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Background: Maternal stress is pervasive in the neonatal intensive care 
unit (NICU). Maternal stress is associated with changes in human milk (HM) 
immunomodulatory agents, which may impact neonatal health. We sought to 
determine the association between maternal stress, HM immunoglobulin A (IgA) 
and cortisol, and to assess how these milk components correlate with infant 
immune and neurodevelopmental outcomes. We  then compared how these 
associations persist over time.

Methods: The study design involved a cohort study of exclusively breastfeeding 
mothers and their singleton moderately preterm (28–34  weeks) infants 
admitted to the NICU. We collected maternal serum, maternal saliva, and first-
morning whole milk samples, and administered maternal stress questionnaires 
at 1 and 5  weeks postpartum. We  analyzed the samples for HM IgA (using a 
customized immunoassay in skim milk) and for HM and salivary cortisol (using 
a chemiluminescent immunoassay). Infant illness was assessed using the Score 
for Neonatal Acute Physiology II (SNAP II) and SNAP II with Perinatal Extension 
(SNAPPE II), and infant neurodevelopment were assessed using the Test of Infant 
Motor Performance. We  analyzed changes in HM IgA and cortisol over time 
using paired t-tests. Furthermore, we  performed correlation and regression 
analyses after adjusting for gestational age (GA), corrected GA, and infant days 
of life.

Results: In our study, we  enrolled 26 dyads, with a mean maternal age of 
28.1  years, consisting of 69% white, 19% Black, and 8% Hispanic. Cortisol: 
Salivary and HM cortisol were closely associated in week 1 but not in week 5. 
Though mean salivary cortisol remained stable over time [2.41  ng/mL (SD 2.43) 
to 2.32 (SD 1.77), p  =  0.17], mean HM cortisol increased [1.96  ng/mL (SD 1.93) 
to 5.93  ng/mL (SD 3.83), p  <  0.001]. Stress measures were inversely associated 
with HM cortisol at week 1 but not at week 5. IgA: HM IgA decreased over time 
(mean  =  −0.14  mg/mL, SD 0.53, p  <  0.0001). High maternal stress, as measured 
by the Parental Stressor Scale: neonatal intensive care unit (PSS:NICU), was 
positively associated with HM IgA at week 5 (r  =  0.79, P  ≤ 0.001). Higher IgA was 
associated with a lower (better) SNAP II score at week 1 (r  =  −0.74, p  =  0.05). No 
associations were found between maternal stress, salivary cortisol, HM cortisol, 
or HM IgA and neurodevelopment at discharge (as assessed using the TIMP 
score). Furthermore, these relationships did not differ by infant sex.
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Conclusion: Maternal stress showed associations with HM cortisol and HM IgA. 
In turn, HM IgA was associated with lower measures of infant illness.
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Introduction

The provision of mother’s milk for sick neonates promotes infant 
feeding tolerance, growth, and neurodevelopment, while serving as a 
preventive measure against life-threatening diseases such as 
necrotizing enterocolitis (1). However, providing mother’s milk also 
adds to the family’s burden of stress during a tumultuous time (2, 3). 
Mothers in the neonatal intensive care unit (NICU) report high levels 
of stress, with more than 40% experiencing clinical depression by the 
time of NICU discharge (4). While the human milk (HM) quantity 
and the onset of lactogenesis 2 have been shown to be negatively 
impacted by maternal stress (5, 6), the composition of HM may also 
be affected by maternal stress.

Preterm HM has been shown to have higher levels of immune 
modulatory agents, such as secretory IgA (7), which is possibly 
protective against infection and inflammation. IgA amounts in HM 
are highly variable and vary between individuals, by health conditions, 
and over time. Nevertheless, these levels may be related to maternal 
stress, and the nature of these relationships remain poorly understood, 
especially in medically fragile premature infants and high-stress 
environments such as neonatal intensive care units (NICUs). Stress-
responsive biological markers, such as cortisol, also vary in this way, 
though studies have demonstrated synchrony between maternal and 
breastfed infant salivary cortisol up to 12 months postpartum (8, 9).

Other research has linked maternal serum cortisol and secretory 
IgA with maternal mood and neonatal autonomic stability (10). These 
findings emphasize the potential to improve infant and maternal well-
being by improving lactation support in the NICU and maximizing 
the benefits of HM composition. Some studies suggest that maternal 
stress reduction interventions may increase serum and HM secretory 
IgA levels (11), reduce subjective stress and salivary cortisol, and 
increase breastmilk production in NICU mothers (12).

Therefore, determining the impact of maternal stress on human 
milk (HM) and immunomodulatory agents may prove important for 
maximizing maternal and neonatal health. Specifically, we sought to 
determine: (1) whether reported measures of maternal stress were 
associated with immunologic markers in maternal circulation and 
HM and (2) whether HM composition was associated with infant 
health and neurodevelopment during NICU hospitalization.

Materials and methods

Study design

We conducted an observational cohort study at a Level 4 NICU 
that serves as a regional perinatal center. Our goal was to determine 
the trajectory of maternal stress (captured via surveys and biometric 
assays), its transmission to infants via HM (captured via composition 

assays), and relationships with infant outcomes (infant illness scores 
and neurodevelopmental testing; Figure 1).

We recruited dyads of mothers and moderately preterm infants 
(born at 28–326/7 weeks gestation with an appropriate-for-gestational 
age birth weight). We approached mothers and lactating parents of 
infants, hospitalized in the NICU, who were less than 7-days old. The 
inclusion criteria included the intention to exclusively breastfeed, the 
mother’s routine pumping of breastmilk at least six times per day 
(indicating support for ongoing supply), and the absence of clinical 
indications for the supplementation of formula or donor milk at the 
time of enrollment. We  excluded infants who were out of their 
mother’s legal custody, who had a medical contraindication to 
breastfeeding, and who received more than 50% of base feeds as donor 
human milk or infant formula at enrollment or discharge.

Maternal/infant dyads were seen for two study visits: at enrollment 
(week 1 postpartum) and 4 weeks post enrollment (week 
5 postpartum).

Sample collection

Maternal saliva samples were self-collected via spit collection at 
the time of the first-morning milk expression (5 a.m.–8 a.m.) on the 
day of the study visit. Mothers were given a salivary collection kit 
along with the instructions. Research assistants educated mothers 
on when and how to collect the sample. Saliva collection kits were 
brought back to the lab, where they were immediately spun at 
10,000 g, and the supernatant was transferred to −80°C 
until analysis.

Human milk samples were self-collected by each mother before 
the day of the study visit. Mothers were provided a sterile collection 
kit and were instructed to perform a full-breast collection using their 
own electric breast pump (mothers expressed their breast completely 
until milk stopped flowing) at the time of their first daily expression 
(between 4 a.m. and 8 a.m.). Samples obtained outside this window 
were excluded from analysis. Upon expression, milk was swirled to 
homogenize, and a 5 mL of aliquot was removed and transferred to the 
lab. In the lab, 1 mL of the whole milk was spun at 10,000 g for 10 min 
at 4°C to separate fat from skim. A micropipette was used to pull skim 
from fat, using cold pipette tips to prevent fat from melting. The 
aliquot of skim milk, fat, and the remaining 4 mL of whole milk was 
then frozen at −80°C until analysis.

Biological measures

Salivary cortisol
Cortisol was analyzed in duplicate as instructed using a 

commercially available chemiluminescent immunoassay (IBL 
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Immuno-Biological Laboratories, Hamburg, Germany, catalog: 
RE62111).

HM cortisol
Milk cortisol was measured in whole milk following the method 

published by Hahn-Holbrook et al. (13) using an adapted salivary 
chemiluminescent immunoassay (IBL Immuno-Biological 
Laboratories, Hamburg, Germany, catalog: RE62111). In short, 200 μL 
of whole milk was thawed. A measure of 100 μL of sample was spiked 
with 2.5 ng of cortisol. Both spiked and un-spiked aliquots were then 
extracted by adding 500 μL of chilled dichloromethane to milk, 
vortexing and incubating on ice for 10 min. Samples were then 
centrifuged for 5 min at 1,500 g, and the top aqueous phase was 
removed and discarded. A measure of 100uL of the lower phase was 
transferred to a new tube and evaporated to dryness in a chemical 
fume hood. A measure of 50 μL of distilled water was used to 
resuspend the tube contents after sitting for 10 min at room 
temperature. Resuspended samples (both spiked and un-spiked) were 
analyzed in duplicate following the kit instructions, loading 20 μL of 
extraction per well. Relative luminescence units were measured within 
10 min of assay completion. A four-parameter logistic curve was 
generated, and the results were corrected for extraction efficiency by 
adjusting according to the percent recovery of the spiked sample.

HM IgA
HM IgA was measured via custom immunoassay as previously 

described (14). In short, 96-well MaxiSorp plates were coated with 
100 μL of anti-human IgA (Bethyl Lab A80–102A) at 1:100 dilution in 
0.05 M carbonate–bicarbonate overnight at 4°C. The following day, 
the well contents were removed and the plate was blocked by adding 
200 μL of 1% bovine serum albumin (BSA) in phosphate-buffered 
saline (PBS) for 30 min at room temperature. The blocking solution 
was removed, and the plate was washed for five cycles with a 300-μL 
wash of PBS-T solution containing 0.05% Tween-20 using a BioTek 
microplate washer. Then, the samples and controls were added to the 
plate for 2 h at room temperature. Skim milk was diluted at a 
concentration of 1:5,000 in 1% BSA in PBS before running, and the 
controls were prepared as a serial dilution of control serum (Bethyl 
Lab RS10–110) in 1% BSA in PBS. Following the incubation process, 
the plate was washed as described above, and then 100 μL of secondary 

antibody (Bethyl Lab A80–102P) was added at a concentration of 
1:100,000 in 1% BSA in PBS for 1 h at room temperature. After this 
incubation, the plate was washed as described above, and then 100 μL 
of prepared TMB solution [BD Biosciences (Franklin Lakes, NJ) 
OptEIA TMB substrate reagent set (BD 555214)] was added to each 
well, followed by a 15-min incubation at room temperature in the 
dark. To stop the reaction, 50 μL of 0.18 sulfuric acid was added to 
each well, and the plate absorbance was read at 450 nm. A 5-parameter 
logistic curve was generated, and sample concentrations 
were calculated.

HM sodium and potassium
HM Na and K concentrations were measured using ion selective 

electrodes (Sodium: B-722; potassium: B-731; Horiba, Japan) as 
previously validated (15). In short, the electrodes were calibrated, and 
300 μL of milk was added to the sensor for measurement. The samples 
were analyzed in duplicate. If duplicates were more than a 10% 
disparity, a triplicate measurement was performed. The sodium-to-
potassium ratio (Na:K ratio) was calculated as a biomarker of 
lactogenesis 2 (16, 17).

Interview/observational measures

Maternal demographics were collected at the time of enrollment. 
These included measures of maternal psychosocial and 
sociodemographic status (including income, education, family 
household composition, marital status, occupation, race, ethnicity, 
medical history, illness history, and medication use). Additionally, 
measures known to be  associated with perinatal morbidity (e.g., 
hypertension, diabetes, and preterm labor) and breastfeeding difficulty 
(e.g., type of delivery, ICU stay, and infant separation) were collected 
by surveys and chart reviews (2, 3, 18–20). The demographic measures 
(listed above) were derived from the Centers for Disease Control and 
Prevention’s Pregnancy Risk Assessment Monitoring System and were 
adapted for use in Monroe County (21).

Maternal stress was measured at enrollment and at 4 weeks of age. 
Questionnaire measures of maternal stress included standard 
assessments of stress that had been previously used and validated in 
prior research (22, 23). These assessments comprised the Edinburgh 

FIGURE 1

Flow diagram of the pilot study with measured biomarkers.
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Postnatal Depression Scale (EPDS), the Adverse Childhood Events 
Scale (ACES), the State–Trait Anxiety Inventory (STAI) (24–28), and 
the Patient-Reported Outcomes Measurement Information System 
(PROMIS) measures for sleep (29), and Cognitive Abilities Short 
Form 4a (30). We also included measures of social support, prenatal 
smoking, substance use, and health behaviors, such as physical activity 
(31). NICU-specific maternal stress indicators included the Parent 
Stress Scale: Neonatal Intensive Care Unit (PSS: NICU) (32) and the 
Postpartum Bonding Questionnaire (33, 34).

For breastfeeding measures, we collected information regarding 
time to first expression, time to first colostrum expressed, time to 
lactogenesis 2 (as per maternal report, defined by an increase in milk 
production > 15 mL/expression), exclusivity, weekly milk production, 
and time of first feed at the breast (35). Exclusivity was defined as the 
receipt of mother’s own only, with or without fortification.

Infant neurodevelopment was measured at 4 weeks of age or at 
discharge, whichever was first. The Test of Infant Motor Performance 
(TIMP) scale measures the cognitive and motor performance of 
premature infants (36, 37). This scale has been validated by the scale 
developers for use in research and was administered by a trained 
occupational therapist. Although initially validated for infants of 
34 weeks gestation or more, this scale has been used for younger 
populations as well, including the changes in scores with maturation 
over time, which is the goal of our pilot study (22, 38, 39). Infant 
health was measured at enrollment and at 4 weeks of age. The Score 
for Neonatal Acute Physiology II (SNAP II) and the Score for 
Neonatal Acute Physiology with Perinatal Extension (SNAPPE II) 
are validated tools for determining the severity of illness and the 
mortality risk in newborns of all birthweights (40). The SNAP II 
evaluates the mortality risk from the severity of illness, including 
blood pressure, PO2/FiO2, lowest temperature, serum pH, multiple 
seizures, and urinary output. The SNAPPE II extends this evaluation 
to the perinatal period by including factors such as newborn weight, 
appearance, pulse, grimace, activity, and respiration (APGAR) score, 
and being small for gestational age to determine the mortality risk. 
Both scores are determined based on values obtained in the first 12 h 
of life.

Statistical analysis

All statistical analyses were performed using SAS 9.4 (SAS 
Institute Inc., Cary, NC). Means, standard deviations, and ranges were 
used to summarize the continuous measures, while frequencies and 
percentages were used for categorical measures. Within patients, 
changes in HM and salivary cortisol as well as HM IgA over time were 
assessed using paired t-tests or Wilcoxon signed-rank tests, as 
appropriate. At each time point, Pearson’s correlation and Spearman 
correlation analyses were performed to evaluate associations between 
maternal stress and human milk cortisol and IgA, as appropriate. Due 
to the high skewness of cortisol in biological samples (35), HM and 
salivary cortisol were log-transformed in the analyses. Partial 
correlation coefficients were estimated after adjusting for gestational 
age (GA), corrected GA, and infant day of life (DOL). For binary stress 
variables, t-tests or Wilcoxon rank sum tests were used to evaluate the 
relationship between HM, salivary cortisol, and IgA. A value of p of 
<0.05 was considered statistically significant. No adjustment for 
multiple tests was made.

The sample size calculation was based on the ability to detect 
differences in maternal cortisol levels between stressed and 
non-stressed mothers (based on PSS) in the NICU. A sample of 25 
achieves 80% power to detect an effect size of 1.2, assuming balanced 
group sizes at a two-sided significance level of 5%.

Results

Cohort characteristics are presented in Table 1: 26 mothers (with 
a mean maternal age of 28.1 years, consisting of 69% white, 19% Black, 
and 8% Hispanic) and their infants (gestational age range: 28.5–33.5; 
SD = 1.8) were enrolled between May 2019 and March 2020. Time to 
lactogenesis 2 by parental report was collected. That lactogenesis 2 had 
occurred by the time of sample collection was verified by a Na:K 
ratio < 0.8 (35). Cortisol and IgA levels are described in Table  2. 
Mothers reported high levels of stress, postpartum mood disorders, 
anxiety, and sleep disorders, which were stable or worsened over time 
(Table 3).

Timing of lactogenesis 2

No demographic variables, markers of maternal stress, or HM 
analytes correlated with time to lactogenesis 2 (as reported by the 
patient or by the Na:K ratio).

TABLE 1 Subject characteristics.

Variable N  =  26

Maternal age1 28.1 years (range 18.5–38.7, SD 5.7)

Race2

White 69% (18)

Black 19% (5)

Ethnicity

Hispanic 8% (3)

Insurance type2

Medicaid/Medicare 30.8% (8)

Private 65.4% (17)

Uninsured 3.8% (1)

Marital status2 53.85% married (14)

Education2

High school or less 30.7% (8)

Some college or more 69.23% (18)

Infant gestational age Range 28.5–33.5 weeks; SD = 1.8

Infant SNAP II score1 6.5 (range 0–21, SD 5.66)

Infant SNAPPE II score1 8 (range 0–21, SD 6.15)

Time to first expression1 1.96 days (range − 0.31–8.15, SD 2.06)3

Time to L2 (by self-report)1 3.29 days (0–33 days, SD 6.49)

Time to first feed at the breast1 18.5 days (2–62, SD 16.7)

SD, standard deviation; L2, lactogenesis 2; SNAP II, Score for Neonatal Acute Physiology; 
SNAPPE II, Score for Neonatal Acute Physiology with Perinatal Extension-II. 1Reported as 
mean (range, standard deviation). 2Reported as % (n). 3Negative “time to first expression” 
represents antenatal hand expression.
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Cortisol

Neither maternal age, parity, infant gestational age nor time to 
lactogenesis 2 was associated with HM cortisol concentrations.

Maternal salivary cortisol remained stable over time (Table  2; 
2.25 ± 2.35 ng/mL–2.43 ± 1.77 ng/mL, p = 0.17). HM cortisol increased 
from 1.93 ± 1.97 ng/mL at week 1 to 6.03 ± 3.93 ng/mL at weeks 5 
(p < 0.0001). Human milk and salivary cortisol were closely associated in 
week 1 but not in week 5 (Table 4; Figure 2). Measures of maternal stress 
were associated with HM cortisol at week 1 but not at week 5 (Table 4). 
No associations were found between EPDS, sleep, ACES, and PSS:NICU 
other categories and either HM or salivary cortisol at both time points. 
PROMIS clarity of thought at week 1 was positively associated with 
maternal salivary cortisol. The change in anxiety (STAI) between weeks 1 
and 5 was positively associated with the increase in HM cortisol, but this 
association did not hold for salivary cortisol (Table 4).

No associations were found between maternal salivary or HM 
cortisol and infant illness scores at any time point (SNAP II and 
SNAPPE II; data not shown).

IgA

Human milk IgA decreased over time from 1.13 ± 0.47 mg/mL at 
1 week to 0.89 ± 0.45 mg/mL at 5 weeks (p < 0.0001; Table 2; Figure 3). 
Neither maternal age, parity, infant gestational age nor time to 
lactogenesis 2 was associated with HM IgA concentrations. High 
stress on the PSS:NICU scale at week 5 was associated with HM IgA 
(Table 4; Figure 4). The change in stress (via PSS:NICU score, overall 
stress with hospitalization) was positively associated with the change 
in HM IgA (Table 4; Figure 4).

HM IgA at week 1was negatively associated with infant SNAP II 
score at week 1 (r = −0.75, p = 0.05); no associations were found 
between HM IgA and SNAPPE II. No other associations with maternal 
stress measures were found.

Neurodevelopment

No associations were found between maternal stress, salivary 
cortisol, HM cortisol, or HM IgA and neurodevelopment at discharge 

(TIMP; data not shown). These relationships did not differ by 
infant sex.

Discussion

In our study of mothers of NICU infants over the first 5 weeks 
of hospitalization, maternal salivary cortisol remained stable, 
while HM cortisol increased over time. However, with the 
exception of the PROMIS clarity of thought scale, maternal 
anxiety and stress were negatively associated with HM but not 
with salivary cortisol. These associations were found during the 
early postpartum period (week 1) but were not evident 1 month 
later (week 5). Conversely, HM IgA decreased over time. At week 
5, maternal stress on the PSS:NICU scale was positively associated 
with HM IgA, suggesting that mothers with higher stress had 
higher levels of IgA in their milk. HM IgA was in turn negatively 
associated with the infant illness score (SNAP II) at week 1, 
indicating that higher IgA was associated with lower SNAP II 
scores (a healthier infant).

HM cortisol trends and relationship 
between salivary and milk cortisol

This positive correlation between maternal salivary and HM 
cortisol has been reported in other studies involving term and 
preterm infants (41–43). However, Romijn et  al. detected this 
association in term infants at 1 month postpartum, unlike our 
analysis, in which the association dissipated over time. Other 
studies have found that HM cortisol concentrations are highest in 
the colostral phase and decrease in mature milk after term birth (44, 
45). This finding contrasts with the studies of preterm milk over 
time, which show higher cortisol levels compared to term milk (46, 
47), with levels increasing over time (47). These conflicting reports 
may represent differences in cortisol secretion in term vs. preterm 
milk and have differing impacts on the recipient infant. The 
concentrations of HM cortisol detected in our study (collected from 
a full-breast expression) were comparable to those reported in other 
preterm milk studies and lower than those reported in studies that 
collected hindmilk samples (42, 47, 48).

TABLE 2 Human milk and salivary cortisol (raw and log-transformed) and human milk IgA1.

1  week (N  =  24) 5  weeks (N  =  17) Mean difference (N  =  17) P-value2

Cortisol

Human milk cortisol 1.93 ng/mL (range 0.12–6.52, SD 1.97) 6.02 ng/mL (range 1.1–15.3, SD 3.9) Mean 4.05 (range −0.6–14.74) p < 0.001*

Human milk cortisol, log-

transformed

0.10 (range −2.09–1.88, SD 1.19) 1.57 (range 0.09–2.73, SD 0.697) 0.0001*

Maternal salivary cortisol 2.25 ng/mL (range 0.04–9.24, SD 2.35) 2.43 ng/mL (range 0.48–6.86, SD 1.76) Mean −0.13 (range −5.37–3.76) 0.8

Maternal salivary cortisol, 

log-transformed

0.117 (range −3.22–2.22, SD 1.52) 0.56 (range −0.798–1.925) 0.17

IgA

Breastmilk IgA 1.13 mg/mL (range 0.42–1.91, SD 0.47) 0.89 mg/mL (range 0.25–1.86, SD 0.45) −0.145 mg/mL (range −0.86–0.89, 

SD 0.53)

<0.0001*

*Statistically significant. 1HM and salivary cortisol was measured using chemiluminescent immunoassay, and IgA was measured using customized immunoassay in skim milk.  
2For comparison over time.
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HM IgA levels and trends

IgA levels in our study were similar to those observed in other 
studies, which have been reported at 1.6–2 mg/mL in transitional and 
mature milk (49). Though IgA levels are typically higher in preterm 
milk, this difference is more pronounced in colostrum, which we did 
not collect (7). Human milk IgA decreased from weeks 1 to 5; however, 
associations between maternal stress and IgA were mostly stable over 
time. This decrease in HM IgA over time has been reported in other 
studies (50, 51). There is significant variation in HM IgA concentration 
among individuals. The milk IgA content further varies by age, parity, 
mode of delivery, BMI, gestational age, and over time (52–54). IgA is 
greater in HM from the mothers of infants <1,000 g and may be higher 

in male infants (55). However, we  detected no difference in HM 
composition based on infant sex in this study. Some research has 
found that stress and maternal mood influence HM secretory IgA 
(56). There are significant data to suggest that HM IgA provides 
passive protection to infants against specific infectious diseases (57–
59), and also shapes the developing microbiome (49, 60, 61).

HM cortisol and IgA and stress

We detected a negative association between maternal stress 
(PSS:NICU) and anxiety and HM cortisol in the early postpartum 
period. However, as anxiety increased over the course of 

TABLE 3 Maternal stress measures over time (week 1 to week 5).

Stress measure Week 1, N  =  25 Week 5 N  =  21 P-value1

PSS:NICU2 “How stressful has the experience of having your baby 

hospitalized been for you?”

4.47 (very stressful, range 2–6, SD 1.2) 4.87 (3–6, SD 1.14) 0.36

PSS:NICU mean all questions combined 3.37 (1.7–5.9, SD 1.15) 3.31 (1.8–5.6, SD 1.13) 0.81

EPDS3 12.3 (3–24, SD 5.34) 12.18 (3–27, SD 6.82) 0.23

EPDS3 score > 13, depression 46% of participants (n = 12 of 26) 36% of participants (n = 8 of 22) 0.69

Sleep4, moderate to severe sleep difficulty 68% (17) 52.4% (11) 0.18

Sleep4, T-score 62.3 (36.6–78.5, SD 12.98) 60.5 (36.6–80.3, SD 9.9) 0.07

Maternal anxiety (STAI5) 36 (20–64, SD 10.9) 39 (23–73, SD 16.01) 0.21

Maternal high anxiety (STAI5 score > 53) 8% of participants (n = 2) 23% of participants (n = 5) 0.0006*

Results reported as mean (range, standard deviation). SD = standard deviation. *Statistically significant. 1For comparison over time. 2Parental Stressor Scale: Neonatal Intensive Care Unit. 
3Edinburgh Postnatal Depression Scale. 4Adult PROMIS—Sleep Disturbance—Short Form, Patient-Reported Outcomes Measurement Information System. Raw scores are converted to 
T-scores based on patient response rate. T-scores are used for interpretation. A score of 55 or below indicates no to mild sleep disturbance, a score over 60 indicates moderate sleep disturbance, 
while a score of 70 and over indicates severe sleep disturbance. 5State–Trait Anxiety Inventory.

TABLE 4 Associations between maternal stress and human milk cortisol and IgA over time (week 1 to week 5).

Associations with HM cortisol (log-transformed)

Independent variable Week 1 Week 5

Maternal Salivary Cortisol (log-transformed) r = 0.75 r = 0.49

p < 0.001* p = 0.06

PSS:NICU1 sub-score, stress associated with parental role r = − 0.44 r = 0.22

p = 0.047* p = 0.44

PROMIS3: clarity of thought r = 0.54 r = −0.06

p = 0.01* p = 0.83

Maternal anxiety (STAI2) r = −0.40 r = 0.18

p = 0.007* p = 0.52

Change in HM Cortisol vs. Change in Maternal Anxiety (STAI2) r = 0.58

p = 0.03*

Associations with HM IgA

Independent variable Week 1 Week 5

PSS: NICU1 score, overall stress with hospitalization
r = 0.35 r = 0.79

p = 0.18 p ≤ 0.001*

Change in PSS:NICU1 score, overall stress with hospitalization vs. 

Change in HM IgA

r = 0.70

p = 0.02

HM, human milk. *Statistically significant. **Higher score = worse outcomes associated with higher mortality rates. 1Parental Stressor Scale: Neonatal Intensive Care Unit. 2State–Trait Anxiety 
Inventory. 3Patient-Reported Outcomes Measurement Information System. 4Score for Neonatal Acute Physiology.
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FIGURE 2

Association between log-transformed human milk and salivary cortisol over time, from visit 1 (week 1) to visit 2 (week 5). At visit 1 (week 1 postpartum), 
human milk (HM) cortisol was associated with maternal salivary cortisol. At visit 2 (week 5 postpartum), this association no longer held, and cortisol 
measures were log-transformed to account for the skewness of cortisol in biological samples. *Statistically significant.

FIGURE 3

Human milk IgA decreases overtime from 1 to 5  weeks postpartum. Human milk IgA was measured at visit 1 (week 1 postpartum) and visit 2 (week 5 
postpartum). While significant variation exists in human milk IgA between subjects, we found a general decreasing trend in these measures from week 
1 to week 5 postpartum. 0  =  mean value, the center line denotes the median value, the box contains the 25th to 75th percentile of the dataset, and the 
black whiskers mark the minimum and maximum values. *Statistically significant.
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hospitalization, HM cortisol levels also rose. Other studies have 
reported associations between maternal stress and depression scores 
and glucocorticoids in HM and serum (46, 47, 62, 63), while others 
fail to detect a relationship (64). IgA in HM is more consistently 
associated with subjective stress measures, as observed in our study, 
with higher levels of stress on the PSS:NICU scale associated with 
higher IgA levels in milk (56, 63, 65, 66). Moreover, when analyzed 
individually, changes in overall stress with hospitalization (PSS:NICU) 
were positively associated with changes in HM IgA. In addition to 
being linked to subjective stress measures, concentrations of HM 
cortisol and IgA are also modifiable. Studies on relaxation, meditation, 
and laughter have been shown to increase HM IgA and lower HM 
cortisol (11, 67, 68). These studies, although small and heterogeneous, 
suggest that alternative factors contribute to the variation in HM 
cortisol and IgA. This may, in turn, help to explain the variability in 
these associations between different studies.

Relationships between HM cortisol, IgA, 
and infant outcomes

Both maternal serum and human milk cortisol appear to have 
effects on recipient infants. High maternal serum and hair cortisol 
levels have been associated with delayed lactogenesis 2, lower 
breastfeeding rates, and milk composition (69–72). Human milk 
cortisol is associated with infant biometrics (adiposity and head 
circumference), temperament, and fear reactivity (73–78). 
We therefore sought to determine if HM cortisol or HM IgA in this 

highly vulnerable preterm infant population was associated with 
neurodevelopment. However, our findings indicated no significant 
association. The findings reported in our study are similar to a study 
of healthy term infants in whom HM cortisol had no impact on 
temperament or neurodevelopment (76). We also did not detect any 
associations between maternal stress and the infant TIMP score.

In this population of preterm infants, we report that HM IgA is 
negatively associated with the infant illness score (SNAP II), 
suggesting that mothers with higher concentrations of HM IgA had 
infants with healthier illness scores. Alterations in HM IgA can have 
important ramifications for infant immune outcomes. This study is 
observational and thus cannot establish causality. Furthermore, 
though the SNAP II score includes variables affected by infant 
infection (blood pressure, PO2/FiO2, lowest temperature, serum pH, 
multiple seizures, and urinary output), it is not specific to infectious 
illness. No association was found between HM IgA and the SNAPPE 
II, which includes perinatal mortality indicators (such as newborn 
weight, APGAR score, and being small for gestational age) that are not 
illness-specific. We therefore postulate that these data support the 
premise that higher HM IgA may be a protective factor against infant 
infectious disease. This finding warrants further validation and 
mechanistic investigation, especially in premature infants.

Strengths and limitations

The strengths of this study included the assessment of an 
understudied population (premature, hospitalized infants), the 

FIGURE 4

Associations between human milk IgA and the Parent Stress Scale: Neonatal Intensive Care Unit (PSS: NICU) over time, visit 1 (week 1) to visit 2 (week 
5). At visit 1 (week 1 postpartum), human milk (HM) IgA was not associated with a high maternal stress score on the PSS:NICU. At visit 2 (week 5 
postpartum), this association was significant. *Statistically significant.
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characterization of maternal stress using multiple assessments, the 
inclusion of multiple specimen types, including saliva and HM, 
gathered contemporaneously, and the use of validated assessments to 
evaluate both infant neurodevelopment and illness.

The limitations of the study include the small sample size (which 
was limited due to the COVID-19 pandemic) and the lack of infant 
biomarker analysis. This limited sample size reduced our power to 
detect relationships with a small effect size. Thus, our inability to 
detect any relationship between maternal stress, HM cortisol, or HM 
IgA and infant neurodevelopment could represent a true verification 
of the null hypothesis or reflect our limited power. It could also affect 
our findings regarding the direction of the association between HM 
cortisol and reported maternal stress.

The small sample size also limited our ability to control for 
demographic and medical stressors, such as income, race, marital 
status, maternal illness, and antenatal steroid use, which may 
impact breastfeeding outcomes, cortisol levels, or 
infant neurodevelopment.

We used salivary cortisol as an objective measure of stress instead 
of serum cortisol, due to its lower circadian variability and the ability 
to collect the sample at the same time as milk expression on first-
morning awakening. However, salivary cortisol levels in the 
peripartum period may be affected by an impaired adrenal capacity to 
mount a cortisol response and variable cortisol metabolism, which 
were not documented (79).

Conclusion

Reported stress in NICU mothers was more tightly correlated 
with HM than salivary cortisol at 1 week postpartum. Maternal stress 
was associated with higher HM IgA levels, which, in turn, were 
associated with lower measures of infant illness.

Therefore, implementing stress reduction techniques for NICU 
mothers may have significant implications for the health of 
sick neonates.
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