch cultivations intended for the evaluation of FA production. Low 
pH is known to reduce bacterial contamination [for a review, see (31)], 
which was further confirmed in our experiments by the fact that no 
bacterial contamination occurred over the course of the batch 
experiments with pH set to 4.5 (lasting up to 190 h).

3.2 DHA productivity by Schizochytrium 
batch cultures

The productivity of FAs including DHA in both strains was 
evaluated in a batch regime (Figure 2A). Both strains were cultivated 
at pH 4.5 with a gradually decreasing speed of the magnetic stirrer bar 
(Figure  2B). A complete list of conditions set during the batch 
experiments is shown in Supplementary Table S4. Across all the tested 
conditions, the maximal biomass productivity for strains AN4 and 
CO3H was 15 g L−1 and 13 g L−1, maximal FA content was 520 mg g 
DW−1 and 690 mg g DW−1, maximal DHA content was 150 mg g DW−1 
and 254 mg g DW−1, and maximal DHA productivity was 0.24 g L−1 
d−1. And 0.36 g L−1 d−1, respectively (Figure 2B). The DHA content in 
the AN-4 strain was increased in the interval between 48 and 192 h, 
and at the end of the cultivation, DHA accounted for 50% of the entire 
FA content (Figure 2C). The CO3H strain contained only 15–30% of 
DHA owing to a high concentration of dihomo-γ-linolenic acid 
(DGLA, Figure 2C). However, due to faster biomass and total FA 
accumulation over time, both strains had a comparable DHA 
productivity (Figure  2A). High FA content in both strains in the 
linear/stationary growth phase was further confirmed by fluorescence 
microscopy (Figure 3).

No differences in DHA productivity were detected under varying 
cultivation parameters, including medium type (Chang et al. (18) vs. 
Biosal®), C source concentration (15–50 g L−1), aeration type (air vs. 
air+O2), N source concentration (yeast extract 3.6 vs. 7.2 g L−1), and 
temperature (28–32–34°C; Figure 2D). Such robust DHA productivity 
is related to relatively stable productivity of biomass (< 2.2 g L−1 d−1); 
the DHA content was varying throughout all tested experimental 
conditions and growth phases considerably (Supplementary Table S5).
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4 Discussion

Online evaluation of specific growth rate combined with the 
feedback-loop control of cultivation condition shift during the 
turbidostat growth optimization was a significant improvement 
over previous studies, in which a 24-h acclimation period was 
typically required to ensure full metabolic acclimation (29, 32, 33). 
In the present case, the stability of the growth rate (which reflects 
on metabolic acclimation) was determined after each dilution 
event with a sub-hour frequency as a result of the fast growth rate 
of both heterotrophic organisms. This setup allowed to significantly 
reduce the early detection of acclimation time to periods as 
short as 6 h.

The optimal temperature range for the growth of both strains was 
identified at 28–34°C, which was slightly higher compared with other 
Schizochytrium strains (34, 35). This shift is likely related to the 
cultivation setup: the turbidostat enabled full metabolic acclimation, 
whereas during batch cultivations, as used in previous studies, the 
conditions were constantly shifting due to fluctuating availability of 

nutrients, which only allows the achievement of metabolic pseudo-
steady states (28).

The stirring circular velocity of 0.88 m s−1 resulted in a shear stress 
of ≤12 Pa (36). The shear stress of >2 Pa is generally considered to 
be  harmful to algae (37). Indeed, stirring improves gas exchange 
between the cells and the culture medium and delays oxygen 
limitation (38), which is a limiting factor for DHA production (18). 
Here, however, even O2 concentration as high as 50% during the 
initial growth phase (≤96 h) did not improve DHA production 
(Figure 2D). Therefore, cultivation was performed with ambient air 
aeration and stirring gradually decreasing to zero, in order to avoid 
cell damage in the lipid production phase (as shown in 
Supplementary Figure S1).

Schizochytrium tolerance to pH as low as 3.7 is beneficial for the 
control of bacterial contamination. Most bacterial strains are 
neutrophils (39) and need to expend substantial amount of energy to 
survive in an acidic environment (40). During the batch cultivation 
performed in this study, pH 4.5 was low enough to prevent the 
Schizochytrium cultures from being outgrown by bacteria.

FIGURE 2

Productivity of biomass, FAs, and DHA in AN-4 and CO3H strains during batch cultivation. (A) Biomass growth and DHA productivity. (B) Stirring 
intensity during batch cultivations and FA content in both strains. (C) FA profiles in both strains. (D) Effect of cultivation conditions on DHA productivity. 
The letters above the columns indicate statistically significant groups (ANOVA followed by Tukey’s HSD post-hoc test). All values in (A–D) represent 
averages±SE (n  =  3–21). For clarity, the values in (C) are listed without error bars.
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The maximal achieved DHA productivity of 0.36 g L−1 d−1 for the 
strain CO3H was much lower compared with the maximal 
documented DHA production rates of 10 g L−1 d−1 (10). However, high 
DHA productivity is typically related to exceptionally high culture 
densities [as high as 171 g L−1 (10)] due to high input of C and N 
sources during batch or fed-batch cultivations (19). The present study 
used only up to 50 g L−1 of glucose or glycerol (C source) and 7.2 g L−1 
of yeast extract (N source) in simple batch cultivations, which was 
significantly less than the concentrations reported in previous studies 
(productivities achieved by different thraustochytrid strains described 
in the recent literature are shown in Supplementary Table S1).

However, instead of maximizing DHA production, this study aims 
to demonstrate that DHA can be produced at rates that are still high 
enough to fulfill the requirements of the human diet [0.25–0.5 g per 
person per day (41)] even in pure salt water with the addition of low 
amount of C and N sources. It has been established that the novel 

CO3H strain, when cultivated in a small-scale bioreactor, can produce 
up to 0.36 g L−1 d−1 of DHA. This amount is sufficient to meet the daily 
needs of an average adult by cultivation in a 1 L bioreactor under 
conditions suitable for home-scale production. Given the increasing 
interest in self-sufficient domestic production, the recent approval of 
Schizochytrium strains as a novel food source containing DHA- and 
EPA-rich oils [according to EU Novel Food Regulation 2022/1365 
(42)], the emergence of affordable culturing systems (43), and the 
production of microalgae as a dietary supplement at home will likely 
become more feasible in the near future. This study further confirms 
this potential by introducing optimized conditions for producing 
DHA-rich biomass using low antibacterial pH and minimal medium 
composed of affordable materials readily available in the market, with 
the final price ca. 0.7 EUR Lmedium

−1, which is 42% of a typical price for 
the standard Cheng recipe (18), assuming a comparable source and 
quality of the chemicals employed. However, the main challenge is still 
posed by ensuring safe processing of the biomass to be suitable for 
human consumption, in addition to the fact that algae-based food 
products are still relatively new to consumers and both their 
understandability and acceptability, as well as the regulatory 
framework for algae-based products, are still developing. To further 
encourage consumer acceptance, additional research is necessary to 
appreciate the lasting effects that the consumption of algal products 
has on human health and explore methods of addressing sensory 
drawbacks, such as the taste and odor of marine algae products.

5 Conclusion

The optimization of cultivation conditions for one representative 
Schizochytrium strain (AN-4) and one novel Schizochytrium strain 
(CO3H) revealed that stable production of PUFAs, such as DHA, can 
be achieved under a broad range of conditions and reduced nutrition 
requirements. While the optimized production has not reached yields 
recorded for other Schizochytrium strains in different culturing 
systems and more nutrient-rich media, these results attested to the 
general usability of Schizochytrium strains under home-scale 
cultivation conditions and, for the first time, demonstrate the 
possibility of cultivating Schizochytrium at low, naturally antibacterial 
pH that could facilitate industrial scale heterotrophic cultivations, in 
which contamination risk is a major concern.
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