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Introduction: The Dietary Inflammatory Index (DII) is a composite nutritional 
index that has gained significant attention in the past decade due to its 
association with physical and mental well-being. To accurately assess the 
precise effects of DII on health outcomes, the effects of nutrients and foods 
need to be adjusted. This study aimed to investigate the association between DII 
and mental disorders (depression, anxiety, and stress) using multilevel modeling 
to minimize the bias of the previous methods.

Methods: This cross-sectional analytical study was conducted using data from 
the initial phase of the Tehran University of Medical Sciences Employees’ Cohort 
Study (TEC). Nutritional information was obtained through a dish-based semi-
quantitative food frequency questionnaire (DFQ), while psychological data were 
collected using the depression, anxiety and stress scale (DASS-42). The acquired 
data were analyzed using multilevel modeling in three levels (foods, nutrients, 
and DII, respectively) through GLIMMIX in the SAS software.

Results: A total of 3,501 individuals participated in this study. The results of the 
multilevel model demonstrated a significant statistical association between DII 
and mental disorders after adjusting for baseline characteristics, nutrients and 
foods. For each unit increase in DII, the mean scores for stress, anxiety, and 
depression increased by 3.55, 4.26, and 3.02, respectively (p  <  0.001).

Conclusion: Based on the multilevel model’s findings, it is recommended to 
minimize the use of pro-inflammatory nutrients and foods to increase the 
mental health. Multilevel data analysis has also been recommended in nutritional 
studies involving nested data to obtain more accurate and plausible estimates.
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Introduction

Psychological and emotional disorders play a significant role in 
the burden of disease, disability, and mortality worldwide, not only 
due to economic factors but also in association with other chronic 
physical illnesses (1, 2). According to the latest estimate of World 
Health Organization (WHO), one in every eight people in the world 
live with a mental disorder (3). Projections indicate that depression 
will be the second-leading cause of disease burden globally by 2030 
(4, 5). Overall, more than 50% of the general population in countries 
with average to high incomes will experience at least one mental 
disorder during their lifetime, indicating that mental illnesses are not 
limited to a small susceptible group but represent a major public 
health issue with significant consequences not only for affected 
individuals but also for their families, social, and work environments 
(6). In 2015, the prevalence of mental disorders in Iran is estimated 
at over 23% (7). In 2021, the prevalence of depression, anxiety, and 
stress among Tehran University of Medical Sciences (TUMS) 
employees was reported as 30, 26.9, and 41.9%, respectively (8). One 
of the determinants of physical and mental health is dietary intake/
patterns and habits. Recently, nutrition’s modulatory and preventive 
roles in the inflammatory pathways of mental disorders, including 
depression, stress, and anxiety, have received particular attention 
(9, 10).

Given that dietary patterns and habits are complex and subject to 
change, and most previous studies investigating the association 
between diet and mental disorders have focused on individual 
nutrients without considering other nutrients, it seems that these 
studies have been unable to determine the role of each of these factors 
alongside the modulatory or interaction effects of other nutrients. 
Therefore, special attention should be paid to the combined effect of 
nutrients and foods on mental health (11–14).

One composite nutritional index related to mental disorders is the 
Dietary Inflammatory Index (DII). DII is a combination of various 
nutrients and foods, and as a whole, this composite can be related to 
inflammation and, ultimately, an increased risk of mental disorders. 
Diets high in sugar, saturated fat, dairy products, and fried foods are 
associated with increased systemic inflammatory markers such as 
C-reactive protein and interleukins 1β, 4, 6, and 10, as well as TNF-α 
(15–20).

However, various studies have shown that the use of conventional 
analytical methods to analyze the potential association between 
nutrients, foods, and DII and mental disorders is challenging due to 
the nested association between them (nutrients within foods and DII 
within nutrients), high correlations, and a large number of these 
components. This can lead to potential data outliers or collinearity 
issues between these factors (21–23). The relationship between DII 
and mental disorders has been the subject of disagreement and 
contradiction in various studies (14, 15, 24–31). Since anti-
inflammatory and pro-inflammatory foods are consumed together, 
investigating the relationship between DII and mental disorders 
presents a challenge (17).

Based on the fact that foods contain nutrients that are not 
included in the DII and may potentially affect mental disorders, as 
well as the possibility that the nutrients included in the DII may have 
properties that impact mental disorders through pathways, other than 
inflammatory ones, it is necessary to include these foods and nutrients 
as independent variables in the regression model to control for their 

potentially confounding effects (32). However, since nutrients are 
nested within foods, and DII is nested within both nutrients and 
foods, and there is a high correlation among them, it is essential to use 
multilevel linear regression models to mitigate the potential 
confounding and collinearity effects of nutrients and foods in the 
association between DII and mental disorders, as well as to prevent 
the occurrence of outliers in order to obtain more accurate and 
reliable estimates (33). This approach differs from other nutritional 
studies that evaluate the DII separately and may not be able to capture 
complex relationships between this index and other dietary 
components (34).

One way to investigate the relationship between DII and mental 
disorders is through the use of multilevel regression models. These 
models can control the confounding and collinearity effects of 
nutrients and foods, while also preventing the occurrence of outlier 
data. Therefore, this study aimed to investigate the association between 
the DII and mental disorders using a multilevel regression model 
through GLIMMIX. This approach aimed to address the limitations 
of previous studies and provide more accurate and reliable estimates 
by investigating the relationship between DII and mental disorders 
while minimizing confounding and small-sample biases.

Methods

Participants and study design

This cross-sectional analytical study used a subset of data from the 
first phase of the Tehran University of Medical Sciences Employees’ 
Cohort Study (TEC). In the first phase of the TEC study, 3,550 
individuals were examined. This study utilized information from 
individuals who met the inclusion and exclusion criteria for 
participation in the study (35). The TEC study has been ethically 
approved by the ethics committee of Tehran University of Medical 
Sciences with code numbers IR.TUMS.VCR.REC.1396.4265 and 
IR.TUMS.VCR.REC.1398.246.

Eligibility criteria

Participants with any employment status at Tehran University of 
Medical Sciences and its affiliated centers who consented to participate 
in the TEC study were included. Individuals who reported ±3 standard 
deviation kilocalories of daily energy intake were excluded from 
the study.

Outcome measurement

In this study outcome variable was mental disorders (depression, 
anxiety and stress). In the TEC study, the depression, anxiety and 
stress scale (DASS-42) that consisting of 42 items, was used to measure 
mental disorders. The answers to the questions were designed in the 
form of 4 options, which are: never, sometimes, a little and always; and 
scores were given from 0 to 3, respectively. Finally, each person’s score 
in all three scales was calculated separately. Based on the scores 
obtained in each scale, higher scores indicated mental disorders 
(35, 36).
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Exposure measurement

The main exposure in this study was DII, which was calculated 
using the nutritional information collected in the TEC study. The TEC 
study assessed individuals’ nutritional status using a dish-based semi-
quantitative food frequency questionnaire (DFQ) comprising 116 
food-items. This questionnaire measured the portion sizes and 
frequency of each food item an individual consumed over the past 
year. After obtaining nutritional information, the consumption 
amount of each item was entered into the Nutrition 4 software (N−4) 
to calculate the nutrient intake per 100 grams of consumed food (37).

Next, the DII, which comprises inflammatory-related dietary 
parameters, was calculated (16). It is worth mentioning that the DII is 
a flexible index, and depending on the available data, a specific 
number of parameters can be used to calculate it in different studies. 
According to validation reports, using even only 21 out of 45 items can 
correctly predict serum inflammatory biomarkers (38). In this study, 
the design and method of collecting nutritional information (instead 
of using the 24-Hour Food Reminder, food parameters were collected 
retrospectively) resulted in the inability to calculate the consumption 
amount for all 45 parameters. However, the following 25 parameters 
were available to calculate the DII:

Energy (kcal), protein (g), total fat (g), vitamin B12 (μg), vitamin 
B6 (μg), niacin (mg), thiamin (mg), riboflavin (mg), folic acid (μg), 
vitamin C (mg), vitamin D (μg), fiber (g), caffeine (g), cholesterol 
(mg), magnesium (mg), vitamin A (retinol equivalent), vitamin E 
(mg), zinc (mg), selenium (μg), mono-unsaturated fatty acids 
(MUFA), polyunsaturated fatty acids (PUFA), iron (mg), beta-
carotene (μg), carbohydrates (g), and saturated fats (g).

Calculation and analysis of the dietary 
inflammatory index (DII)

The original DII is calculated based on the increase, decrease, or 
no change in six inflammatory markers (C-reactive protein, 
interleukins 1β, 4, 6, and 10, TNF-α), which are assigned scores of 1+, 
1-, or 0, respectively. To calculate the DII, the global average of each 
dietary parameter was subtracted from the intake level of each dietary 
parameter in the study population, and the result was divided by its 
global standard deviation, and a Z-score was computed. This value 
was then transformed into a percentile-based score, which was 
multiplied by 2 and subtracted by 1. After obtaining the consumption 
amount of each dietary parameter for the individual under 
investigation from the N−4 software output, to obtain the DII score for 
an individual’s dietary pattern, the percentile-based score of each 
dietary parameter was multiplied by the “overall inflammatory effect 
score” of that dietary parameter to obtain the “dietary parameter-
specific DII score” for the person. Finally, the individual-specific 
scores of all consumed dietary parameters were summed to calculate 
the “overall DII score” for the individual. It is worth noting that 
nutritional parameters with a positive overall inflammatory effect 
score are considered pro-inflammatory factors, contributing to an 
increase in DII score (pro-inflammatory diet) (39). In contrast, 
parameters with a negative overall inflammatory effect score are 
considered anti-inflammatory factors, contributing to a decrease in 
the DII score (anti-inflammatory diet). For DII analysis, the 
continuous DII score and quartiles of the final score for each 

individual can be  utilized (16). In our study, the DII score was 
calculated based on the consumption of 100 units of each dietary 
parameter, and the analysis was performed using the continuous score.

Covariates measurement

Other measured ascertained covariates included: gender, level of 
education, marital status, smoking status, the socio-economic self-
expression status of childhood, socio-economic self-expression status, 
the status of self-expression of socio-economic fluctuation during life, 
asset, social activity (using categorical principal components analysis 
(CAT PCA), the components of social activities, including using the 
Internet, going to concerts, movies, theaters and restaurants, air travel, 
reading non-curricular and non-professional books, domestic and 
foreign non-pilgrimage trips; were combined), and underlying 
diseases (including Diabetes, Liver problems, Hypothyroidism, and 
cardiovascular disease (CVD)). These variables were controlled as 
potential confounders.

Statistical analysis

Generalized linear models typically use the maximum likelihood 
or restricted maximum likelihood method for estimating parameters. 
However, the Generalized Linear Mixed Models (GLMMs) involve 
more complex random-effects variance components, so there is no 
closed form for the log-likelihood, making the estimation intractable. 
Additionally, conventional fitting methods, such as maximum 
likelihood, may suffer from estimate inflation (sparse-data bias) or fail 
to converge. Several methods were available as solutions to 
approximate the likelihood. These methods include the Laplace 
approximation (LA), the penalized quasi-likelihood (PQL), and the 
adaptive Gauss-Hermite quadrature (AGHQ) (40–42).

Given the nested association between variables, the large number 
of nutrients (25 nutrients) and foods (119 foods) in this study, and the 
inclusion of individual, social, and clinical factors (13 factors) in the 
models, multilevel linear regression models using GLIMMIX and the 
Penalized Quasi-Likelihood estimation method were employed to 
analyze this study. The Empirical-Bayes method, which is the default 
in the GLIMMIX analysis, was used to estimate a common variance 
(τ 2) for the random coefficients based on the data (33).

The present study utilized a three-level GLIMMIX model, where 
the first, second, and third levels corresponded to food items, 
nutrients, and DII, respectively. This is because the effect of foods 
(level one) depends on the presence of nutrients (level two), and the 
impact of nutrients depends on their anti-inflammatory properties 
(level three). The multilevel model used in this study differs from the 
commonly employed multilevel methods in statistical analysis. 
Because the model used in this study involves nested independent 
variables (DII, nutrients, and foods), it differs from studies in which 
the units of analysis (such as patients, doctors, hospitals) are 
hierarchical. On the other hand, second-level information is collected 
based on first-level variables, while third-level information is collected 
based on second-level variables. While in the usual multilevel analysis, 
the information from all levels is measured at the individual level.

Independent sample t-test, one-way ANOVA, and simple linear 
regression models were used to investigate the association between 
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mental disorders and covariates. Conventional analysis was performed 
using stata-17 software, and GLIMMIX analysis was conducted using 
SAS-13 software.

Financial support and sponsorship

This study has been ethically approved by the Ethics Committee 
of Tehran University of Medical Sciences with the following code 
numbers: IR.TUMS.MEDICINE.REC.1400.892.

Results

Baseline characteristics

A total of 3,501 individuals participated in this study, with 1,362 
(38.9%) being men and 2,139 (61.1%) being women. The mean scores 
of stress, anxiety, and depression were significantly higher in women. 
Regarding underlying diseases, 5.5% of the individuals had liver 
diseases, 11.5% had hypothyroidism, 6.9% had cardiovascular disease 
(CVD), and 3.4% had diabetes. The status of mental disorders was 
such that the mean scores of stress, anxiety, and depression were 
higher in individuals with the mentioned diseases than those without 
the diseases. Regarding smoking status, the results showed that 
individuals who neither currently smoked nor were exposed to 
secondhand smoke had the lowest stress and anxiety scores. 
Conversely, individuals who currently smoked and were exposed to 
secondhand smoke had the highest stress and anxiety scores 
(Table 1).

Conventional analysis

The mean scores of stress, anxiety, and depression were 
13.57 ± 9.01 (95% CI = 13.27, 13.87), 6.20 ± 5.83 (95% CI = 6.01, 6.39), 
and 8.04 ± 8.04 (95% CI = 7.77, 8.30), respectively. The mean DII score 
was-0.01 ± 0.43 (95% CI = −0.02, 0.00), with a minimum of-1.06 and 
a maximum of 5.37.

Table  2 demonstrates that the simple conventional models, 
without adjustment for potential confounding variables, for each unit 
increase in the DII score, the mean scores of stress, anxiety, and 
depression increased by 3.439 (95% CI = 2.759, 4.119; p < 0.001), 2.814 
(95% CI = 2.378, 3.250, p < 0.001), and 2.562 (95% CI = 1.952, 3.171, 
p < 0.001), respectively. It also shows that in the multiple conventional 
model, with adjustment for baseline characteristics, nutrients, and 
foods, for each unit increase in the DII score, the mean scores of stress, 
anxiety, and depression increased by 11.521 (95% CI = 2.320, 20.723, 
p = 0.014), 6.389 (95% CI = 0.594, 12.184, p = 0.031), and 5.240 (95% 
CI = −2.909, 13.390, p = 0.207), respectively (Table 2).

Multilevel analysis via GLIMMIX

Based on the model, which its results are shown in Table 2, after 
adjusting for baseline characteristics, nutrients, and foods, DII still has 
an association with mental disorders. For each unit increase in the DII 
score, the mean scores of stress, anxiety, and depression increased by 

3.552 (95%CI = 3.170, 4.533; p<0.001), 4.264 (95%CI = 0.066, 8.462; 
p = 0.046), and 3.021 (95%CI = 2.418, 3.623; p<0.001), respectively 
(Table 2).

In multilevel model, having liver problems, being female and the 
status of socio-economic fluctuation during life increase the mean 
scores of mental disorders, while increasing social activity and socio-
economic level decrease the mean scores of mental disorders (Table 3).

Discussion

In this study, 3,501 (98.61%) out of 3,550 participants whose 
information was completed in phase 1 of the TEC study and who met 
the eligibility criteria were included in the study. The study aimed to 
investigate the relationship between the DII and mental disorders 
using a multilevel, three-level model with the GLIMMIX macro in the 
SAS software. The results revealed that an increased DII score is 
associated with higher levels of stress, anxiety, and depression. 
Considering the difference in regression coefficients between 
conventional and multilevel models, it can be  concluded that 
multilevel models provide more accurate and valid estimates.

In our study, the results of conventional models showed that after 
adjusting for potential confounders, an increase of one unit in the DII 
score was associated with an increase in the average scores of stress, 
anxiety, and depression. The increases were 11.521 (with a 95% 
confidence, this value can vary between 2.320 and 20.723, p = 0.014), 
6.389 (with a 95% confidence, this value can vary between 0.594 and 
12.184, p = 0.031), and 5.240 (with a 95% confidence, this value can 
vary between-2.909 and 13.390, p = 0.207), respectively. These results 
are consistent with various studies (26, 43–46). However, previous 
studies and conventional models have shown that the resulting 
confidence interval is wide, indicating low accuracy and plausibility. 
Diets can affect six inflammatory biomarkers in the body: interleukin 
1β, interleukin 4, interleukin 6, interleukin 10, TNF-α, and C-reactive 
protein (CRP). A pro-inflammatory diet can significantly increase the 
levels of interleukin 1β, interleukin 6, TNF-α, or CRP biomarkers, 
while decreasing the levels of interleukin 4 or interleukin 10 
biomarkers. The anti-inflammatory diet can also significantly decrease 
the biomarkers of interleukin 1β, interleukin 6, TNF-α, and CRP, or 
increase the biomarkers of interleukin 4 and interleukin 10 (16). The 
hyperactivity of the hypothalamic–pituitary–adrenal (HPA) axis and 
dysregulation of the immune system are the underlying causes of 
irregularities in the activity of the kynurenine pathway. Its basic role 
in a healthy organism is to transform tryptophan into two essential 
compounds engaged in mood regulation: serotonin and melatonin. 
Based on the kynurenine pathway hypothesis of depression etiology, 
inflammatory factors cause excessive activation of indoleamine-2, 
3-dioxygenase (IDO), an enzyme present in microglia, astrocytes, and 
neurons. This enzyme catabolizes tryptophan, the precursor of 
serotonin, into kynurenine (KYN), a neurotoxic metabolite that 
increases the risk of neurodegenerative and neurotoxic processes. In 
this way, IDO reduces the amount of tryptophan available for the 
production of serotonin, which is directly linked to the etiology of 
depression (47–49).

The results of multilevel models showed that an increase of one 
unit in DII is associated with an increase in the average scores of 
stress, anxiety, and depression. The increases were 3.552 (With a 95% 
confidence, this value can vary between 3.170 and 4.533, p<0.001), 
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TABLE 1 Baseline characteristics of the participants and their association with mental disorders.

Variable Frequency 
number (%)

Stress Anxiety Depression

Mean  ±  SD P-value Mean  ±  SD P-value Mean  ±  SD P-value

Gendera

Male 1,362 (38.9%) 12.72 ± 8.73 <0.001 5.85 ± 5.77 0.004 7.44 ± 7.76 <0.001

Female 2,139 (61.1%) 14.10 ± 9.15 6.43 ± 5.86 8.43 ± 8.20

Level of educationb

Illiterate 18 (0.5%) 9.06 ± 6.80 <0.001 6.50 ± 5.63 <0.001 8.50 ± 6.53 <0.001

Elementary school 129 (3.7%) 13.12 ± 8.96 7.08 ± 5.37 9.01 ± 8.12

Middle school 152 (4.3%) 13.66 ± 9.64 7.16 ± 6.66 9.28 ± 8.96

High school diploma 656 (18.7%) 14.63 ± 9.67 7.32 ± 6.39 8.96 ± 8.79

Associate degree 290 (8.3%) 14.11 ± 9.04 6.69 ± 6.33 8.30 ± 8.30

Bachelor’s degree 1,338 (38.2%) 13.73 ± 8.90 5.98 ± 5.57 8.19 ± 8.00

Master’s degree 731 (20.9%) 12.84 ± 8.61 5.61 ± 5.68 7.10 ± 7.34

PhD and above 187 (5.3%) 11.40 ± 7.98 4.08 ± 3.66 5.30 ± 6.07

Marital statusb

Single (never married) 562 (16.1%) 13.57 ± 9.37 0.349 6.07 ± 6.18 0.170 9.33 ± 9.05 <0.001

Married 2,845 (81.3%) 13.53 ± 8.94 6.19 ± 5.77 7.72 ± 7.74

Divorced 67 (1.9%) 15.54 ± 8.92 7.19 ± 5.40 10.21 ± 9.48

Widowed 27 (0.8%) 13.19 ± 9.04 8.07 ± 5.81 9.48 ± 9.90

Smoking statusb

Nonsmokers, non-secondhand 

smokers

2,377 (67.9%) 12.98 ± 8.86 <0.001 5.69 ± 5.47 <0.001 7.42 ± 6.01 <0.001

Exclusive cigarette smokers, non-

secondhand smokers

50 (1.4%) 13.88 ± 10.03 5.92 ± 5.24 7.36 ± 7.32

Exclusive water pipe smokers, non-

secondhand smokers

183 (5.2%) 15.21 ± 8.54 7.66 ± 6.21 9.78 ± 8.39

Concurrent smokers, non-

secondhand smokers

24 (0.7%) 15.50 ± 11.18 9.42 ± 8.87 11.25 ± 11.74

Non-smokers, secondhand smokers 433 (12.4%) 14.74 ± 8.93 7.02 ± 5.96 8.98 ± 8.26

Exclusive cigarette smokers, 

secondhand smokers

264 (7.5%) 14.01 ± 9.24 6.98 ± 6.59 8.89 ± 8.51

Exclusive water pipe smokers, 

secondhand smokers

96 (2.7%) 15.71 ± 10.21 7.41 ± 6.01 11.06 ± 9.95

Concurrent smokers, secondhand 

smokers

74 (2.1%) 16.59 ± 9.57 9.24 ± 8.27 10.64 ± 9.22

The childhood socio-economic statusb

Above 149 (4.3%) 13.98 ± 8.51 0.056 6.93 ± 6.61 <0.001 8.99 ± 9.20 <0.001

Medium upward 607 (17.3%) 13.10 ± 8.90 5.62 ± 5.59 7.02 ± 7.25

Medium 1719 (49.1%) 13.33 ± 8.93 6.13 ± 5.82 7.79 ± 7.86

Medium downward 556 (15.9%) 13.94 ± 9.09 6.12 ± 5.64 8.31 ± 8.03

Down 470 (13.4%) 14.51 ± 9.48 7.12 ± 6.03 9.66 ± 9.00

The socio-economic self-expression statusb

Above 156 (4.5%) 10.78 ± 7.89 <0.001 4.64 ± 5.64 <0.001 5.06 ± 7.29 <0.001

Medium upward 924 (26.4%) 13.28 ± 9.15 5.85 ± 5.83 7.10 ± 7.15

Medium 1878 (53.6%) 13.49 ± 8.86 6.15 ± 5.73 8.03 ± 7.98

Medium downward 417 (11.9%) 14.64 ± 9.11 7.04 ± 5.81 9.69 ± 8.05

Down 126 (3.6%) 16.94 ± 9.98 8.79 ± 6.49 13.28 ± 10.19

(Continued)
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4.264 (With a 95% confidence, this value can vary between 0.066 and 
8.462, p<0.001), and 3.021 (with a 95% confidence, this value can 
vary between 2.418 and 3.623, p<0.001) points, respectively. 
Comparing the results of conventional and multilevel models, 
we  found that the standard error and confidence interval of 
coefficients in multilevel models were lower. This indicates that the 
effects obtained from the multilevel model were more accurate and 
plausible than those obtained from conventional models. According 
to the upper and lower limits of the 95% confidence intervals, and 
without relying solely on the p-value, it can be concluded that the 
association between DII and mental disorders is clinically important 
(50–52).

The main components of socio-economic status (job, income, and 
education) have a positive and significant relationship with mental 
disorders such as depression, stress, and anxiety (53); in terms of the 
association between socio-economic status and mental disorders, the 
results of our study showed that individuals with a low childhood 
socioeconomic status had the highest average scores of mental 
disorders, while those with a medium-high childhood socioeconomic 
status had the lowest average scores. Similarly, individuals with a 
currently low social level and high economic status had the highest 
and lowest average scores of mental disorders, respectively. 
Furthermore, the association between fluctuations in socioeconomic 
status throughout one’s life and the occurrence of mental disorders 
revealed that individuals who experienced the most fluctuations had 
the highest average score of mental disorders, while those who 

experienced the least fluctuations had the lowest average score of 
mental disorders; this finding is consistent with previous studies that 
have demonstrated a correlation between childhood socioeconomic 
status and the occurrence, duration, and intensity of mental 
disorders (54).

Since anti-inflammatory and pro-inflammatory foods are 
consumed together, studying the relationship between DII and mental 
health using conventional analysis methods is not feasible (17). 
Conventional analyses cannot provide accurate estimates of the effects 
of different foods with similar levels of nutrients in epidemiological 
studies. This bias in estimating effects occurs due to small-sample bias 
or instability in maximum-likelihood estimates (33).

Based on the conducted studies and the possible consumption 
levels of each parameter at the global level, the maximum DII score is 
+7.98 (corresponding to the maximum consumption of 
pro-inflammatory parameters), and the minimum DII score is-8.87 
(corresponding to the minimum consumption of pro-inflammatory 
parameters and the maximum consumption of anti-inflammatory 
parameters) (16). In our study, the maximum and minimum DII 
scores were 5.37 and-1.06, respectively, which can be attributed to the 
differences in dietary style and the number of parameters used in 
calculating DII. DII consists of 45 food parameters, but we used 25 
parameters in our study to calculate DII. One of the characteristics of 
DII is its flexibility in increasing or decreasing the number of 
components in different studies. However, if the necessary data is 
available, using the complete version of DII can provide a better and 

TABLE 1 (Continued)

Variable Frequency 
number (%)

Stress Anxiety Depression

Mean  ±  SD P-value Mean  ±  SD P-value Mean  ±  SD P-value

Fluctuations in socioeconomic status throughout one’s lifeb

A lot 147 (4.2%) 16.63 ± 9.53 <0.001 8.44 ± 5.93 <0.001 11.74 ± 8.32 <0.001

Much 469 (13.4%) 15.77 ± 9.25 7.38 ± 6.05 9.61 ± 8.67

Neither too much nor too little 786 (22.5%) 13.71 ± 8.89 6.45 ± 6.25 8.05 ± 8.04

Little 662 (18.9%) 13.31 ± 8.83 5.87 ± 5.56 7.87 ± 7.77

very little 1,437 (41%) 12.59 ± 8.85 5.61 ± 5.50 7.22 ± 7.76

Assetc (Regression coefficient ± SE) −0.27 ± 0.14 0.069 −0.33 ± 0.09 0.001 −0.28 ± 0.13 0.031

Social Activityc (Regression coefficient ± SE) −0.51 ± 0.15 0.001 −0.31 ± 0.09 0.002 −0.57 ± 0.13 <0.001

Liver problemsa

Yes 185 (5.3%) 15.03 ± 9.47 0.024 7.21 ± 5.79 0.016 9.46 ± 8.66 0.014

No 3,316 (94.7%) 13.49 ± 8.98 6.15 ± 0.83 7.96 ± 8.00

Hypothyroidisma

Yes 401 (11.5%) 14.67 ± 9.39 0.009 6.77 ± 6.10 0.041 8.65 ± 8.35 0.108

No 3,100 (88.5%) 13.43 ± 8.96 6.13 ± 5.79 7.96 ± 8.00

CVD a

Yes 243 (6.9%) 14.76 ± 9.24 0.033 7.30 ± 5.82 0.002 8.55 ± 8.36 0.309

No 3,258 (93.1%) 13.48 ± 8.99 6.12 ± 5.82 8.00 ± 8.02

Diabetesa

Yes 150 (4.3%) 14.33 ± 9.77 0.295 7.35 ± 5.95 0.014 8.13 ± 7.53 0.885

No 3,351 (95.7%) 13.54 ± 8.98 6.15 ± 5.82 8.04 ± 8.07

aIndependent sample T test.
bOne-way ANOVA.
cSimple linear regression model.
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more comprehensive understanding of its relationship with 
mental disorders.

From the perspective of the importance of using a multilevel 
model in this study, it should be noted that Generalized Linear Models 
(GLMs) are employed when the data lacks independence. When data 
are collected from different levels or clusters (e.g., food clusters, 
nutrients), there is an intra-cluster correlation between units of the 
same level and a correlation between units of different levels. 
Consequently, due to correlated data, using GLMs is inappropriate 
since they assume that observations within the study units are 
independent. If a GLM is applied to nested data, the independence 
assumption is seriously violated, leading to an underestimation of 
standard errors and the identification of significant spurious 
relationships (55).

When correlation exists between the data, instead of GLMs, 
GLMMs are utilized. GLMMs, in fact, a statistical model, are an 
extension of GLMs where random effects with a normal distribution 
are added. GLMMs incorporate random effects into the linear 
predictor or directly model the existing correlation in the data (56).

Multilevel modeling can provide more accurate and plausible 
effects estimates than conventional models (57). The results of the 
current study also demonstrated that the effects obtained from the 
multilevel model were more accurate and plausible than those 
obtained from conventional models.

Numerous studies have shown that multilevel models can perform 
statistically better than conventional approaches in the analysis of 
epidemiological data in the face of multiple exposures (58–72). This 
improved performance is partly because higher levels of a multilevel 
model incorporate additional information for estimation. For 
example, in a practical epidemiological study of nutrition, a multilevel 
model improved upon conventional estimates by shrinking the effects 
of food items on each other when those foods had similar levels of 
nutrients (62).

Most studies and published articles on applying multilevel models 
have been conducted using two-level models. However, these models 
can be extended to include more levels based on the study’s objectives 
(32). In the present study, considering the available data and the main 
purpose of examining the relationship between DII and mental 
disorders, a three-level multilevel model was employed, including 
foods, nutrients, and DII levels. Two-level models include a residual 
effect for the first level (33). Still, in the three-level model used in our 
study, two residual effects [one for the first level (δj) and one for the 
second level (θi)] are incorporated into the model.

The strengths of this study include the use of multilevel models 
with three levels, which allowed for the adjustment of the effects of 
foods and nutrients. This adjustment helped to obtain more accurate 
and reliable estimates while reducing potential confounding biases 
and collinearity effects. The lack of necessary nutritional data to 
calculate the DII with more parameters was one of the limitations of 
this study.

Conclusion

Considering the nature of the data and the nested relationship 
between DII, nutrients, and foods, we needed to use a three-level 
multilevel model. Due to the differences in regression coefficients 
between conventional and multilevel models, epidemiologists, T
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TABLE 3 Relationship between baseline characteristics of the participants and mental disorders with GLIMMIX modela.

Variables measure Stress Anxiety Depression

Coe.b 95% Confidence 
Interval

P-value Coe.b 95% Confidence 
Interval

P-value Coe.b 95% Confidence 
Interval

P-value

Lower Upper Lower Upper Lower Upper

Liver problems Yes/NO 1.878 0.573 3.182 0.004 1.289 0.481 2.097 0.001 1.935 0.781 3.088 0.001

Hypothyroidism Yes/NO 0.778 −0.154 1.711 0.102 0.404 −0.172 0.982 0.169 0.406 −0.418 1.230 0.334

CVD Yes/NO 1.176 0.033 2.319 0.043 1.216 0.509 1.923 <0.001 0.572 −0.437 1.583 0.266

Diabetes Yes/NO 0.367 −1.069 1.803 0.616 1.219 0.324 2.114 0.007 −0.119 −0.437 1.583 0.853

Gender Female/ Male 2.735 2.073 3.397 <0.001 2.145 1.690 2.600 <0.001 2.471 1.887 3.056 <0.001

Level of education Per one degree −0.078 −0.312 0.154 0.508 −0.337 −0.487 −0.188 <0.001 −0.345 −0.551 −0.139 0.001

Marital status Per change of each level 

(According to Table 1)

0.059 −0.619 0.737 0.864 0.239 −0.183 0.662 0.266 −0.952 −1.551 −0.353 0.001

Smoking status Per change of each level 

(According to Table 1)

0.349 0.031 0.666 0.031 0.160 −0.036 0.357 0.109 0.373 0.092 0.653 0.009

The childhood 

socio-economic 

status

Per decrease of each level 

(According to Table 1)

0.900 0.500 1.300 <0.001 0.463 0.215 0.711 <0.001 1.413 1.059 1.766 <0.001

The socio-economic 

self-expression 

status

Per decrease of each level 

(According to Table 1)

−0.740 −0.981 −0.498 <0.001 −0.364 −0.514 −0.214 <0.001 −0.547 −0.761 −0.333 <0.001

Fluctuations in 

socioeconomic 

status throughout 

one’s life

Per decrease of each level 

(According to Table 1)

0.432 0.286 0.579 <0.001 0.267 0.175 0.359 <0.001 0.408 0.278 0.538 <0.001

Asset Per one score −0.064 −0.377 0.249 0.686 0.003 −0.197 0.201 0.973 0.220 −0.056 0.497 0.118

Social activity Per one score −0.389 −0.695 −0.082 0.012 −0.074 −0.266 0.117 0.445 −0.278 −0.549 0.007 0.043

aAdjusted for nutrients, foods, and DII.
bRegression coefficient.
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particularly in nutritional studies with nested data, must employ 
multilevel models to obtain more precise and credible estimates. 
Considering that increasing the DII score is associated with higher 
scores of mental disorders such as depression, stress, and anxiety, it is 
recommended to minimize the consumption of pro-inflammatory 
nutrients and foods. This can help prevent and reduce the possibility 
of developing mental disorders. The fluctuations in socioeconomic 
status throughout one’s life, socio-economic self-expression, and social 
activity have a significant relationship with the mean scores of mental 
disorders. Additionally, suffering from underlying diseases such as 
diabetes, liver problems, and cardiovascular disease can disrupt 
mental health.
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