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Promoting sustainability in food and nutrition systems is essential to address the 
various challenges and trade-offs within the current food system. This imperative 
is guided by key principles and actionable steps, including enhancing productivity 
and efficiency, reducing waste, adopting sustainable agricultural practices, 
improving economic growth and livelihoods, and enhancing resilience at various 
levels. However, in order to change the current food consumption patterns of the 
world and move toward sustainable diets, as well as increase productivity in the 
food production chain, it is necessary to employ the findings and achievements 
of other sciences. These include the use of artificial intelligence-based 
technologies. Presented here is a narrative review of possible applications of 
artificial intelligence in the food production chain that could increase productivity 
and sustainability. In this study, the most significant roles that artificial intelligence 
can play in enhancing the productivity and sustainability of the food and nutrition 
system have been examined in terms of production, processing, distribution, and 
food consumption. The research revealed that artificial intelligence, a branch of 
computer science that uses intelligent machines to perform tasks that require 
human intelligence, can significantly contribute to sustainable food security. 
Patterns of production, transportation, supply chain, marketing, and food-related 
applications can all benefit from artificial intelligence. As this review of successful 
experiences indicates, artificial intelligence, machine learning, and big data are 
a boon to the goal of sustainable food security as they enable us to achieve our 
goals more efficiently.
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1. Introduction

The food system comprises production, processing, distribution and storage, food 
procurement, consumption, and waste (1). Food production and consumption will undergo 
significant changes in the next 30 years due to the growth of the global population by (8.5–10 
billion in 2050) and other socio-economic developments (2, 3). Evidence shows that the food 
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system can contribute significantly to climate change through 
excessive nitrogen and phosphorus inputs, using water sources, and 
greenhouse gas (GHG) emissions (3). GHG emissions are projected 
to increase by 87% from 2010 to 2050; also the demand for cropland 
use will rise by 67%, phosphorus application by 54%, and nitrogen 
application by 51% (3). Based on these changes, it is expected that the 
food systems’ environmental pressures will increase by about 50–90% 
in the absence of technological advancements and other mitigation 
measures (3). Thus, to achieve food security and sustainability, 
we must alter the current food system and consumption patterns.

Food security concerns and global warming have led to an interest 
in sustainable diets because of the solid environmental impact of diets 
(4). Therefore, to achieve food security, it is necessary to increase 
production sustainably. When considered in the context of sustainable 
food systems and a sustainable diet, the change in the food system may 
be feasible (5, 6). In the FAO’s definition, sustainable diets contribute 
to food security, nutrition, and health for present and future 
generations by being environmentally friendly. As well as being 
nutritionally adequate, safe, and healthy, a sustainable diet protects 
and respects biodiversity and ecosystems while optimizing natural and 
human resources (7).

Growing productivity at different stages of the production chain 
up to food consumption seems to contribute to the sustainability of 
the food and nutrition system, which ultimately leads to sustainable 
food security (8). Nevertheless, the question is, how can this 
be achieved? One solution could use artificial intelligence (AI). In its 
simplest form, AI is a technological branch of science that combines 
computer science with robust datasets to solve problems. AI initially 
was referred to as an ultimate goal and its related background science 
to address making machines as intelligent as humans are. Although 
helpful, this idea has evolved over the last decades. This is because not 
all our goals in building intelligent computation are to have them as 
smart as a human is, having all of a human’s limitations. In this regard, 
we need to identify our target application (9). AI allows identifying 
gaps across the food system to set a sustainable strategy (10). As well 
as the food system, AI is used in various fields, including medicine, 
healthcare, and nutrition. Therefore, AI can lead to positive outcomes, 
including monitoring the complete supply chain process, predicting 
disease risk, designing personalized nutrition decisions, and 
improving health (11–16). Herein, we review the current status of AI 
in the food system, nutrition, and health concerning improving the 
efficiency and sustainability of diets.

2. How AI relates to the food supply

AI, as a powerful tool for data analysis in food production, enables 
effective monitoring of the entire supply chain process. Machine 
learning (ML) and deep learning are widely used AI techniques (17). 
ML technologies are used in the preproduction, production, and 
processing phases and could also find applications in the distribution 
cluster, especially in storage, transportation, and analysis of consumer 
behavior (16). This utilization of AI technology not only facilitates 
more informed decision-making in the management of farm systems 
but also acts as a catalyst for the advancement of decision support and 
recommender systems (18). Following the content presented by 
Ahmed et al. (1), it is imperative to delineate the food system supply 
as a multifaceted entity encompassing several integral components. 

These components collectively make up the entire food system and 
involve production, processing, distribution, storage, food 
procurement, consumption, and waste management.

In the scope of our research study, we have elected to categorize 
and examine these components under three overarching sections: 
food production and processing, food distribution and consumption, 
and food waste management.

2.1. Food production and processing

The first stage of the agriculture supply chain is the preproduction 
phase, which pertains to crop yield, soil characteristics, and irrigation 
needs. ML algorithms use input data, such as equipment needs, 
nutrients, and fertilizers, to aid stakeholders and farmers in predicting 
crop yields and enhancing smart farming techniques (16).

Numerous studies have concluded that machine learning (ML) 
algorithms play a vital role in soil management techniques. These 
studies showed the effectiveness of ML methods in predicting critical 
soil parameters such as moisture content, organic carbon levels, and 
total nitrogen (19). Additionally, ML algorithms, when integrated into 
smart irrigation systems, have proven valuable for optimizing 
irrigation practices, enhancing crop quality and quantity, and 
effectively managing drought situations (20, 21).

Smart farms utilize an automated irrigation system that monitors 
and controls water tanks and open irrigation systems and chamber 
irrigation systems to optimize water resources (22). Using AI in crop 
management begins with the sowing of the crop and continues 
through the monitoring of its growth, harvesting, storage, and 
distribution. Several applications of AI are being used in farming, 
including crop health management, automation of farming operations 
(23), and demand-driven supply chains (24). Using AI helped resolve 
crop selection issues and improve net yields over the season (25).

In the agricultural supply chain, the production phase is crucial. 
Evaluating AI implementation in agriculture, including weather 
prediction, soil analysis, disease and pest control, crop quality 
management, and harvest optimization, is essential. There are many 
ML algorithm models for weather prediction (26), crop protection 
(27), weed detection (28), crop quality management (29), and 
harvesting (30).

Having a thorough comprehension of weather patterns aids in 
making informed decisions, leading to increased crop yields of 
superior quality (31). To efficiently manage and prevent diseases, 
farmers can implement an integrated disease control and management 
approach that comprises physical, chemical, and biological measures, 
with the help of AI technology (31, 32).

AI-powered systems and deep learning algorithms are utilized to 
analyze the information or data gathered by AI agents, facilitating the 
monitoring of crop and soil health (33, 34). For example, an artificial 
neural network (ANN) model predicts soil texture using hydrographic 
data derived from a digital elevation model (DEM), including 
sediment delivery ratio, terrain factor, and slope position (35).

AI and image processing have made significant strides in 
addressing the challenge of weed identification, as demonstrated in 
studies (36–38). These previous studies conclude AI models, 
particularly Support Vector Machines (SVM), are effective in 
determining optimal nitrogen application rates and excel at early 
stress identification during crop growth, highlighting SVM’s potential 
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for enhancing crop yield with timely interventions (38). Additionally, 
one study underscores the economic significance of mitigating weed-
related profit and yield reductions (39) and highlights the role of AI 
and ML in addressing spatial heterogeneity and its impact on crop 
yield (40, 41).

Research findings suggest that the use of AI-based technologies 
in agriculture and food production could have a positive impact on 
the environment (42–44). For instance, by 2030, these technologies 
might increase crop yields by up to 30%, save over 300 billion liters 
of water, and reduce annual oil consumption by 25 million 
barrels (45).

The third stage in the food supply chain is the processing cluster, 
encompassing a range of techniques, such as heating, cooling, milling, 
smoking, cooking, and drying for agricultural products. By employing 
a set of efficient parameters during this stage, it is possible to produce 
food products of high quality and quantity while minimizing 
resource usage.

Modern food processing technologies based on ML were 
supported by SVM and ANN models to identify the existence of 
nitrosamine in food samples of red meat (46). Additionally, 
AI-powered robots for harvesting cucumbers have been developed, 
featuring computer vision systems and hardware components like an 
autonomous vehicle, a manipulator, and an end-effector, which can 
detect and image the ripeness of cucumbers with a high level of 
accuracy (47). Furthermore, AI has showed its effectiveness in 
improving the drying process of fresh foods, fruits, and vegetables 
using physical fields like microwave, radio frequency, infrared 
radiation, and ultrasonic fields (48). For example, online detection and 
control of the drying process using AI helps reduce energy 
consumption, prevent uneven drying, improve sensory evaluation, 
and reduce nutrient loss (49).

2.2. Food distribution and consumption

In the distribution phase of the agriculture supply chain, the 
emphasis is on delivering safe, high-quality food to consumers. ML 
algorithms aid in tasks like inventory management, transportation, 
storage, and consumer analytics to minimize damage and uphold food 
quality (16). AI enables product tracing and safety assurance, 
optimizing supply chain management, and facilitating food safety 
testing and monitoring at every stage (50).

The importance of food safety cannot be overstated, and one way 
to achieve this is by using various methods, such as Image Processing 
(IP) to classify, identify, and recognize the quality of food products. IP 
systems utilize ultrasound, X-ray, near-infrared spectroscopy, and 
document scanners to analyze the size, shape, and texture of the 
product (51). This approach can also apply to product packaging to 
detect defects and grade quality (52, 53). In the realm of sustainable 
food systems, the application of AI has brought significant 
advancements, particularly in the areas of food grading and quality 
control within the food industry. Food grading, a crucial process for 
evaluating food product quality and safety, relies on predefined 
standards encompassing parameters such as size, shape, color, texture, 
flavor, freshness, and freedom from defects. AI technologies, 
encompassing computer vision, machine learning, and robotics, have 
helped to automate and enhancing this process. By enabling real-time 
inspection, classification, and sorting of food products, AI minimizes 

human errors, reduces labor costs, curbs wastage, and concurrently 
boosts productivity, profitability, and customer satisfaction (54–56).

Quality control, another indispensable facet of the food industry, 
revolves around the meticulous assurance that food products meet the 
exacting standards and safety requisites set by both customers and 
regulatory bodies. AI plays a pivotal role in elevating the precision and 
efficiency of this process. Leveraging machine learning, natural 
language processing, and predictive analytics, AI seamlessly 
aggregates, analyzes, and interprets voluminous data from diverse 
sources, including sensors, cameras, reports, feedback, and alerts. This 
data-driven approach proactively identifies potential issues and risks 
before they escalate, optimizes operational processes, bolsters 
transparency and traceability, and empowers data-informed decision-
making (57, 58). The insights garnered from AI-driven analysis not 
only ensure optimal feeding and harvesting, but also underscore the 
critical role AI plays in enhancing the sustainability and efficiency of 
food systems (58).

The assessment of dietary intake relies heavily on nutritional data 
sourced from food composition tables or databases, which is a crucial 
aspect of evaluating the nutritional value of food. However, given the 
ever-expanding variety of food products and the rapid evolution of the 
food supply chain, traditional methods are struggling to keep pace in 
maintaining up-to-date food composition databases (59). As big data 
techniques are increasingly used by various fields in non-profits, 
science, business, and government to collect, store, process, and 
analyze data, this section introduces the AI approach to managing and 
evaluating food composition and food labels (60, 61).

Within the domain of sustainable food systems, the role of AI in 
food composition analysis and food labeling is paramount. Food 
composition analysis entails the intricate task of discerning the 
nutritional and chemical attributes of food products, encompassing 
crucial elements such as protein, fat, carbohydrates, vitamins, 
minerals, and antioxidants. AI is instrumental in automating and 
optimizing this process by employing innovative techniques like 
computer vision, spectroscopy, and machine learning to scrutinize 
food images or spectra, extracting pertinent information. This not 
only streamlines the process but also ensures the delivery of precise 
and dependable data that proves invaluable to consumers, producers, 
regulators, and researchers (44). In the broader context of sustainable 
food systems, AI’s contribution supports the development of healthier 
and more diversified dietary choices. For instance, an examination 
conducted by Liu et al. (62) underscored the potential of AI in food 
composition analysis, revealing its capacity to enhance the accuracy, 
efficiency, and resilience of these analytical methodologies, thus 
further reinforcing its pivotal role in this arena.

Continuing from the discussion of AI’s role in food composition 
analysis and its broader impact on sustainable food systems, it is 
noteworthy that exemplary projects like the Food Label Information 
Program (FLIP) 2020 highlight the practical application of artificial 
intelligence in developing comprehensive food composition databases. 
FLIP 2020, conducted in three phases between May 2020 and February 
2021, focused on collecting data from Canadian food and beverage 
package labels offered by major e-grocery retailers. This data collection 
utilized Python-based website scraping and Optical Character 
Recognition (OCR) enhanced by AI. The project demonstrated the 
ability to autonomously collect data from online markets, leading to 
the development of a precise, transparent, detailed, and adaptable food 
composition database. This database is essential for monitoring the 
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constantly changing food and beverage industry landscape (59). This 
practical example thus underlines the pivotal role AI plays in ensuring 
the integrity and accessibility of data crucial for the sustainability and 
transparency of food systems.

Another study explored the Michigan State University 
Environmental Science and Policy Program Annual Survey (2019) 
data to examine eight labels relating to food production techniques 
and customer preferences (63). Besides the statistical model, an ML 
analysis was conducted on raw input datasheets. This study utilized 
four ML predictive models, including logistic regression, SVM, 
random forest, and neural networks to prepare, verify, and test 
participants’ expected propensity to purchase or pay more for labeled 
products. According to this study, the label “raised without antibiotics” 
was associated with the highest average accuracy of the SVM learning 
model for predicting consumer willingness to buy. Furthermore, ML 
models offered an acceptable average prediction accuracy score for 
eight labels, introducing a new method for assessing data from food 
labeling surveys (63).

Over time, nutrition research has developed various classical 
dietary assessment methods; however, some challenges have remained 
(64). These methods are difficult to apply because they are paper-
dependent, subjective, time-consuming, and prone to systematic 
errors (65, 66). Innovative dietary assessment tools based on AI that 
utilize different sensors, software, or image/voice-based approaches 
have improved health outcomes in line with technological 
advancements (11–15). As nutrition is among the healthcare fields 
that are increasingly benefiting from these new computational 
techniques, mainly because of the significant amount and complexity 
of data generated in nutrition research, these ML functions potentially 
apply. For example, researchers developed a sound-based recognition 
system that analyzed acoustic variables using an ear-pad gadget with 
a tiny microphone inside that measured the weights of bites of apple, 
mixed salad, and potato chips, with 94 percent accuracy (67). 
Speech2Health is another example of a voice-based mobile nutrition 
monitoring system that applies speech processing, natural language 
processing (NLP), and text mining techniques on a single platform to 
promote nutrition monitoring (68). The results of the experimental 
study indicated that Speech2Health had an accuracy of over 90% in 
computing calorie intake (68). In another study, Mertes et al. (69) 
presented a standalone plate system capable of measuring the weight 
and location of bites during unrestricted eating by utilizing a 
supervised learning method. This system correctly identified 602 bites 
out of 836 actual bites with a precision of 0.78 and a recall of 0.76.

Another illustrative example is the Snap-n-eat application, which 
utilizes an SVM classifier to recognize food items and assess nutrient 
and energy intake from photos taken on a mobile device (70). Users 
photograph their food, and the system isolates the relevant portion, 
discarding the background. A linear SVM classifier analyzes these 
sections, using features from various locations and scales to identify 
the food. This process culminates in portion size determination and 
estimation of the food’s caloric and nutritional content (70).

The eButton, a tiny computer with a camera integrated into a 
6-centimeter button worn on the chest, was another significant image-
based device (71). As the eButton is pinned in this location, it can 
access data from the external environment and the internal space of 
the body as it is very close to the heart and lungs. At a predetermined 
rate, the eButton snaps pictures, for example, one photo every two 
seconds while a meal is consumed. In theory, the images can 

be analyzed by an algorithm to determine the food item and portion 
size based on color, texture, plate shape, and eating utensils. Therefore, 
the calories and nutrients can be  derived from a linked dietary 
database by providing information on the food item and serving 
size (71).

Advanced computing plays a vital role in clinical nutrition, 
complementing nutritional epidemiology. Clinical data in this field aid 
in predicting disease risk, conducting outcome-based research, and 
personalizing decisions. For example, researchers used a multivariable 
logistic regression model combined with machine learning to assess 
adverse pregnancy outcomes in over 7,500 pregnant women based on 
fruit and vegetable consumption. Surprisingly, the ML model revealed 
a reduced risk of preterm birth, small-for-gestational-age birth, and 
preeclampsia in those who consumed the most fruits and vegetables, 
contrary to expectations (72).

Berry et  al. (73) aimed to predict the postprandial values of 
glucose and triglycerides (TG) in over 1,000 healthy adults in the 
United Kingdom using an ML model. Researchers used a random 
forest model to predict postprandial TG and glucose based on relevant 
information (such as meal composition to microbiome and 
biochemical parameters). The model predictions for TG and glucose 
rise were r = 0.42 and r = 0.75, respectively (73).

In a study investigating colorectal cancer prediction, researchers 
examined the interplay of diet, genetics, and related factors using the 
healthy eating index (HEI) on 53 colorectal cancer patients and 53 
family/friend pairs (74). They employed various techniques, including 
data visualization, identifying familial dependencies, ensemble 
methods for variable importance, for predictive modeling. Shiao et al. 
(74) concluded that genetic polymorphisms in folate metabolism and 
dietary factors could predict colorectal cancer. This suggests 
individuals with such single nucleotide polymorphisms (SNPs) may 
consider dietary adjustments based on this study to mitigate disease 
risk (74).

2.3. Food waste management

Approximately 1,300 million tons of food are discarded annually. 
It is estimated that 25% of this food can feed the 795 million 
malnourished people around the world (75). Sustainable food 
production and consumption present formidable challenges across the 
food supply and distribution systems. Addressing these challenges is 
possible through the innovative integration of AI, offering a novel 
approach to curb food waste at various stages of the food cycle. AI 
emerges as the tool of choice in tackling food security issues, 
simplifying tasks from weather prediction to curbing food 
waste accumulation.

Khan et  al. (76) introduced an innovative waste management 
system using ultrasonic and moisture sensors on trash bins. These 
sensors detect fill levels and moisture content, with data processed by 
an Arduino and uploaded to an online dataset. Drivers can access a 
mobile app to locate nearby trash containers and check their status 
(full/empty, wet/dry), optimizing garbage collection. This system 
enhances environmental friendliness by categorizing waste and 
predicting site-specific waste levels through image processing. Waste-
collection vehicles prioritize their routes, saving time. However, 
implementation costs are a challenge for governments, though long-
term cost-effectiveness is expected (76).
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As an additional example, Amani and Sarkodie (77) introduced 
a deep learning-based method for detecting spoiled meat, a 
significant contributor to food waste and greenhouse gas emissions. 
Traditional meat supply chain management methods, prevalent in 
many developing countries, rely on manual monitoring and 
non-intelligent systems, which are prone to human error. Detecting 
spoiled meat in time is crucial to reducing waste and preventing the 
spread of bacteria. AI, powered by deep learning and image 
processing, rapidly identifies and separates rotten meat from fresh 
meat. By training on various meat images, these AI systems become 
adept at detecting spoilage (77).

Faezirad et  al. (78) introduced a novel model utilizing ML to 
combat food waste, particularly in university settings in Tehran, Iran. 
The reservation system, used to estimate food demand, sometimes led 
to unexplained meal waste. To address this, a more stable demand 
prediction mechanism was essential. Their approach involved 
integrating an ML model with the reservation system, considering 
many factors impacting student demand: day of the week, consecutive 
holidays, food attributes (price and name), reservations categorized 
by academic degree and accommodation, and attendance history. 

Individual factors such as academic level, housing, and dining hall 
participation were also included. By applying this integrated model, 
food waste was reduced by a remarkable 79% (78).

3. Discussion

According to the results of our research, AI has had a significant 
impact on different phases of the agriculture supply chain, including 
food procurement, consumption, and waste management. As shown 
in Table 1, it plays a crucial role in improving crop quality, health, 
and yield forecasting, as well as optimizing agricultural product 
processing to avoid overutilization of resources. AI is highly 
developed for assessing food security, quality, and safety, aided by 
advancements in nanotechnology and biotechnology. In food 
labeling and procurement, AI helps build comprehensive food 
composition databases. Innovative AI-based dietary assessment 
tools improve health outcomes by computing calorie intake and 
portion sizes. AI-driven waste management technologies, like 
Ultrasonic sensors and ML, enhance garbage collection safety and 

TABLE 1 Key AI applications for enhancing sustainability in the food and nutrition system.

How AI relates to sustainable food systems?

 • Improving crop health and biodiversity » reduce the use of chemical pesticides and fertilizers, enhance carbon sequestration, and protect wildlife habitats

 • Automating farming operations and optimizing supply chains » reduce labor costs, food waste, greenhouse gas emissions, and transportation distances

 • Developing alternative and innovative food products » reduce the environmental impact of animal agriculture, such as land use, water use, and methane emissions

Section Main points

Food production and 

processing

 • In preproduction, AI aids in crop yield prediction, soil management optimization, and the advancement of intelligent irrigation systems.

 • Within the production phase, AI encompasses crop health monitoring, farm operation automation, weather forecasting, disease and pest control, 

weed detection, crop quality management, and harvesting optimization.

 • The implementation of AI in agriculture carries the potential for positive environmental impacts, including increased crop yields, efficient water 

resource utilization, and reduced fuel consumption.

Food distribution 

and consumption

 • AI is employed to ensure food safety, traceability, quality control, and effective inventory management.

 • In the consumption phase, AI is utilized to analyze consumer preferences, behavior, and feedback, which helps businesses to improve their products 

and services.

 • AI is deployed to collect and update food composition databases, using advanced techniques such as web scraping and optical character recognition.

 • AI is utilized to assess the impact of food labeling on customer choices.

 • The use of AI in the food industry has made a significant impact, providing businesses with an effective tool to manage inventory and enhance 

customer satisfaction.

Food assessment and 

clinical nutrition

 • AI is harnessed for dietary intake assessment via sensor technology, software applications, and image/voice-based methods.

 • AI mitigates limitations associated with traditional dietary assessment techniques, such as reliance on paper-based records, subjectivity in 

evaluations, time-intensive processes, and potential systematic errors.

 • AI contributes to disease risk prediction, outcome-driven research, and the customization of nutrition guidance through the utilization of 

clinical data.

 • AI is instrumental in the analysis of post-meal glucose and triglyceride levels, employing a sophisticated random forest model.

Food waste 

management

 • AI is deployed in food waste reduction initiatives across different stages of the food cycle, using technologies such as sensors, image processing, 

deep learning, and ML techniques.

 • AI contributes to the detection of spoiled meat, the optimization of waste collection routes, categorization of waste types, and the forecasting of food 

demand dynamics.

 • AI has the potential to yield environmentally positive effects, including the reduction of greenhouse gas emissions, the preservation of limited 

landfill capacity, and the mitigation of food scarcity concerns.
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detect meat spoilage. Overall, AI technologies are vital for enhancing 
the food supply chain, raising productivity, promoting health, and 
efficient waste management.

Enhancing productivity within the food and nutrition system is 
an imperative step toward achieving sustainability on multiple 
fronts. The contemporary global food landscape faces formidable 
challenges, including a growing population, increased demand for 
diverse diets, resource limitations, and environmental concerns. In 
this context, the need to produce more food with fewer resources 
while minimizing negative impacts becomes clear (2, 4). 
Additionally, advancing sustainability in food and nutrition systems 
is crucial to addressing a variety of challenges and trade-offs within 
the existing food system. This imperative is underlined by several 
key principles and actionable steps: (1) Enhancing productivity, 
employment, and value in food systems through innovation and 
efficiency; (2) Reducing waste and adopting sustainable agricultural 
practices to safeguard natural resources; (3) Improving economic 
growth and livelihoods, including fair income and social protection; 
and (4) Enhancing individual, community, and ecosystem resilience, 
including disaster risk reduction and climate adaptation. By 
advancing sustainability, multiple benefits can be  achieved, 
benefiting human health, the environment, and society. As a result 
of this approach, we can meet the nutritional needs of all people 
without compromising the planet’s health or the well-being of future 
generations (79–81). As discussed in the following section, AI 
technologies play a crucial role in achieving these sustainability 
principles and improving our capacity to address food system 
challenges and tradeoffs.

AI technology is a critical element of the food supply chain and is 
making its way into all aspects of the food system, offering the 
potential to create the sustainable food system we require. Considered 
a technological solution, AI is expected to enhance the efficiency and 
productivity of food and nutrition systems, playing a key role in 
achieving a sustainable food system (82). The pivotal role of AI in 
advancing food sustainability has been shown across four key 
domains: crop health and biodiversity, food insecurity, food waste, and 
food quality and safety (83). AI technologies are leveraged to promote 
sustainable farming practices, predict hunger, reduce food waste, and 
enhance food safety, offering significant benefits to human health, the 
environment, and society. For instance, through the use of machine 
learning, natural language processing, and computer vision, it’s 
possible to develop innovative food products that have less of an 
environmental impact. Specifically, plant-based or cell-based foods 
that mimic the taste, texture, and nutritional value of animal-based 
foods can help reduce the negative effects of animal agriculture, such 
as land use, water consumption, and methane emissions (84).

To effectively implement AI in food and nutrition systems, it is 
essential to take concrete actions. Governments and organizations 
should prioritize the development of pragmatic strategies for 
seamlessly integrating AI throughout the entire food supply chain, 
from preproduction to consumption. As AI technology continues its 
evolution, it has the potential to make significant contributions to the 
creation of sustainable diets. Given the dynamic nature of this 
technology, it is imperative to conduct ongoing research in this field 
and remain up-to-date with the latest advancements (85).

As this study emphasizes advances in AI and the food and 
nutrition system, it suggests that government officials, researchers, and 
companies are coming together at the global level to improve food 

systems’ efficiency and productivity (86). Consequently, the success of 
organizations will depend on their ability to innovate operations, 
products, and services by designing, implementing, and monitoring 
AI strategies (87).

Last but not least, the findings of this study confirm the 
importance of interdisciplinary studies between the sciences related 
to food and nutrition and other sciences, here computer sciences 
including AI technology. Integrating AI in the food and nutrition 
sector is an exciting prospect, but it also comes with its fair share of 
challenges. There are ethical, social, and practical concerns that need 
to be  addressed to ensure that the integration is successful. For 
instance, we need to make sure that AI algorithms are free from bias 
and that the data collected is secure and private. There’s a need to 
ensure that human rights are respected, and that AI adoption does not 
widen the gap between the haves and have-nots. Lastly, we need to 
beef up cybersecurity to protect against cyberattacks. All these aspects 
require careful consideration and regulation to ensure that AI 
contributes positively to the food and nutrition sector (88, 89). 
Therefore, developing a sustainable food and nutrition system, and 
creating real transformation at a larger scale, requires connections and 
uniting voices while respecting and recognizing diversity. Bringing 
together academia, society, and industry in a transdisciplinary setting 
is crucial here, as these future challenges cannot be solved by one 
alone (90).
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