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disorders and its association with
gut microbiota: animal model and
human longitudinal studies
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Jianjun Ou* and Xiaojie Zhang*

Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center

for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China

Introduction: Sulforaphane (SFN) has been found to alleviate complications linked

with several diseases by regulating gut microbiota (GM), while the e�ect of GM

on SFN for autism spectrum disorders (ASD) has not been studied. Therefore,

this study aimed to investigate the relationship between the e�ects of SFN on

childhood ASD and GM through animal model and human studies.

Methods: We evaluated the therapeutic e�ects of SFN on maternal immune

activation (MIA) induced ASD-like rat model and pediatric autism patients using

three-chamber social test and OSU Autism Rating Scale-DSM-IV (OARS-4),

respectively, with parallel GM analysis using 16SrRNA sequencing.

Results: SFN significantly improved the sni�ng times of ASD-like rats in the

three-chamber test. For human participants, the average verbal or non-verbal

communication (OSU-CO) scores of SFN group had changed significantly at the

12-wk endpoint. SFNwas safe and no serious side e�ects after taking. GM changes

were similar for both ASD-like rats and ASD patients, such as consistent changes in

order Bacillales, family Staphylococcaceae and genus Staphylococcus. Although

the gut microbiota composition was significantly altered in SFN-treated ASD-like

rats, the alteration of GM was not evident in ASD patients after 12 weeks of SFN

treatment. However, in the network analysis, we found 25 taxa correlated with

rats’ social behavior, 8 of which were associated with SFN treatment in ASD-

like rats, For ASD patients, we found 35 GM abundance alterations correlated

with improvements in ASD symptoms after SFN treatment. Moreover, family

Pasteurellaceae and genus Haemophilus were found to be associated with SFN

administration in the network analyses in both ASD-like rats and ASD patients.

Discussion: These findings suggest that SFN could provide a novel avenue for

preventing and treating ASD, and its therapeutic e�ects might be related to

gut microbiota.

KEYWORDS
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1 Introduction

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by

verbal or non-verbal expression difficulties, social difficulties, abnormal narrow interests,

and continuous repetitive movements. According to the Autism and Developmental

Disabilities Monitoring Network, the prevalence of ASD was 2.3% among children aged

Frontiers inNutrition 01 frontiersin.org

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://www.frontiersin.org/journals/nutrition#editorial-board
https://doi.org/10.3389/fnut.2023.1294057
http://crossmark.crossref.org/dialog/?doi=10.3389/fnut.2023.1294057&domain=pdf&date_stamp=2024-01-08
mailto:oujianjun@csu.edu.cn
mailto:xiaojiezhang2014@csu.edu.cn
https://doi.org/10.3389/fnut.2023.1294057
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fnut.2023.1294057/full
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2023.1294057

8 years in the US, with boys affected more frequently than girls,

3.7% (95% CI, 3.5–3.8) in boys and 0.9% (95% CI, 0.8–0.9) in

girls (1). Currently, no medications have demonstrated efficacy

for the core diagnostic symptoms of ASD (2), and behavioral

interventions remain the primary means of treatment. Therefore,

there is an urgent need to develop and research therapies that target

core symptoms.

SFN, derived from broccoli, has gained attention for its

health benefits, including its potential in treating cancer and

cardiovascular disease (3). Recently, clinical studies have shown

improvements in ASD patients treated with SFN. In a double-

blind randomized trial with young men (aged 13–27) with ASD,

SFN treatment led to significant behavioral improvements, with

a 34% decline in Aberrant Behavior Checklist scores and a 17%

decline in Social Responsiveness Scale scores (4). Similar positive

effects were observed in children and young adults (aged 3–12)

using a broccoli seed extract (5) and a randomized clinical trial

(N = 108) in China (6). However, a study of children aged 3–7

with ASD showed inconsistent results, with no significant clinical

improvement (7). Basic research studies about the mechanism

of SFN in treating ASD were focused on redox metabolism

(8), oxidative stress (9), mitochondrial dysfunction (10), immune

dysregulation, neuroinflammation (11, 12), febrile illness (13), heat

shock response (14), and synaptic dysfunction (15, 16). However,

the exact therapeutic mechanism is still unclear.

Evidence suggested a bilateral influence between ASD

and the gut microbiome (17). Individuals with ASD exhibit

distinct gut bacterial communities, with a higher abundance of

Bacteroides, Parabacteroides, Clostridium, Faecalibacterium, and

Phascolarctobacterium and a lower abundance of Coprococcus and

Bifidobacterium. (18). Some of them (Bacteroides, Parabacteroides,

Coprococcus, and Bifidobacterium) have consistent changes in

rat models of ASD (19–22). Furthermore, a recent study showed

that autism-like behavior can be transferred to germ-free mice

by transplanting fecal microbes from children with ASD (23).

Additionally, interventions targeting the gut microbiome have

shown promise in alleviating ASD symptoms. For example, oral

vancomycin resulted in short-term benefits in a small group of

children with ASD (24), and microbiota transfer therapy (MTT)

altered the gut microbiome and improved GI and behavioral

symptoms in children with ASD (25). Rat models of ASD have also

demonstrated that Bacteroides fragilis (26) and Lactobacillus reuteri

(27) could modulate gut microbiota and improve ASD-associated

behaviors. All of this evidence suggests that gut microbes might

play an important role in modulating brain function and behavior

of ASD. Moreover, SFN has been shown to alleviate complications

linked with several diseases in animal studies by modulating

the gut microbiome. For example, SFN treatment increased the

abundance of gut microbiome, such as Butyricicoccus in a mouse

model of ulcerative colitis (28, 29), normalized dysbacteriosis

bacteria in a bladder cancer mice model (30), and altered the

relative abundance of disease-associated microbial species in a

hyperuricemia rat model, particularly by increasing the abundance

of Saccharomyces, Lactobacillaceae, and Clostridiaceae and

decreasing the abundances of Bacteroides, Parasutterella, and

Alistipes (31). SFN also reduced body weight, liver inflammation,

and hepatic steatosis in high-fat diet mice by modulating the gut

microbiota (32). These studies indicated the impact of SFN on the

gut microbiome, but no studies have yet explored whether SFN can

alleviate ASD symptoms by regulating the gut microbiome.

To investigate the therapeutic effect of SFN treatment on

childhood ASD and its potential relationship with GM, we

constructed a younger age ASD animal model using MIA-induced

ASD-like rat model, evaluated the therapeutic effect of SFN, and

investigated the potential role of GM by three-chamber social

test and 16S rRNA sequencing, respectively. Meanwhile, we also

conducted a longitudinal study to investigate the therapeutic effects

of SFN on childhood ASD by recruiting patients aged 4–7 years

with ASD and to explore the potential relationship between the

therapeutic effects of SFN and GM. In summary, this study aims

to reveal the role of SFN in the treatment of ASD in children

and its potential relationship with GM through both clinical and

animal studies and to provide new insights into the treatment and

pathogenesis of ASD.

2 Materials and methods

2.1 Animal and ASD-like rat model

Sprague–Dawley rats were purchased from Hunan Silaike

Jingda Laboratory Animal, China. Animals were housed in groups

of five per cage under a regular 12-h light/dark cycle and with access

to food and water ad libitum. The rats were fed by the same type

of food and lived in the same environment. The maternal immune

activation (MIA)-induced ASD-like rat model was employed as

previously described (33, 34). Adult pregnant female Sprague-

Dawley rats were randomly divided into two groups and were

intraperitoneal injected with lipopolysaccharide (LPS; 200 µg/kg)

in saline or saline vehicle (veh, 0.9% NaCl) on gestational days

12 and 15, respectively. On postnatal day 25, the newborn male

rats were separated and on day 40 were subjected to the three-

chamber test to confirm autistic-like features (LPS modeled group:

n = 38; saline group: n = 10). Then, the LPS modeled group

and the saline group were divided into two subgroups, which

were intraperitoneal injected with SFN 20 ug/kg or vehicle control,

respectively, for another 28 days: LPS modeled group treated by

SFN (LPS-SFN): n = 19; LPS modeled group treated by saline

(LPS-NS): n = 19; saline group treated by SFN (NS-SFN): n = 5;

saline group treated by saline (NS-NS): n = 5. After the treatment,

all four groups of rats were subjected to the three-chamber test.

The Animal Users Care and Use Committee of Central South

University approved our experimental protocol, and the ethics

approval number is 20200006.

2.2 Three-chamber test

The three-chamber apparatus used in the experiment consisted

of a non-transparent plexiglass box with two transparent partitions

creating left, center, and right chambers (40 × 60 cm). Each

partition had a square opening (10 × 10 cm) in the bottom center.

A wire cage (18 cm diameter) was used as an inanimate object or

to house a stranger rat, with a water-filled bottle placed on top

to prevent the test rat from climbing. The unit and wire cups

were cleaned with 70% ethanol between each trial. In the first
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FIGURE 1

Behavioral assessment of MIA-induced ASD-like rat model before and after SFN treatment. (A) Flow diagram of experiment. (B) Sni�ng time of

MIA-induced ASD-like rats (LPS) vs. control rats (NS) in the three-chamber test before SFN or saline treatment. (C) The sni�ng times of di�erent

groups of rats in the three-chamber test (before or after the administration of saline or SFN). (D) Di�erence value in sni�ng times after-before the

administration of saline or SFN (***p < 0.001, paired Students’ t-test or unpaired Students’ t-test). Di�erence value: rats’ sni�ng times after the

administration of saline or SFN were subtracted from the same rat’s sni�ng times before the administration.

10-min session, the test rat explored the empty chambers. In the

second 10-min session, a stranger rat was placed in one of the wire

cages, and in the last 10-min session, a second stranger rat was

placed in the other wire cage (Figure 1A). The movement of the

rat was recorded by a USB webcam (LifeCam HD-6000, Microsoft)

and PC-based video capture software (WinAVI Video Capture, ZJ

Media Digital Technology). The recorded video file was further

analyzed by offline video tracking software (EthoVision XT 7.0).

The sniffing times to each wire cage were measured. We performed

two three-chamber tests on rats, the first at 40 days postnatal and

the second at 68 days postnatal, when rats were administered SFN

or saline for 28 consecutive days.

2.3 Clinical trial design

The data and stool samples of ASD patients were obtained

from previous clinical trials (6), and healthy controls were recruited

by age-matched. Eleven healthy controls and six individuals

with ASD were recruited by the Department of Psychiatry,

Second Xiangya Hospital, which is affiliated with Central South

University in Changsha, Hunan Province of China. There were

no significant differences in age between the healthy control

and ASD patients. All the recruited subjects were boys. In the

present study, we included 4- to 7-year-old children with ASD

diagnosed based on the following criteria: (1) 4- to 7-year-

old only; (2) met Diagnostic and Statistical Manual of Mental

Disorders, Fifth Edition (DSM-V) diagnostic criteria for ASD; (3)

re-confirmed using Autism Diagnostic Interview-Revised (ADI-

R) and Autism Diagnostic Observation Schedule (ADOS). The

exclusion criteria were as follows: (1) severe physical diseases (i.e.,

thyroid disease and congenital heart disease); (2) known history of

ASD-associating genetic syndromes (i.e., Fragile-X syndrome and

Down’s syndrome); (3) severe brain diseases (i.e., epilepsy and brain

trauma); (4) absence of neurodevelopmental disorders and other

psychiatric disorders as assessed by a child psychiatrist.

After screening, participants with ASD were treated by SFN for

12 weeks. We obtained fecal samples of both the healthy control

group and the ASD group at baseline (ASD-Baseline) and the

ASD group on the last day of week 12 (ASD-SFN). Guardians

of all participants received information about the protocol and

provided an informed consent form before enrollment. The study

was approved by the ethics committee of Second Xiangya Hospital

and was registered at ClinicalTrials.gov (NCT02879110).

2.4 Medication intervention, safety
measures, and behavioral outcome
measures

SFN was delivered as Avmacol R© (Nutramax Laboratories,

Inc., Edgewood, Maryland, USA) tablets which contain both

glucoraphanin and active myrosinase enzyme and are formulated

to support sulforaphane production from ≥30 µmol of

glucoraphanin per tablet. Tablets were maintained at room

temperature and checked periodically microbiologically. The dose
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of SFN was based on weight. SFN was safe and no serious side

effects after taking. Changes in the OSUAutism Rating Scale-DSM-

IV (OARS-4) were the priority primary outcome measurement.

OARS-4 consists of three domains, namely, social interaction

(OSU-SO), verbal or non-verbal communication (OSU-CO), and

repetitive or ritualistic behaviors (OSU-ST), and their average

scores stand for the total behavioral outcome (OSU-total). The

score of the ASD group was assessed at baseline and on the last day

of week 12. Refer to our previous clinical studies for specific SFN

usage, safety measures, and OARS-4 measures (6).

2.5 Fecal sample collection

Fecal samples from rats were collected uniformly after the

three-chamber test was done, while fecal samples from clinical

participants were collected before (baseline) and after 12 weeks of

SFN treatment. All fecal samples were collected into sterile tubes

and rapidly frozen with liquid nitrogen. It is stored in a refrigerator

at−80◦C until use.

2.6 DNA extraction, PCR amplification, and
16S rRNA gene sequencing

DNA was extracted from stool samples using the E.Z.N.A R©

DNA kit (Omega Bio-Tek, USA). The V3–V4 regions of the

bacteria 16S rRNA gene were amplified by polymerase chain

reaction (PCR) (98◦C for 5min, followed by 25 cycles consisting

of denaturation at 98◦C for 30 s, annealing at 53◦C for 30 s, and

extension at 72◦C for 45 s, and a final extension at 72◦C for

5min). PCR amplicons were purified using Vazyme VAHTSTM

DN A Clean Beads (Vazyme, N Nanjing, China China), quantified

using the Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen,

Carlsbad, CA, USA), and sequenced using the Illumina MiSeq

platform with MiSeq Reagent Kit v3 at Shanghai Personal

Biotechnology Co., Ltd (Shanghai, China). Purified amplicons

were pooled at equimolar concentrations and sequenced (2

× 300) on the MiSeq platform (San Diego, USA) according

to the standard protocol of Mariobio Biomedical Technologies

(Shanghai, China).

2.7 Processing of sequencing data

Quality filtering at QIIME (version 1.9.1) was followed by first

demultiplexing, using the previously used set of validation criteria:

(i) Quality fraction checks were performed with 300 bp reads at any

site to obtain an average quality fraction <20 over a 50 bp sliding

window; truncated reads <50 bp were discarded. (ii) Removal

of exact barcode matches, two nucleotide mismatches in primer

matches, and reads containing ambiguous characters. (iii) Sequence

assembly, where only sequences with overlap lengths >10 bp are

assembled based on the overlapping sequences. Reads that cannot

be assembled will be discarded.

Operational taxonomic units (OTUs) were clustered using

UPARSE (version 7.1) with a 97% cutoff threshold, 19 sequences

were identified, and chimeric sequences were removed using

UCHIME.20. For each 16S rRNA gene sequence, the SILVA

(SSU123) 16S rRNA database was analyzed for classification using

the RDP classifier21 with a 70% confidence threshold.

To improve downstream statistical analysis, we removed low-

quality or uninformative features by low count filter and low

variance filter. The cutoff threshold of low count filter was set at

10% prevalence filter which means at least 10% of its values should

contain at least two counts and the low variance filter was measured

by inter-quartile range (IQR).

2.8 Network analysis

Network analysis for the GM and sniffing times and SFN

treatment or clinical ASD symptoms was performed using

Spearman’s rank correlations conducted by IBM SPSS Statistics

27.0.1 and network reconstruction and property measurements

conducted by Gephi 0.9.7. We first computed the correlation

between each node, and only statistically significant Spearman’s

rank correlations (p < 0.05) were defined as an edge of

two nodes. We next constructed undirected network graphs to

display the potential relationship between GM and social features

in MIA-induced ASD-like rat models or ASD patients using

Gephi 0.9.7.

2.9 Statistical analysis

Richness (ACE and Chao1) and diversity (Shannon and

Simpson) were used to assess the α-diversity indexes. Principal

coordinate analysis (PCoA) of weighted and unweightedUniFrac22

was used to visualize the clustering patterns between samples

based on β-diversity distances via R language. ANOSIM test

was performed to identify differences in β-diversity among

groups. Identification of key gut microbiota responsible for the

differentiation between taxa using the effective size of linear

discriminant analysis (LDA), only LDA > 1.5 at a p < 0.05 were

considered significantly enriched. Multiple group comparisons

were performed using one-way analysis of variance (ANOVA)

followed by LSD as a post-hoc test and two-tailed Student’s t-

test or Mann–Whitney U-test to determine the difference between

the two groups. All correlations were calculated using Spearman’s

correlation. Statistical analyses were conducted using the software

SPSS, R package, and plots were generated from R and GraphPad

Prism version 8.0. A p-value of 0.05 is significant for the test

above. All data were analyzed using two-way ANOVA with

Bonferroni’s post-hoc analysis and one-way ANOVA with Tukey’s

post-hoc analysis.

3 Results

3.1 SFN treatment rescued the social
deficits of MIA-induced ASD-like rat model

We first employed the MIA-induced ASD-like rat model

and validated it by a three-chamber test. In the third 10-min

Frontiers inNutrition 04 frontiersin.org

https://doi.org/10.3389/fnut.2023.1294057
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Yang et al. 10.3389/fnut.2023.1294057

test of the three-chamber test, sniffing times for novel rats

in the LPS group were significantly less than that in the NS

group (Figure 1B, p <0.001). The results showed that rats in the

LPS group demonstrated social deficits, indicating the successful

establishment of our MIA-induced ASD-like rat model. Then, the

LPS group and the saline group were subgroup into two groups

and treated by SFN or saline, respectively. SFN treatment markedly

rescued the reduced-sniffing times (Figure 1C; p < 0.001) of the

LPS modeled group toward the novel rats, suggesting the rescued

impaired social ability of SFN treatment. Comparing the difference

value in Sniffing times before and after saline administration in

the LPS-NS group, the difference value in Sniffing times before

and after the administration of SFN was higher in the LPS-SFN

group. It suggested that SFN treatment significantly increased

the Sniffing times in MIA-induced ASD-like rats (Figure 1D, p

< 0.001). These results indicated that our LPS modeling was

successful and that SFN could reverse the socially deficient behavior

of LPS rats.

3.2 Diversity of gut microbiota significantly
altered in ASD-like rat model

We used 16S rRNA sequencing to evaluate alpha and beta

diversity to determine differences in gut microbiota diversity.

The alpha diversity was based on the numbers of observed

OTUs, richness (ACE and Chao1), and diversity (Shannon and

Simpson) (Figure 2). Observed OTU, ACE, and Chao1 indicated

less microbiota alpha diversity in the LPS-NS group compared to

the NS-NS group (p = 0.02, p = 0.03, and p = 0.03, respectively,

Figure 2), but SFN treatment did not increase in alpha diversity

in LPS rats. To evaluate the β-diversity of gut microbiota across

different groups, principal coordinate analysis (PCoA) based on

the unweighted UniFrac distance matrixes was conducted. Beta

diversity assessed by the ANOSIM tests found the four groups could

not cluster into distinct groups.

3.3 Changes of gut microbiota taxonomic
composition in ASD-like rats and after SFN
treatment

We next investigated the dynamic changes of microbial

composition in groups. At the phylum level, all groups showed

a similar taxonomic composition, i.e., dominated by the phylum

Firmicutes and Bacteroidetes, while the LPS-NS group had an

increase in the mean Firmicutes/Bacteroidetes ratio (6.01 vs. 4.98)

and a decrease in the abundance of Bacteroidetes compared

to the NS-NS group. In the LPS-NS group, the abundance

of Actinobacteria declined and SFN treatment ameliorated

the reduction of Bacteroidetes and Actinobacteria (Figure 3A).

Taxonomic compositions at the genus level were analyzed in

the four groups (Figure 3B). The relative abundance of genus

Ruminococcaceae_UCG_005 enriched in the LPS-NS rats compared

to the NS-NS rats. The relative abundance of genus Lactobacillus

enriched in the LPS-SFN group (Figure 3B).

The LEfSe analysis, a method for identifying bacterial

taxa as biomarkers using LDA with effect size measurements,

was used to explore the significant differences at distinct

microbial levels. The Fusobacteria (from the phylum to the

genus Fusobacterium), Corynebacteriales (from the class to the

genus Corynebacterium 1), Leptotrichiaceae (the family and the

genus Leptotrichia), Neisseriaceae (the family and the genus

Neisseria), Pasteurellales (the order and the family Pasteurellaceae),

order Betaproteobacteriales, and genus Haemophilus enriched in

NS-NS rats. Genus Allobaculum, Anaerotruncus, uncultured of

Family_XIII, and unclassified_Micrococcaceaewere enriched in the

NS-SFN group. Family uncultured and genus uncultured of order

Coriobacteriales enriched in the LPS-NS group. Genus Prevotella

displayed a relative enrichment in the LPS-SFN group (p < 0.05,

Figures 3C, D).

To obtain deeper insight into microbiota alterations upon LPS

or SFN administration, we analyze specific taxa in four groups

by Venn diagram. As was shown in Figure 3E, three taxa were

common in “LPS-NS vs. NS-NS” (Figure S1) and “LPS-NS vs. LPS-

SFN” (Figure S1): phylum Fusobacteria, order Fusobacteriales, and

class Fusobacteriia. Moreover, genus Anaerotruncus was common

in “LPS-NS vs. NS-NS,” “LPS-NS vs. LPS-SFN,” and “NS-NS vs.

NS-SFN” (Figure S1). These data suggested that SFN may exert a

therapeutic effect by altering the abundance of some specific taxa.

3.4 Network analysis shows associations
between GM and rats’ social behavior

Figure 4 shows the network analysis in the MIA-induced ASD-

like rat model, and it showed associations between GM and rats’

social behavior or SFN treatment. At the genus level, the relative

abundance of Alloprevotella (r = 0.335, p = 0.04), Prevotella (r

= 0.333, p = 0.041), Prevotellaceae_UCG-001 (r = 0.387, p =

0.016), Peptostreptococcus (r = 0.346, p = 0.033), Cupriavidus

(r = 0.421, p = 0.009), uncultured (r = 0.422, p = 0.08), and

Oribacterium (r = 0.333, p = 0.041) was positively correlated with

sniffing times, while the relative abundance of Corynebacterium

(r = −0.359, p = 0.027), Sporosarcina (r = −0.322, p =

0.049), unclassified_Staphylococcaceae (r = −0.334, p = 0.04),

Clostridium_sensu_stricto_1 (r = −0.375, p = 0.02), Neisseria (r =

−0.379, p = 0.019), unclassified_Enterobacteriaceae (r = −0.435,

p = 0.006), Haemophilus (r = −0.421, p = 0.009), Moraxella (r =

−0.333, p = 0.041), and Sphingomonas (r = −0.415, p = 0.001)

was negatively correlated with sniffing times. In addition, of the

taxa which had a correlation with sniffing times, we found that the

genus Prevotella (r = 0.468, p = 0.003), genus Peptostreptococcus

(r = 0.366, p = 0.024), and genus Oribacterium (r = 0.431, p =

0.007) were positively correlated with SFN treatment, while order

Pasteurellales (r =−0.452, p= 0.004), family Sphingomonadaceae

(r = −0.388, p = 0.016), family Pasteurellaceae (r = −0.452,

p = 0.004), genus unclassified_Enterobacteriaceae (r = −0.342,

p = 0.035), and genus Haemophilus (r = −0.501, p = 0.001)

were negatively correlated with SFN treatment. In addition, of the

taxa associated with SFN treatment, we found order Pasteurellales,

family Pasteurellaceae, and genus Haemophilus enriched in the

NS-NS group and genus Prevotella enriched in the LPS-SFN group.
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FIGURE 2

Diversity analysis of MIA-induced ASD-like rat model with or without SFN treatment. The observed operational taxonomic units (OTUs) (A), ACE (B),

Chao1 (C), and Shannon (D) used the Student’s t-test (*p < 0.05).

3.5 Beneficial e�ect of SFN treatment in
ASD patients

We also conducted a 12-week clinical study to explore

whether the SFN altered gut microbiome in ASD patients

and ameliorated ASD by alteration of gut microbiota.

The mean behavioral subscores and total scores and their

changes of OSU of the six SFN-treated recipients from

enrollment to the 12-week end of treatment are shown in

Figure 5. Half of the participants experiencing improvement

to SFN and the average OSU-CO scores of the SFN

group had changed significantly at the 12-week endpoint

(Figure 5B).

3.6 Gut microbial diversity altered in ASD
patients

The methods for assessing alpha and beta diversity were

consistent with the animal part of this study. Figure 6 shows

the alpha and beta diversity in ASD patients. In this study,

gut microbial diversity estimated by the Shannon index,

was greater in health controls (HCs) compared to untreated

ASD patients (p = 0.03, Figure 6C). Beta diversity of ASD

patients and HCs estimated by PCoA with weighted UniFrac

showed that axis 1 accounted for 48.3% of the variation and

axis 2 explained 25% of the variation. The fecal microbiota

in untreated ASD and HCs could cluster separately (p

= 0.002, Figure 6D). However, no diversity changes were

associated with SFN treatment, which was estimated by paired

Students’ t-test between the ASD-Baseline group and the

ASD-SFN group.

3.7 Changes of gut microbiota taxonomic
composition in ASD patients

The analysis of the gut microbiota composition at the

phylum and genus levels showed specific differences in groups

(Figures 7A, B). In terms of bacterial composition at the

phylum level, untreated ASD patients had an increase in

the mean Firmicutes/Bacteroidetes ratio (3.02 vs. 1.25) and a

decrease in the abundance of Bacteroidetes compared to the

HCs. The phylum Bacteroidetes was higher in HCs, while

Actinobacteria enriched in ASD patients (Figure 7A). In terms

of the genus level, all groups exhibited similar taxonomic
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FIGURE 3

Relative abundance of di�erential taxa ASD-like rats and after SFN treatment. (A) Bar plots of the phylum taxonomic levels and genus taxonomic

levels (B) among four groups (only the top 10 phylum bacteria are shown). (C) Histogram and cladogram (D) of the linear discriminant analysis (LDA)

scores revealed distinct taxa in the gut microbiota among four groups. (E) Venn diagram showing the distribution of the OTUs among intergroup

comparison.

communities, i.e., dominated by the genus Faecalibacterium

and Bacteroides. The relative abundance of genus Bacteroides

was significantly higher in the HCs compared to the ASD

groups, while Bifidobacterium enriched in the ASD groups

(Figure 7B).

The LEfSe analysis was used to explore the significant

differences at distinct microbial levels among groups. We

found that some gut microbiota had significant differences

(Figures 7C, D). The Bacteroidetes (from the phylum to the

genus Bacteroides), Prevotellaceae (the family and the genus

Prevotella), Corynebacteriaceae (the family and the genus

Corynebacterium), order Bacillales, and family Tissierellaceae

enriched in HC group. The Erysipelotrichia (from the class to the

family Erysipelotrichaceae), Coriobacteriia (from the class to the

family Coriobacteriaceae), Xanthomonadales (from the order to

the genus unidentified Xanthomonadaceae), Eubacteriaceae

(the family and the genus Eubacterium), Peptococcaceae

(the family and the genus unidentified Peptococcaceae),

phylum Actinobacteria, class Gammaproteobacteria, and

genus Clostridium, Bulleidia, unclassified Gemellaceae,

Chelativorans, and Bilophila were found enriched in

untreated patients. Bifidobacteriales (from the order to the

genus Bifidobacterium), Halomonadaceae (the family and

the genus Halomonas), Streptococcaceae (the family and

the genus Streptococcus), class Actinobacteria and Bacilli,

order Oceanospirillales and Lactobacillales, and genus

Dialister, Veillonella, and Devosia enriched in the treated by

SFN patients.

3.8 Network analysis of microbiome
abundance alterations and improvements
in ASD symptoms after SFN treatment

To elucidate the actual relationship between the alteration of

the relative abundance of bacterial taxa on each taxonomical

level and improvements in autistic symptoms after SFN

treatment, we conducted a co-expression network analysis in

ASD patients (Figure 8). At the genus level, the alteration of the

relative abundance of Atopobium (r = 0.845, p = 0.034) and

unidentified_Xanthomonadaceae (r = 0.812, p = 0.05) had a

positive correlation with OSU_Change_Total, while Actinomyces

(r = −0.845, p = 0.034), unidentified_Coriobacteriaceae (r

= −0.928, p = 0.008), unidentified_Erysipelotrichaceae (r =

−0.899, p = 0.015), Chelativorans (r = −0.845, p = 0.034), and

Haemophilus (r = −0.886, p = 0.019) had a negative correlation

with OSU_Change_Total. unidentified_[Barnesiellaceae] (r

= 0.857, p = 0.029) Coprococcus (r = 0.928, p = 0.008)

and unidentified_Xanthomonadaceae (r = 0.897, p = 0.015)
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FIGURE 4

Social behavior-microbial network in MIA-induced ASD-like rat model. An undirected network from the microbiota to social behavior or SFN

treatment of MIA-induced ASD-like rat model was built. Blue nodes indicate gut microbiota taxa that were positively correlated with sni�ng times,

and purple nodes indicate taxa that were negatively correlated with sni�ng times.

were positively correlated with OSU_Change_SO, while

unidentified_Coriobacteriaceae (r = −0.824, p = 0.044)

and unidentified_[Mogibacteriaceae] (r = −0.868, p =

0.025) were negatively correlated with OSU_Change_SO. For

OSU_Change_CO, unclassified_Carnobacteriaceae (r = 0.876, p

= 0.022), and unidentified_Peptococcaceae (r = 0.822, p = 0.045)

had a positive correlation with it, while Devosia (r = −0.939, p =

0.005) had a negative correlation with it. In addition, Turicibacter

(r = 0.971, p = 0.001), Oceanicaulis (r = 0.857, p = 0.029), and

unclassified_Clostridiales (r = 0.841, p = 0.036) were positively

correlated with OSU_Change_ST, while Chelativorans (r=−0.823,

p= 0.044) was negatively correlated with OSU_Change_ST.

Moreover, of the taxa which had co-association with

ASD symptoms, we found phylum Bacteroidetes, class

Bacteroidia, and order Bacteroidales were enriched in HC,

family Peptococcaceae, family Xanthomonadaceae, genus

Chelativorans, genus unidentified_Peptococcaceae, and genus

unidentified_Xanthomonadaceae enriched in the ASD-Baseline

group, and family Hyphomicrobiaceae and genus Devosia enriched

in the ASD-SFN group. In addition, the family Pasteurellaceae and

the genus Haemophilus were found in the network analysis in the

rat model which was also associated with SFN treatment.

3.9 Commonly altered microbial taxa in
both ASD-like rats and ASD patients

We next compared the gut microbiota which had significant

differences between ASD-like rats and ASD patients and

found three taxa had consistent changes in both “NS-

NS vs. LPS-NS” (Figure S1) and “HC vs. ASD-Baseline”

(Figure S2). The relative abundance of order Bacillales, family

Staphylococcaceae, and genus Staphylococcus (p < 0.0001,

0.0002, and 0.0002, respectively, for the rats; p = 0.0076,

0.004, and 0.004, respectively, for the human) was lower in

ASD-like rats and ASD patients (Figure 9). In our study,

differences of the relative abundance of these several taxa were

overlapped in different species, i.e., rat and human, but no

overlap was found between species for SFN treatment-related

differential microbiota.
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FIGURE 5

OSU scores and subscores of ASD patients at baseline and endpoint. (A) Schematic of experimental protocols. (B) OSU-total for total OSU behavioral

scores, OSU-SO for social interactive OSU behavioral subscores, OSU-CO for non-verbal communicative OSU behavioral subscores, and OSU-ST for

repetitive or ritualistic OSU behavioral subscores (*p < 0.05, paired Students’ t-test).

4 Discussion

In the present study, we demonstrated that SFN treatment

rescued the social deficits of ASD-like rats and ASD children.

Additionally, SFN treatment-induced improvement in social

deficits was associated with the relative abundance of gut microbial

genera that differed significantly between groups in ASD-like rats.

In addition, microbiome abundance alterations of gut microbes

were associated with improvements in ASD symptoms of children

with ASD after SFN treatment. Our study identified differences

in the composition of the gut microbiota of ASD-like rats and

ASD patients, which may contribute to autism-related behaviors,

and these taxa are associated with improvements in symptoms of

autism. These results suggested that the therapeutic effect of SFN

may be related to gut microbiota.

We found that SFN treatment rescued the social deficits

of MIA-induced ASD-like rats in the three-chambered test.

Although current clinical studies suggest a role for SFN in

the treatment of ASD, fewer studies have used animal models

to explore its specific mechanisms, and only one study that

used mice models of autism found the therapeutic effect of

SFN (35). Using a MIA-induced ASD-like rat model and three-

chamber social tests, we found the improvement effect of SFN

on social behavior in ASD, and it may provide new ideas for

future experimental animal studies. Furthermore, we explored

the therapeutic effects of SFN on autism-related behaviors in

children aged 4–7 years with ASD. Given our findings in animal

models, we conducted a study with a small clinical sample

with the aim of exploring the therapeutic effects of SFN in

patients with ASD, focusing on the gut microbiota. Half of

the participants had ASD symptom improvement after SFN

administration, and there were significant changes in OSU-CO

scores at the endpoint of 12 weeks in the SFN group. However,

this is only a small sample of our attempts, and larger sample sizes
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FIGURE 6

Diversity of the gut community altered in ASD patients. The ACE (A), Chao1 (B), and Shannon (C) used the Student’s t-test and principal coordinates

analysis (PCoA) of the samples with weighted UniFrac (D) (*p < 0.05).

will be needed in future to validate the therapeutic effects of SFN

on ASD.

We found that the GM diversity of ASD-like rats and ASD

patients was significantly different from that of the control

group, which is consistent with previous studies (21, 22, 36–

38), but we did not find that SFN had a significant effect on

the GM diversity of the animals or clinical subjects. In addition,

we found order Bacillales, family Staphylococcaceae, and genus

Staphylococcus showed consistent alteration in both “NS-NS vs.

LPS-NS” from the animal model and “HC vs. ASD-Baseline”

from clinical samples. Their relative abundance was significantly

lower in ASD-like rats and ASD patients and the alteration

preserved cross-species, suggesting that these specific taxa may

play an important role in the development of ASD and could

potentially be biomarkers for identifying ASD. One previous

study found a significantly higher abundance level of the genus

Staphylococcus in the valproic acid rat model of the autism

group than the control group, but this increase was observed

only in females (39). It was different from our study, and this

difference may be caused by gender. However, we did not find

an overlap between taxa for SFN treatment-related differential

microbiota in animal and human studies. This may be due to

differences in the duration of SFN treatment (4 vs. 12 weeks), SFN

administration patterns (intraperitoneal injection vs. oral), and the

species itself.

Moreover, there were also some differences in the composition

of the gut microbial community among ASD-like rats and ASD

children. In a rat model, genus Anaerotruncus was found enriched

in the LPS-NS group compared to the NS-NS group and the

LPS-SFN group, but our study in ASD patients did not show

an increased relative abundance of Anaerotruncus. Interestingly,

we found beneficial bacteria, Bifidobacterium and Lactobacillales,

enriched in ASD children treated by SFN. Bifidobacterium was

found an increased abundance in children treated by microbiota

transfer therapy which improved their gastrointestinal and autistic

symptoms (40). In addition, the supplementation of Lactobacillus

reuteri, which belongs to Lactobacillales, could alleviate ASD-like

behaviors (27).

Of note, SFN administration caused an increase in the relative

abundance of genus Prevotella in LPS-SFN rats. Although SFN

treatment resulted in a significant increase in the abundance of

Prevotella in rats, this result was not found in clinical samples, and

previous studies have demonstrated that Prevotella had a decreased

relative abundance in patients with ASD (41–43), as well as in the

ASD mice model (44, 45), which was also demonstrated in our

clinical samples. In children with ASD, microbiota transfer therapy
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FIGURE 7

Di�erential taxa abundance in the gut microbiota. (A) Bar plots of the phylum taxonomic levels and genus taxonomic levels (B) among three groups

(only the top 10 phylum bacteria are shown). (C) Histogram and cladogram (D) of the linear discriminant analysis (LDA) scores revealed distinct taxa

in the gut microbiota among three groups.

altered the gut ecosystem, increasing overall bacterial diversity and

the abundance of Bifidobacterium, Prevotella, and Desulfovibrio

and improving gastrointestinal and autism symptoms (40). In the

network analysis, we found a strongly positive association between

genus Prevotella and the sniffing times of the three-chamber test in

rats, suggesting increased Prevotella could rescue social deficits. All

of these findings suggest that Prevotella plays an important role in

the development and treatment of ASD.

Of note, family Pasteurellaceae and genus Haemophilus were

found in the network analysis in both MIA-induced ASD-like rat

models and ASD patients. Moreover, Pasteurellaceae was negatively

correlated with SFN treatment in a rat model and had a positive

correlation with OSU_Change_Total in ASD patients, which were

consistent in both ASD-like rat models and ASD patients. Previous

studies have demonstrated that Pasteurellaceae and Haemophilus

had a decreased relative abundance in patients with ASD (46, 47).

However, we did not find Pasteurellaceae, and Haemophilus had

significant differences between ASD patients and HCs. It suggested

that they may be related to the therapeutic efficacy of SFN and that

future studies need to give them more attention.

Previous studies have shown that SFN could alleviate

hyperuricemia by decreasing the relative abundance of the genus

Parasutterella and increasing the relative abundance of the family

Lactobacillaceae (31). It is worth noting that in our study, it

was also found that SFN may alleviate the symptoms of ASD

by regulating the relative abundance of these gut microbiota.

Research has shown that compared to HCs, the abundance of

genus Parasutterella was lower in patients with ASD (48, 49).

We found that in a rat model, Parasutterella was enriched in

the NS-SFN group compared to the LPS-SFN group (Figure S1),

suggesting that SFN has the potential to ameliorate ASD symptoms

by decreasing the relative abundance of parasutterella. It has been

reported that order Lactobacillales, family Lactobacillaceae, and

genus Lactobacillus have a lower relative abundance in the ASD
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FIGURE 8

Clinical-microbial network in ASD patients with SFN treatment. An undirected network from microbiome abundance alterations to improvements in

ASD symptoms after SFN treatment was built. Blue nodes indicate gut microbiota taxa that were positively correlated with OSU change, and purple

nodes indicate taxa that were negatively correlated with OSU change. Alteration of the relative abundance of gut microbes: gut microbes’ relative

abundance at the endpoint was subtracted from the same gut microbes’ relative abundance at time 0 (“Baseline”). OSU change: individuals’ scores at

endpoint were subtracted from the same individual’s scores at time 0 (“Baseline”).

mice model. Moreover, the administration of Lactobacillus reuteri,

which belongs to Lactobacillaceae, could alleviate the symptoms of

ASD (44). Interestingly, our study found that order Lactobacillales

was enriched in the patients of the ASD-SFN group.

Taken together, our study was the first to investigate SFN’s

ability to ameliorate core ASD symptoms through modulation

of the gut microbiota, and our study demonstrated that

SFN treatment attenuates social deficits in rats and young

children with ASD and some gut microbiota associated with the

improvements in symptoms of ASD. These results suggested that

SFN supplementation is a viable strategy for improving specific

core symptoms of ASD and its therapeutic effects may be related

to gut microbiota. It should be mentioned that there are some

limitations in this study: First, studies were conducted in male

rats and boys only; therefore, female rats and girls need to be

included in future studies to determine whether gut microbiota and

behavioral changes respond to SFN treatment in a sex-dependent

manner; second, the sample size of our clinical study is relatively

small and needs to be further expanded in future; finally, this

study only uncovered a potential link between gut flora and the

therapeutic effects of SFN onASD, and the relationship between the

mechanism of SFN and gut microbiota has not been systematically

validated, the exact mechanisms of which need to be explored in

further studies.

5 Conclusion

These data demonstrate that SFN treatment alleviates social

deficits in MIA-induced ASD-like rats and ASD patients, and the

improvements might be associated with gut microbiota. These

data indicated that SFN, as a potential intervention targeting the

gut microbiota, could provide a novel avenue for preventing and

treating ASD. However, themechanisms involved in the association

of these microbiota with the therapeutic effects of SFN need to be

further explored.
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FIGURE 9

Overlapping altered microbial taxa in ASD-like rat models and ASD patient samples. (A) The overlap gut microbiota showed di�erent relative

abundances between the NS-NS group and the LPS-NS group. (B) The overlap gut microbiota showed di�erent relative abundance between the HC

group and the ASD-Baseline group (**p < 0.01 and ***p < 0.001, unpaired Students’ t-test).
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