AUTHOR=Capeding Maria Rosario Z. , Phee Loudhie Cyd M. , Ming Chang , Noti Mario , Vidal Karine , Le Carrou Gilles , Frézal A. , Moll Janne Marie , Vogt Josef Korbinian , Myers Pernille Neve , Nielsen Bjørn Henrik , Boulangé Claire L. , Samuel Tinu Mary , Berger Bernard , Cercamondi Colin Ivano TITLE=Safety, efficacy, and impact on gut microbial ecology of a Bifidobacterium longum subspecies infantis LMG11588 supplementation in healthy term infants: a randomized, double-blind, controlled trial in the Philippines JOURNAL=Frontiers in Nutrition VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/nutrition/articles/10.3389/fnut.2023.1319873 DOI=10.3389/fnut.2023.1319873 ISSN=2296-861X ABSTRACT=Introduction

Bifidobacterium longum subspecies infantis (B. infantis) may play a key role in infant gut development. This trial evaluated safety, tolerability, and efficacy of B. infantis LMG11588 supplementation.

Methods

This randomized, placebo-controlled, double-blind study conducted in the Philippines included healthy breastfed and/or formula-fed infants (14–21 days old) randomized for 8 weeks to a control group (CG; n = 77), or any of two B. infantis experimental groups (EGs): low (Lo-EG; 1*108 CFU/day; n = 75) or high dose (Hi-EG; 1.8*1010 CFU/day; n = 76). Primary endpoint was weight gain; secondary endpoints included stooling patterns, gastrointestinal symptoms, adverse events, fecal microbiome, biomarkers, pH, and organic acids.

Results

Non-inferiority in weight gain was demonstrated for Hi-EG and Lo-EG vs. CG. Overall, probiotic supplementation promoted mushy-soft stools, fewer regurgitation episodes, and increased fecal acetate production, which was more pronounced in the exclusively breastfed infants (EBF) and positively correlated with B. infantis abundance. In EBF, fecal pro-inflammatory cytokines (IL-1 beta, IL-8) were reduced. Strain-level metagenomic analysis allowed attributing the increased abundance of B. infantis in EGs versus CG, to LMG11588 probiotic colonization. Colonization by autochthonous B. infantis strains was similar between groups.

Discussion

B. infantis LMG11588 supplementation was associated with normal infant growth, was safe and well-tolerated and promoted a Bifidobacterium-rich microbiota driven by B. infantis LMG11588 colonization without disturbing the natural dispersal of autochthonous B. infantis strains. In EBF, supplementation stimulated microbial metabolic activity and beneficially modulated enteric inflammation.