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Background: Trans fatty acids (TFAs) are unsaturated fatty acids, with 
vaccenic acid (VA) and elaidic acid (EA) being the major constituents. 
While VA has been associated with beneficial effects on health and anti-
cancer properties, EA is found in hardened vegetable oils and is linked to 
an increased risk of cardiovascular diseases. Therefore, this study aimed to 
develop a novel method for the quantitative measurement of VA and EA, 
aiming to accurately analyze individual TFA and apply it for the assessment 
of products containing TFAs.

Methods: The ratio of VA to EA (V/E ratio) was evaluated using a silver ion 
cartridge (SIC) solid phase extraction method removing cis-fatty acids (cis-
FAs). Additionally, comparative analysis of the V/E ratio was conducted 
by the two methods (SIC treatment and untreated) using comprehensive 
two-dimensional gas chromatography combined with time-of-flight mass 
spectrometry (GC  ×  GC-TOFMS).

Results: The removal efficiency of cis-FAs was greater than 97.8%. However, 
the total TFA contents were not so different from SIC treatment. Moreover, 
this approach not only allowed for a more precise determination of the V/E 
ratio but also revealed a significant distinction between natural trans fatty 
acids (N-TFAs) and hydrogenated trans fatty acids (H-TFAs).

Conclusion: Therefore, the SIC coupled to the GC  ×  GC-TOFMS presented 
in this study could be applied to discriminate N-TFA and H-TFA contents in 
dairy and fatty foods.
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Introduction

Trans fatty acids (TFAs) represent a category of unsaturated fatty acids characterized 
by at least one double bond in a trans configuration (1). These TFAs encompass various 
fatty acids, including vaccenic acid (11 t-C18:1, VA), elaidic acid (9 t-C18:1, EA), and other 
substances. Both VA and EA are recognized as major fatty acids in C18:1 TFAs. (2–4). 
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Despite their similar chemical structures, the position of the carbon–
carbon double bond plays role in determining their impact on human 
health (5, 6). EA, prevalent in partially hydrogenated vegetable oils, is 
linked to an elevated risk of cardiovascular disease, displaying a 
negative correlation with plasma HDL-cholesterol levels and a positive 
correlation with plasma LDL-cholesterol levels (7–9). Conversely, 
studies suggest that VA may have beneficial health effects, including 
potential anti-cancer effects properties (10–13). In hydrogenated trans 
fatty acids (H-TFAs), EA serves as a a primary source, forming a 
diverse range of TFAs mixtures (14). Natural trans fatty acids 
(N-TFAs) found in the human diet, particularly in animal fat sources 
like butter and cheese, predominantly consist of VA, which 
constituting over 60% of total TFAs (14).

Previous studies (14) have examined the levels of VA and EA in 
foods, proposing the ratio of VA to EA as a distinguishing factor 
between N-TFAs and H-TFAs. However, accurate estimation of this 
ratio requires the separation of trans- and cis-FAs. The presence of a 
cis bond induces a bend or flexion in the fatty acid chain, while a trans 
bond results in a structure resembling that of a saturated fatty acid due 
to the straightening of the chain (15). Clear separation, identification 
and quantification of TFAs pose challenges due to overlapping isomers 
of trans- and cis-FAs (16–18).

Capillary zone electrophoresis (CE) emerges as a method capable 
of identifying EA and VA with minimal organic solvents and reagents, 
without requiring specific columns (19). However, the presence of 
matrix components, especially proteins, in the sample can lead to 
decreased separation efficiency due to their adsorption on the 
hydrophilic surface of the silica capillary (20, 21). Recent students (18, 
22) propose the use of silver ions anchored onto a strong cation 
exchange for solid phase extraction (SPE) to remove isomers of cis-
FAs from commonly consumed foods. Kramer et al. (17) analyzed 
eighty-seven fatty acids in milk samples using a silver ion cartridge 
(SIC) SPE method. They recommended gas chromatography 
combined with electron ionization mass spectrometry (GC/EI-MS), 
comprehensive two-dimensional gas chromatography (GC × GC) 
combined with a flame ionization detector (FID), and silver ion high 
performance liquid chromatography interfaced with atmospheric 
pressure photoionization mass spectrometry (HPLC/APPI-MS) for 
accurate determination of individual TFAs.

While HPLC/MS detection proved to be a rapid and reproducible 
method for nine C18:1 fatty acid methyl ester isomers, time-of-flight 
mass spectrometry (TOFMS) offered advantages in resolution and 
sensitivity without sacrificing full mass spectra information (23). 
Additionally, GC × GC experiments allowed for versatile separation of 
complex mixtures in a single run, demonstrating reproducibility in 
retention time in both dimensions (24).

However, to the best of our knowledge, there is currently no 
method for identifying EA and VA in various foods using the 
combination of GC × GC and TOFMS after SIC pretreatment, 
considering the advantages of different analytical techniques. 
Therefore, the combination of GC × GC and TOFMS could 
be suggested as one of the most efficient analytical methods for the 
isolation and identification of individual TFA. In this study, our 
primary objective was to investigate an extraction method for 
removing cis-fatty acids, enabling a more precise analysis of individual 
TFAs. Furthermore, we aimed to separate and quantify EA and VA to 
assess the distribution of TFA isomers in various trans-fat-containing 
foods, including margarine, butter, cheese, and milk.

Materials and methods

Chemicals

Individual reference fatty acid methyl ester (FAME) standards, 
including of trans-9-elaidic methyl ester (9 t-C18:1, EA) and trans-11-
vaccenic methyl ester (11 t-C18:1, VA) were purchased from Nu-Chek 
Prep Inc. (Elysian, MN, USA). All solvents and reagents utilized in this 
study were of analytical grade. A 14% boron-trifluoride methanol 
solution (BF3), sodium hydroxide, and sodium chloride were obtained 
from Sigma-Aldrich (St. Louis, MO, USA). Additionally, chloroform, 
normal hexane (HPLC grade, 95%), and methanol were purchased 
from J. T. Baker (Philipsburg, NJ, USA).

Sample preparation

Representative TFA-containing food samples commonly found in 
the general market were selected for analysis, chosen specifically for 
their high TFA content (25). A total 30 samples, including margarine, 
butter, cheese, and ice cream, were obtained from a local grocery store 
in South Korea. Among these, there are 3 samples of margarine, 3 of 
butter, 7 of cheese, and 17 of ice cream comprising various 
product types.

Fat from these samples was extracted using a mixture of 
chloroform and methanol (2:1, v/v) and subsequently evaporated to 
dryness (26, 27). In the extraction process, 20 mg of fat was placed into 
a vial with 2 mL of 0.5 M methanolic sodium hydroxide and capped. 
The vial was then heated at 100°C for 5 min, followed by cooling at 
25°C. Subsequently, 2 mL of BF3 reagent was added, and the mixture 
was heated at 100°C for an additional 5 min. To this, 2 mL of isooctane 
and saturated sodium chloride solution were added, followed by 
vortexing for 1 min. The isooctane layer was transferred to a 
separate vial.

To eliminate cis-FAs from the test solutions, 1 mL of the test 
solution in isooctane was loaded onto the preconditioned SIC (6 mL, 
Supelco, Bellefonte, USA) after pre-conditioning with 4 mL acetone 
and 4 mL of n-hexane. For SIC elution, solutions were eluted with 
hexane and acetone ratios of 99:1, 94:4, and 90:10. Four mL of 
n-hexane/acetone (96:4) was used and collected in a 12 mL vial. The 
solution in the vial was then evaporated to dryness using nitrogen gas. 
The residues in the vial were dissolved with 2 mL of isooctane for 
subsequent GC × GC-TOFMS analysis.

Analysis conditions of GC-FID, 
GC  ×  GC-FID, and GC  ×  GC-TOFMS

The GC-FID was operated with an Agilent 6,890 N GC (Agilent 
Technologies, Santa Clara, CA, USA) equipped with a flame ionization 
detector (FID). The injector temperature was set at 230°C, the detector 
temperature was 250°C, and the column oven temperature was 
increased from 120°C to 230°C at a rate of 5°C per min. A SP-2560 
column (100 m × 0.25 mm i.d., 0.25 μm film thickness, Supelco, CA, 
USA) was utilized, and helium served as the carrier gas with a flow 
rate maintained at 1.5 mL/min.

For GC × GC-FID, a LECO Corporation Pegasus 4D 
instrument with an Agilent 6,890 N GC was employed. The 
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GC × GC analysis involved a primary column SP-2560 
(100 m × 0.25 mm i.d., 0.25 μm film thickness, Supelco, CA, USA) 
and a secondary column RTX-5 (1.5 m × 0.18 mm i.d., 0.18 μm 
film thickness, Restek, Bellefonte, PA, USA). The main oven 
temperature was initially held at 45°C for 4 min, increased to 
175°C at a rate of 13°C/min and held for 27 min. Subsequently, it 
was raised to 215°C at a rate of 4°C/min and held for 10 min. The 
secondary oven was set 20°C higher than the main oven 
temperature. The modulator temperature offset was 40°C, the 
second dimension separation time was 5 s, the cool time between 
stages was 1.5 s and the hot pulse time was 1.0 s.

For GC × GC-TOFMS, the operating conditions mirrored those 
of GC × GC-FID. GC × GC-TOFMS was run at an acquisition rate of 
100 spectra/s. The transfer line and the ion source temperature were 
at 220°C. The electron energy was 70 eV, and mass spectra were 
collected in the m/z range of 35–500. Spectra were identified using the 
NIST Mass Spectral Search Program through Chroma TOF-GC 
software for PEGASUS 4D of LECO Corp.

Validation of GC  ×  GC-TOFMS method

The GC × GC-TOFMS method underwent validation for 
parameters including linearity, sensitivity, and precision. Linearity of 
the calibration curves was examined for each EA and VA standard at 
varing concentrations within the range of 1–100 μg/mL, with all 
evaluations conducted in triplicate. Limits of detection (LOD) and 
limits of quantification (LOQ) for EA and VA standards were 
experimentally determined through serial dilutions until signal-to-
noise ratios of 3 and 10 were reached, respectively.

Precision was assessed by multiple injections of several standard 
curve levels (ranging from 1–100 μg/mL) intra-day for repeatability 
and inter-day for intermediate precision. Repeatability represents the 
variability of independent results obtained by analyzing the sample six 
times, was measured by calculating the relative standard deviation 
(RSD) values for all the collected data. To evaluate the accuracy of the 
analytical method, recovery tests were conducted.

Statistical analysis

The experiment was conducted in triplicate, and the results are 
expressed as the mean ± standard deviation. Statistical analysis was 
performed using the SPSS 13.0 software for Window (LEAD TOOLS, 
LEAD Technologies, Inc., 2004).

Results and discussion

Condition on SIC fractionation

Table 1 shows the distribution of fatty acids eluted by SIC with 
different ratios of acetone in hexane (H:A), as analyzed using 
GC-FID. Total methylated lipids were applied to the SIC, and the H:A 
ratio was increased to 99:1, 96:4 and 90:10, respectively, with elution 
carried out using 4 mL volumes of mixed solvent. In the untreated SIC, 
C18:0, C18:1-trans, and C18:1-cis were found to be  15.7 g/100 g, 
17.3 g/100 g, and 26.5 g/100 g, respectively. Upon SIC treatment, C18:0 
and C18:1-cis were eluted in fractions 1 and 3, while in fraction 2, 
16.9 g/100 g of C18:1-trans was eluted with 97.7% recovery. 
Consequently, it was determined that the H:A 96:4 solution was the 
most suitable solution for separating individual TFAs.

Cis fatty acids removal and C18:1 TFAs 
separation

The effectiveness of cis-fat removal through SIC treatment was 
verified through GC-FID and GC × GC-FID chromatogram 
(Figure  1). Except for C18:1 TFA, SIC treatment demonstrated 
efficient removal of other fatty acids, such as C18:0, C18:1-cis 
and C18:2.

Despite advancements in capillary column resolution, the 
development of a single column for separating individual TFA isomers 
remains elusive. A recent breakthrough involves a two-dimension 
technique that utilizes GC coupled with a modulator (GC × GC) to 
physically separate the elution of the first column, enabling the 
analysis of each fraction in the secondary column. Ongoing research 
is actively exploring ways to effectively separate and analyze isomers 
with different double bond positions using GC × GC (14, 24, 28). 
Using these GC × GC techniques, TFA isomeric peaks, which were 
indistinguishable in the GC-FID chromatogram (Figure 1A), were 
successfully resolved into individual TFA isomers in the GC × GC-FID 
representation (Figure 1B).

Separation of EA and VA by 
GC  ×  GC-TOFMS

When TFAs were analyzed using GC × GC-TOFMS, they were 
separated into individual isomers to the greatest extent than 
GC × GC-FID analysis (Figure 1). Cis-FAs were eluted after the TFAs 

TABLE 1 Fatty acid fractionation of margarine using a silver ion cartridge (SIC) solid phase extraction method.

Margarine (n  =  3) Fatty acid contents (g/100  g)

C18:0 C18:1-trans C18:1-cis

Untreated 15.7 ± 0.4 17.3 ± 0.5 26.5 ± 1.2

SIC treated

Fr. 1, H:A* (99:1) 15.5 ± 0.4 0.1 ± 0.0 N.D.

Fr. 2, H:A (96:4) N.D. 16.9 ± 0.4 1.5 ± 0.1

Fr. 3, H:A (90:10) N.D. N.D. 24.9 ± 1.1

*H:A = hexane:acetone.
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group in chromatograms (A and C in Figure 2), and clear elimination 
of them was observed (B and D in Figure 2).

The effective separation of individual TFA by TOFMS is attributed 
to the sufficiently high mass resolution. This allows for the separation of 
peaks even if the masses are the same, dramatically improving the 
identification of specific molecular fragments and reducing cross-
sensitivity. Additionally, it can diminish background noise generated by 
disturbance ion signals or compensate for co-elution of non-target 
species in GC × GC (23). In conclusion, GC × GC-TOFMS offers 
advantages in resolution and sensitivity without sacrificing the overall 
mass spectral information of EA and VA. Through the analysis of EA 
and VA standards with GC × GC-TOFMS, EA was separated into peaks 
9 t1, 9 t2 and 9 t3, and VA into 11 t1, 11 t2, and 11 t3 using a modulator 
(Figure 3). The 9 t2 and 11 t2 are primary peaks for EA and VA. 9 t1, and 
9 t3 are subpeaks for EA, and 11 t1 and 11 t3 are subpeaks for VA, 
respectively. As depicted in A and C in Figure 2, the analysis of butter 
and margarine samples revealed that C18:1 TFAs comprised EA and 
VA. However, the properties of other isomers, excluding EA and VA, 
have not been precisely confirmed, necessitating further research.

Method validation of EA and VA analysis 
using GC  ×  GC-TOFMS with SIC treatment

Analytical validation holds principal importance, establishing 
scientific evidence that an analytical procedure produces reliable 

results (29). Analytical methods, crucial for ensuring product quality 
characteristics, gains validity through a proper validation process. This 
involves a formal, systematic, and well-documented assessment of the 
analytical method’s capability to provide accurate, reliable, and 
reproducible results.

To validate the proposed GCxGC-TOFMS method, various 
parameters, including linearity, LOD, LOQ, precision, and 
recovery, were considered and evaluated. Linearity and range 
standards were serially diluted to obtain five concentration levels. 
The correlation coefficients of the regression lines of each TFA 
standard were 0.9997 for EA and 0.9993 for VA. Method sensitivity 
was assessed by the LOD and LOQ, with EA LOD and LOQ at 2.20 
and 4.38 μg/mL, respectively, and VA LOD and LOQ at 6.66 and 
13.27 μg/mL, respectively (Table 2).

Method precision was evaluated by repeatability and 
reproducibility. The intra- and inter-day precision were 
assessed using EA and VA results in the four samples, revealing 
RSD values for intra-day precision ranging from 1.8 to 8.9%, 
and inter-day precision ranging from 3.9 to 8.1%. The validation 
data demonstrated precision below 20% for all the tested 
samples, indicating excellent method performance across the 
entire calibration range (30). To analyze recovery rates, EA 
and VA were spiked into margarine, butter, cheese, and ice cream. 
The recovery rate of EA ranged from 91.1 to 98.4%, while VA 
ranged from 91.5 to 102.6%. Detailed results are summarized in 
Table 3.

FIGURE 1

The effect of SIC treatment for removing cis-FA by GC-FID and GC  ×  GC-FID.
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Effect of SIC treatment on VA and EA 
contents

Table 4 presents the results related to the total fat, TFAs, VA and 
EA contents of margarine, butter, cheeses, and ice creams. The total 
fat content varied from 8.0 g/100 g for ice cream to 99.8 g/100 g for 
margarine. TFA contents ranged from 1753.7 mg/100 g cheese (SIC 
treated) to 17314.3 mg/100 g margarine (SIC treated). In the case of 
margarine, TFAs decreased by 2.2% from 17314.3 mg/100 g to 

16940.5 mg/100 g due to SIC treatment. With SIC treatment, similar 
reduction of 9.9 and 5.3% were observed in butter and cheese, both 
derived from natural milk. Ice cream, categorized into two groups 
based on nutrition facts (group 1 with added hydrogenated fat and 
group 2 with natural milk fat), showed a 3.8% decrease in TFAs in 
group 1 and a 9.0% decrease in group 2 with SIC treatment.

The analysis of VA and EA, major components of C18:1 TFAs, can 
be affected by cis-FAs due to overlapped elution. Despite the 163°C GC 
temperature regimen with SIC treatment facilitating the detection of 

FIGURE 3

The standard chromatogram and contour plot of EA and VA by GC  ×  GC-TOFMS.

FIGURE 2

The effect of SIC treatment by GC  ×  GC-TOFMS. (A): butter, (B): butter with SIC treatment, (C): margarine, and (D): margarine with SIC treatment.
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15 t-18:1, effective differentiation between the 6 t/7 t/8 t- to 11 t-18:1 
isomers remained challenging (17). While GC–MS is an effective method 
for determining fatty acid structures, its application in the analysis of TFAs 
isomers is limited due to potential isomerization under high electron 
impact energy (31).

In this study, SIC fractionation for the removal of cis-FAs from mixed 
fats was evaluated to enhance the determination of VA and EA contents 
in margarine, butter, cheeses, and ice creams using GCxGC-TOFMS 
(Table  4). SIC treatment increased the the VA contents of TFAs in 
margarine by 5.8% and EA contents 1.9%. The VA contents of butter and 
cheese increased by 51.4 and 27.6%, respectively, while EA contents 
decreased to 38.9 and 44.7%. As a result of SIC treatment of ice cream 
group 1, VA contents increased by 23.9% and EA decreased by 33.6%. In 
group 2, VA contents increased by 8.4% and EA decreased by 42.0%. 
Overall, SIC treatment resulted in an increase in the proportion of VA in 
TFA but showed a decrease in EA. Further studies are needed to verify 
this tendency.

Characteristics of the V/E ratio in margarine, 
butter, cheese, and ice cream

As indicated in the previous report (14), the ratio of VA to EA (V/E 
ratio) is considered an important parameter for evaluating food. In this 
study, we examined individual TFAs in commonly available market foods 
such as margarine, butter, cheese and ice cream (25). The proportions of 
the VA and EA in the margarine, butter, cheese and ice cream, are 
reported in Table 5. For untreated SIC, the V/E ratios were as follows: 
margarine 1.00, butter 2.94, cheese 3.36, and ice cream 2.02 to 4.03. Based 
on the reported distribution profile of isomeric trans-C18:1, the 
concentrations of EA and VA in margarine were 23.7 and 13.4%, 
respectively (32), estimating a V/E ratio of be 0.57. However, for the 
butter, the concentrations of EA and VA were 1.04 and 4.37%, respectively 
(16), estimating V/E ratio to be 4.20. Ground beef showed EA and VA 
concentrations ranging from 0.23 to 0.24% and from 1.09 to 1.13%, 
respectively (25), estimating V/E ratio to ranging from 4.54 to 4.91. In 

TABLE 2 Linearity, limits of detection (LOD), and limits of quantification (LOQ) of elaidic acid (EA) and vaccenic acid (VA).

Analytes Linear range (μg/
mL)

Correlation coefficient (R) LOD (μg/mL) LOQ (μg/mL)

EA 1.0–100.0 0.9997 2.20 6.66

VA 1.0–100.0 0.9993 4.38 13.27

TABLE 3 Method validation of precision and accuracy.

Analytes Linear range (μg/
mL)

Intra-assay RSDa 
(%) (n  =  3)

Inter-assay RSD 
(%) (n  =  9)

Recovery (%)

Margarine Elaidic acid 3.3 4.7 92.7 ± 5.5

Vaccenic acid 4.2 4.5 97.2 ± 5.1

Butter Elaidic acid 5.0 3.9 93.4 ± 5.0

Vaccenic acid 8.9 7.0 100.1 ± 2.4

Cheese Elaidic acid 8.6 5.2 91.1 ± 2.5

Vaccenic acid 4.3 6.1 91.5 ± 3.1

Ice cream Elaidic acid 1.8 4.1 98.4. ± 4.8

Vaccenic acid 2.1 8.1 102.6 ± 3.8

aRSD: relative standard deviation.

TABLE 4 Variation of total fat, trans fatty acids (TFAs), VA, and EA contents by SIC treatment.

Analytes Total fat 
(g/100  g)

SIC TFAs (mg/100  g) VA (mg/100  g) EA (mg/100  g)

Margarine (n = 3) 99.8 Untreated 17314.3 ± 714.2 5459.4 ± 141.1 5453.9 ± 175.5

Treated 16940.5 ± 1055.6 5777.5 ± 298.2 5555.4 ± 253.2

Butter (n = 3) 90.5 Untreated 3164.0 ± 152.3 1263.1 ± 48.0 429.6 ± 15.4

Treated 2879.1 ± 111.8 1912.3 ± 59.3 262.5 ± 8.1

Cheese (n = 7) 32.2 Untreated 1846.6 ± 152.7 820.4 ± 64.2 244.2 ± 14.3

Treated 1753.7 ± 59.6 1046.5 ± 30.0 135.0 ± 3.4

Ice cream (n = 11) Ha 8.0 Untreated 3522.5 ± 504.9 1394.6 ± 211.6 690.4 ± 115.4

Treated 3202.1 ± 411.5 1665.9 ± 200.3 425.0 ± 54.4

Ice cream (n = 6) Nb 13.9 Untreated 2837.8 ± 253.8 1407.0 ± 132.1 349.1 ± 21.1

Treated 2511.1 ± 200.4 1525.0 ± 124.4 202.6 ± 16.6

aAdded hydrogenated fat to milk fat.
bOnly natural milk fat.
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cheese, EA and VA concentrations ranged from 0.34 to 0.35% and 3.64 to 
3.71% (33), respectively estimating the V/E ratios of 10.41 and 10.60, 
respectively. These proportions align well with those reported in the 
literature (14), supporting the use of V/E ratios for discriminating of 
natural and hydrogenated TFAs.

On the other hand, for treated SIC, the V/E ratios were 1.04, 7.28, 7.75 
and 3.92–7.53 for margarine, butter, cheese, and ice cream, respectively 
(Table 5). Cis-FAs removal using SIC treatment resulted in decreased 
amounts of trans-C18:1 and other isomers and increased VA, particularly 
11 t2 and 11 t3, as shown in Figure 2. Thus, accurate estimation of V/E 
ratio requires the removal of cis-FAs from the test samples.

Table  5 presents the V/E ratios for two groups of ice cream 
treated with SIC. Margarine exhibited a V/E ratio of about 1.04, while 
cheese and butter had ratios of at least 7.2. Ice cream group 1 had a 
V/E ratio of 3.92, and the ice cream group 2 had a ratio of 7.53. A 
lower V/E ratio in some ice cream may indicate the addition of the 
hydrogenated fat. Therefore, ice cream group 1 appears to contain 
both natural and hydrogenated TFAs. The V/E ratio serves as a 
valuable tool for deducing the hydrogenated fat content in ice cream. 
VA, with its demonstrated bioactive properties commonly found in 
ruminant fats, can help discern between products using N-TFAs and 
those using H-TFAs or mixtures. The application of this methodology 
to processed foods enables the determination of added fats as natural 
TFAs, hydrogenated TFAs, or a combination, allowing for 
product differentiation.

Conclusion

In this study, a new method was developed by applying a SIC SPE 
method for cis-FAs removing so that accurate measurement of V/E ratios 
in food could be determined. The difference between V/E ratios applied 
with and without SIC was measured. Cis-FAs removal did not affect the 
analytical ratio of total TFAs, but it did affect the ratio of VA to EA. The 
accurate V/E ratio suggested in this study could be useful as scientific 
evidence and basic theory for evaluating new quality parameters of dairy 
and fatty foods. However, we  have not yet precisely confirmed the 
properties of other TFA isomers excluding EA and VA, and further 
research is needed.
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