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The effects of the heating conditions and water content on the structure

and digestibility of wheat starch (WS)-glycerol monopalmitin (GMP) complexes

were investigated. The results showed that the higher water content and the

heating conditions of 90◦C for 60 min after 100◦C for 10 min favor the

formation of more WS-GMP complexes with the greater short-range order,

although the thermal transition temperatures of GWS-GMP-100 complexes are

not significantly affected by the water content. Only the type I complexes were

formed under the heating conditions of 90◦C for 60 min. The heating conditions

of 90◦C for 60 min after 100◦C for 10 min facilitates the formation of type II

complexes, and the amounts of type II complexes increased with increasing

water content. The digestion rates of WS-GMP complexes decreased slightly

with increasing water content, and the extent of starch amylolysis of WS-GMP

complexes significantly decreased after heating further at 90◦C compared with

that only heating at 100◦C. The digestibility of complexes is mainly related to

structural order rather than the number of complexes. This study is helpful to

further understand starch-lipid complexes by showing that heating conditions

and water content influence the formation of WS-GMP complexes.

KEYWORDS

heat condition, water content, wheat starch-glycerol monopalmitin complexes,
structure, in vitro starch digestibility

1 Introduction

Starch is the main component of green plants and provides most of the energy needed
for people’s daily life. It is composed of two glucose polymers: amylopectin (AP), which
has highly branched molecules, and amylose (AM), a linear polymer with a few branches
(1–3). Lipids are added to food to enhance the flavor, mouth-feel and nutritive value
during processing (4). Given the structural characteristics of AM with helical cavity, the
hydrocarbon portion of guest molecules [e.g., fatty acids (FAs), monoglycerides (MGs)]
can insert into this hydrophobic cavity to form AM-lipids complexes through hydrogen
bonds and hydrophobic interaction (5–10). However, only a few AP can form complexes
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due to the larger steric hindrance of AP with more and shorter
branch chain (1, 4, 11). During food processing, the interactions
of AM and lipids can affect quality of finished food, such as texture
and digestibility (12). Therefore, starch-lipids complexes have been
a topic of wide concern.

There are many factors that can affect the formation of starch-
lipid complexes, such as the type of starch and lipid, carbon chain
lengths and the unsaturation degree of the lipids, amylose content
and the polymerization degree of starch, reaction conditions, and
methods of preparation (13, 14). Hydrothermal treatment is the
most commonly used method to prepare starch-lipid complexes
because most starchy foods need to be cooked with a certain
amount of water (15). During this process, heating conditions
(heating time and temperature) and moisture content can affect the
formation of starch-lipid complexes. As increased water content,
the amount of type II starch-lipid complexes with more ordered
structure increased (16). However, the opposite results were
observed in almond flour during extrusion cooking and rice with
parboiling (17, 18). The difference in these results suggests that how
does the water content affect complexes formation has not been
elucidated clearly.

Glycerol monopalmitin (GMP), a linear molecule synthesized
by esterification of palmitic acid and glycerol. In previous studies
on the effects of temperature treatment (19), hydrophilic groups
(20), different types of lipids (21), and different chain length of
monoglycerides (22) on complex formation, the results showed
that GMP can form complexes with starch and it has a greater
emulsifying action and compounding ability with AM (21). Wheat
starch is the main ingredient in staple of the daily diet (such as
bread, noodles, biscuits, etc.), and GMP is added as an emulsifier
in the processing of these foods to improve the food quality.
The addition of GMP can interact with WS, and factors such
as moisture content and heating conditions during processing
can affect this interaction, which in turn affects the quality and
functional properties of food. Therefore, GMP and WS were
selected as representative of lipid and starch, respectively. In this
study, we prepared wheat starch (WS)-glycerol monopalmitin
(GMP) complexes through the control of water content under two
different heating conditions. In one condition, WS and GMP were
heated at 100◦C for 10 min, and in the other condition, they were
heated at 100◦C for 10 min followed by 90◦C for 60 min. We
speculated that heating conditions and water content may influence
the interaction and complexes formation between WS and GMP.

Hence, the effects of the heating conditions and water
content on the formation, structure, and digestibility of WS-GMP
complexes were investigated in this study. A better understanding
of this topic will be helpful to understand deeply on the effect
of the heating conditions and water content on the formation of
WS-GMP complexes and modulate the functionality and nutrition
of starchy food.

2 Materials and methods

2.1 Materials

Wheat starch (9.0% moisture content, 27.5% amylose content,
and 0.18% lipid content), glycerol monopalmitin (GMP, C16:0)

and α-amylase (Sigma, EC 3.2.1.1, type VI-B from porcine
pancreas, 13 units/mg) were obtained from Sigma Chemical Co. (St.
Louis, MO, USA). The Glucose Oxidase/Peroxidase Kit (GOPOD
format) and Aspergillus niger amyloglucosidase (3260 units/mL)
were purchased from Megazyme International Ireland, Ltd. (Bray
Co., Wicklow, Ireland). All other chemical reagents were of
analytical grade.

2.2 Preparation of starch-lipid complexes

Native wheat starch (WS, 2.0 g, wet weigh basis) was weighed
and added distilled water to obtain starch suspensions with 50,
60, 70, 80, and 90% moisture contents (w/w, wet starch basis).
Subsequently, 100 mg GMP was added and mixed thoroughly
under magnetic stirring. And the partial mixtures were heated
at 100◦C for 10 min (designated WS (m%)-GMP-100), whereas
other the mixtures of WS and GMP were firstly heated at 100◦C
for 10 min and then heated at 90◦C for 60 min (WS (n%)-
GMP-100-90). All above obtained samples were freeze-dried and
ground into powders.

2.3 Differential scanning calorimetry
(DSC)

Thermal properties of the WS-GMP complexes were examined
using a differential scanning calorimeter (200 F3, Netzsch,
Germany) according to the method described in the previous
study with minor modification (23). Differently, samples were
heated from 20 to 130◦C at a heating rate of 10◦C/min.
The onset (To), peak (Tp), conclusion (Tc) temperatures, and
gelatinization enthalpy change (1H) were obtained through data
recording software.

2.4 X-ray diffraction analysis (XRD)

The crystalline structure of WS-GMP complexes was
determined using a Bruker D8 Advance X-ray diffractometer
(Bruker, Germany) operating at 40 kV and 40 mA. Samples were
equilibrated over a saturated NaCl solution for 1 week before
measurement. XRD patterns were obtained from 5 to 35◦ (2θ) at a
rate of 2◦/min and a step size of 0.06◦ (24).

2.5 Laser confocal micro-Raman
spectroscopy

Renishaw Invia Raman microscope system (Renishaw,
Gloucestershire, UK) equipped with a Leica microscope (Leica
Biosystems, Wetzlar, Germany) was used to collect spectra in
the range of 3200–100 cm−1 with a resolution of approximately
7 cm−1. The full width at half maximum of the band at 480 cm−1

(FWHM480) was calculated to characterize the short-range
molecular order of WS-GMP complexes by the WIRE 2.0
software (21).
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2.6 In vitro enzymatic digestion

In vitro enzymatic digestibility of WS-GMP complexes was
determined according to the procedure described elsewhere (25).
Differently, the WS-GMP complexes were incubated 4 h and
determined the glucose content. The digestion curve was drawn
with the release of glucose as a function of digestion time. The
first-order rate coefficient (k) was fitted, and the content of rapidly
digested starch (RDS, digested within 20 min), slowly digested
starch (SDS, digested between 20 and 120 min) and resistant
starch (RS, undigested after 120 min) were calculated based on the
digestion curve.

2.7 Statistical analysis

In addition to XRD, all characterizations performed triplicate
measurements, and the results in tables are reported as the
mean values and standard deviations (SDs) obtained by the SPSS
17.0 Statistical Software Program (SPSS, Inc. Chicago, IL, USA).
Pearson’s correlation analysis was also conducted by the SPSS 17.0
statistical software.

3 Results and discussion

3.1 Thermal properties of complex
samples

Figure 1 shows the DSC thermograms of WS-GMP complexes.
All WS-GMP-100 complex samples exhibit two endothermic peaks.
The peak at 50–65◦C attributed to the melting of uncomplexed
GMP and the second at 85–103◦C is the typical thermal transitions
peak of the WS-GMP-100 complexes. Previous studies have
reported that starch-lipid complexes exist in two distinct crystalline
forms depending on crystallization temperature. Type I complexes
consisting of non-crystalline helical segments and crystalline
V-type packing has a lower thermal transition temperature between
95 and 105◦C, and type II with distinct crystalline structures
and amorphous regions has a higher melting temperature (14,
26). Different from WS-GMP-100 complex samples, WS-GMP-
100-90 complex samples showed different thermal transitions
according to the water content. WS (50%)-GMP-100-90 showed
two endothermic transitions, which respectively represent the
melting of uncomplexed GMP (around 53–60◦C) and type
I complexes (around 90–103◦C). However, three endothermic
transitions, related to the melting of uncomplexed GMP, type
I complexes and type II complexes (around 110–120◦C) were
observed for other WS-GMP-100-90 complexes. These results
suggest that the lower water content was more readily to form
less stable type I WS-GMP-100-90 complexes, whereas the higher
water content tended to form type I and type II WS-GMP-100-
90 complexes. No type II complexes were found in WS-GMP-
100 complexes even under conditions of higher moisture content,
which may be due to the fact that the shorter heating time and the
heating temperature of 100◦C do not allow stable type II complexes
to form.

FIGURE 1

Differential scanning calorimetry (DSC) curves of WS-GMP
complexes. (A) WS-GMP complexes were prepared at 100◦C for
10 min. (B) WS-GMP complexes were prepared at 100◦C for 10 min
followed by complexing at 90◦C for 60 min. WS (no/o), wheat
starch with no/o water content; GMP, glycerol monopalmitin.

The thermal transition temperatures (To, Tp, Tc) and enthalpy
change (1H) of WS-GMP complexes are presented in Table 1.
The 1H value can reflect the amounts of complexes (27). The
total enthalpy change (1Ht) of WS-GMP complexes prepared
under two heating conditions increased with the increasing water
content, for example, from 2.6 J/g for WS (50%)-GMP-100 to 5.3 J/g
for WS (90%)-GMP-100, suggests that the complex formation
during heating can be controlled by the water content, and the
higher water content was more favorable for the formation of
WS-GMP complexes. A previous study found that as the water
content increased from 6 to 40%, the amount of complex formation
increased, and as the water content further increased from 40
to 60%, the amount of complex decreased (28). The different
results with this study may be related to processing methods
and lipid types. The results of this study are due to that the
better starch chain dispersibility of the WS with higher water
content makes the GMP insert easily into the hydrophobic cavity
of AM to form WS-GMP complexes (29). But thermal transition
temperatures of WS-GMP-100 complexes seemed to be little
affected by the water content. WS-GMP-100-90 complexes have
higher 1Ht than the corresponding WS-GMP-100 complexes,
indicating that the complexes were formed further after heating
further at 90◦C for 60 min. A previous study found that the
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TABLE 1 Thermal parameters of WS-GMP complexes.

Samples To1 Tp1 Tc1 1H1 To2 Tp2 Tc2 1H2 1Ht

WS (50%)-GMP-100 88.6 ± 0.1a 97.5 ± 1.0b 101.9 ± 0.2abc 2.6 ± 0.1a ND ND ND ND 2.6 ± 0.1a

WS (60%)-GMP-100 89.5 ± 0.3ab 98.6 ± 0.3c 101.9 ± 0.8abc 3.3 ± 0.1b ND ND ND ND 3.3 ± 0.1b

WS (70%)-GMP-100 92.9 ± 0.6cd 98.1 ± 0.1bc 102.0 ± 0.3abc 3.5 ± 0.1b ND ND ND ND 3.5 ± 0.1b

WS (80%)-GMP-100 94.5 ± 0.5d 98.6 ± 0.3c 102.1 ± 0.3abc 4.5 ± 0.1c ND ND ND ND 4.5 ± 0.1c

WS (90%)-GMP-100 94.6 ± 0.3d 98.8 ± 0.1c 102.2 ± 0.3bc 5.3 ± 0.1d ND ND ND ND 5.3 ± 0.1d

WS (50%)-GMP-100-90 89.7 ± 0.0ab 95.7 ± 0.4a 102.7 ± 0.2c 3.3 ± 0.1b ND ND ND ND 3.3 ± 0.1b

WS (60%)-GMP-100-90 89.4 ± 0.1ab 96.1 ± 0.5a 102.5 ± 0.5c 4.6 ± 0.3c 111.4 ± 1.1a 119.2 ± 0.4d 121.4 ± 0.4abc 0.9 ± 0.0a 5.5 ± 0.2d

WS (70%)-GMP-100-90 89.4 ± 1.3ab 95.3 ± 0.5a 101.4 ± 0.5ab 4.3 ± 0.0c 111.6 ± 0.3ab 118.2 ± 0.2bcd 121.7 ± 0.7bc 1.7 ± 0.1d 6.0 ± 0.1e

WS (80%)-GMP-100-90 91.2 ± 3.4bc 95.4 ± 0.5a 101.0 ± 0.7a 3.3 ± 0.2b 111.5 ± 0.9a 118.8 ± 1.0cd 122.6 ± 1.3c 3.0 ± 0.0e 6.4 ± 0.3f

WS (90%)-GMP-100-90 89.1 ± 0.1ab 97.3 ± 1.5b 102.4 ± 1.3bc 3.3 ± 0.1b 112.6 ± 0.2bc 116.6 ± 0.2ab 120.3 ± 0.3ab 3.7 ± 0.1g 7.0 ± 0.1g

The different letters marked after the data indicate significant differences exist between the data (p < 0.05). To1 , Tp1 , Tc1 (◦C), 1H1 (J/g) and To2 , Tp2 , Tc2 , 1H2 are the onset temperature,
peak temperature, conclusion temperature, and enthalpy change of type I complex and type II complex, respectively; 1Ht , total enthalpy change.

heating conditions of 90◦C for longer exhibited a decrease in
the amount for type I polymorphs and an increase in type II
polymorphs with increased thermal stability (10). The results of
this study are attributed to the longer heating time and the slow
nucleation of the complexes due to the further heating treatment
at 90◦C. More than that, the amounts of type II complexes were
gradually increased with increasing water content for WS-GMP-
100-90 complexes. More specifically, WS (50%)-GMP-100-90 had
a 1H1 value of 3.3 J/g from only type I complexes. As the
water content increased, the 1H1 values of type I complexes
decreased from 4.6 to 3.3 J/g and the 1H2 values of type II
complexes increased from 0.9 to 3.7 J/g. At the condition of
lower water content, dispersed starch chains in gelatinized starch
interact strongly with each other, resulting in less availability of
these chains for lipids to complex. Due to the limited space in
the condition of the lower water content, the formed complexes
were not ready to arrange into stable V-type crystalline structure.
However, starch chains with the condition of higher water content
are more dispersed and available for the lipids to complex, and
the formed complexes are arranged more easily into stable type II
complexes.

3.2 X-ray diffraction

Two stronger peaks at 12.9 and 19.8◦ (2θ) and one
weak peak at 7.5◦ (2θ), representing V-type crystallites were
showed in the X-ray diffraction patterns of WS-GMP complexes
(Figures 2A, B). The XRD peaks with broad and flat reflections
of complexes were proposed to represent the formation of type
I complexes, differently, type II complexes have the narrow and
sharp V-type peaks (30, 31). The obvious broad and flat peaks
at 12.9 and 19.8◦ (2θ) of WS-GMP-100 complexes indicated
the formation of type I complexes. The changes of broad-
and-blunt into sharp-and-narrow XRD peaks of WS-GMP-100-
90 complexes with increasing the water content indicate the
transformation of less stable type I complexes into stable type
II complexes. These results are consistent with the DSC results.
Compared to WS-GMP-100 complexes, the WS-GMP-100-90
complexes showed shaper V-type diffraction peaks, suggesting the

formation of more ordered complexes after heating further at
90◦C.

3.3 LCM-Raman spectroscopy

The short-range order of WS-GMP complexes was
characterized by Raman spectra (Figures 3A, B). The lower
FWHM480 means the better short-range ordered structure,
that is to say, the more amount of ordered structure due
to the formation of complexes (14). The value FWHM480
decreased from 16.67 for WS (50%)-GMP-100 to 15.34 for
WS (90%)-GMP-100, and from 15.69 for WS (50%)-GMP-100-
90 to 14.29 for WS (90%)-GMP-100-90 (Table 2), suggesting
that the short-range order of complexes increased with
increasing water content, which is generally consistent with
XRD and DSC results. The FWHM480 of the WS-GMP-100-90
complexes samples is lower than that of the corresponding
WS-GMP-100 complexes samples, suggesting that the short-
range order of the complexes further increased after heating at
90◦C.

3.4 In vitro digestibility of WS-GMP
complexes

The digestograms of the WS-GMP complexes are presented
in Figures 4A, B. All WS-GMP complexes reached a plateau
after rapid digestion in the initial 80 min and the digestion
percentage after 2 h was around 85 and 75%, respectively, for
WS-GMP-100 and WS-GMP-100-90 complexes. The values of k
decreased slightly with increasing water content for the WS-GMP
complexes, and the k-value of the WS-GMP-100-90 complexes
and the counterpart WS-GMP-100 complexes had little difference,
for example, the k-values are 0.022 and 0.021 for the WS (90%)-
GMP-100 complexes and WS (90%)-GMP-100-90 complexes,
respectively. These results indicated that the final extent of starch
amylolysis decreased after heating further at 90◦C, but the digestion
rate was little affected by the water content and the heating
condition.
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FIGURE 2

X-ray diffraction analysis (XRD) curves of WS-GMP complexes.
(A) WS-GMP complexes were prepared at 100◦C for 10 min.
(B) WS-GMP complexes were prepared at 100◦C for 10 min
followed by complexing at 90◦C for 60 min. WS (n%), wheat starch
with n% water content; GMP, glycerol monopalmitin.

For further analysis of the digestibility of complexes, the RDS,
SDS, and RS content were calculated (Table 3). They were little
affected by the water content for the WS-GMP-100 complexes and
WS-GMP-100-90 complexes. However, comparing with WS-GMP-
100 complexes, WS-GMP-100-90 complex has lower RDS and SDS
content and higher RS content. According to DSC and XRD results,
the most obvious difference between the complexes obtained under
two different processing conditions is the formation of type I and
type II complexes with different structural stability. WS-GMP-100-
90 complexes have more ordered type II complexes, resulting in
obvious differences in RS, SDS, and RDS content between the
WS-GMP-100 complexes and WS-GMP-100-90 complexes. The
most obvious thing is that different amounts of complexes are
obtained under the condition of different water content. Therefore,
the formation of different crystal types complexes with different
structural stability, rather than the number of complexes, have a
more significant impact on the digestion of WS-GMP complexes.

3.5 The correlation between the
structures and digestibility of complexes

Many studies have demonstrated that the formation and
structure of starch-lipid complex are important factors in

FIGURE 3

Laser confocal micro-Raman spectra of WS-GMP complexes.
(A) WS-GMP complexes were prepared at 100◦C for 10 min.
(B) WS-GMP complexes were prepared at 100◦C for 10 min
followed by complexing at 90◦C for 60 min. WS (n%), wheat starch
with n% water content; GMP, glycerol monopalmitin.

TABLE 2 FWHM480 of the Raman Band of WS-GMP complexes.

Samples FWHM480

WS (50%)-GMP-100 16.67 ± 0.20g

WS (60%)-GMP-100 16.35 ± 0.24fg

WS (70%)-GMP-100 16.16 ± 0.17ef

WS (80%)-GMP-100 15.82 ± 0.14de

WS (90%)-GMP-100 15.34 ± 0.22c

WS (50%)-GMP-100-90 15.69 ± 0.15cd

WS (60%)-GMP-100-90 15.41 ± 0.08c

WS (70%)-GMP-100-90 14.78 ± 0.28b

WS (80%)-GMP-100-90 14.74 ± 0.45b

WS (90%)-GMP-100-90 14.29 ± 0.05a

The different letters marked after the data indicate significant differences exist between the
data (p < 0.05).

determining the resistance of starch to enzymatic hydrolysis (32,
33). In general, complexes with the greater structural order have
the lower digestibility. In order to further analyze the relationships
between the structures of WS-GMP complexes and in vitro
starch digestibility, Pearson correlation analyses were performed
(Table 4). Results showed that the total enthalpy changes (1Ht)
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FIGURE 4

In vitro starch digestion of WS-GMP complexes. (A) WS-GMP
complexes were prepared at 100◦C for 10 min. (B) WS-GMP
complexes were prepared at 100 ◦C for 10 min followed by
complexing at 90◦C for 60 min. WS (n%), wheat starch with n%
water content; GMP, glycerol monopalmitin.

TABLE 3 Starch hydrolysis fractions of WS-GMP complexes.

Samples RDS SDS RS

WS (50%)-GMP-100 32.3 ± 1.9c 52.0 ± 1.4b 14.7 ± 0.8a

WS (60%)-GMP-100 32.7 ± 0.7c 52.2 ± 1.8b 15.0 ± 0.6a

WS (70%)-GMP-100 31.8 ± 0.7bc 53.4 ± 1.5bc 14.8 ± 0.8a

WS (80%)-GMP-100 31.1 ± 1.6bc 54.4 ± 1.4bc 14.5 ± 0.8a

WS (90%)-GMP-100 31.1 ± 1.1bc 55.2 ± 1.4c 15.3 ± 0.7a

WS (50%)-GMP-100-90 32.0 ± 1.5bc 45.4 ± 1.9a 22.6 ± 0.8b

WS (60%)-GMP-100-90 31.6 ± 1.0bc 45.4 ± 0.9a 23.0 ± 1.0b

WS (70%)-GMP-100-90 30.5 ± 1.3bc 46.7 ± 1.6a 22.8 ± 0.3b

WS (80%)-GMP-100-90 29.8 ± 0.8ab 45.0 ± 1.5a 25.2 ± 0.9c

WS (90%)-GMP-100-90 28.1 ± 0.8a 47.2 ± 1.6a 24.7 ± 0.6c

The different letters marked after the data indicate significant differences exist between the
data (p < 0.05).

of WS-GMP complexes were negatively correlated with the RDS
(r = −0.883, p < 0.01) and k-value (r = −0.845, p < 0.01), and
positively correlated with the RS (r = 0.700, p < 0.05). Previous
studies observed a strong positive correlation between enthalpy

TABLE 4 Pearson’s correlation analysis between 1Ht, FWHM480 and
digestion parameters of WS-GMP complexes.

1Ht FWHM480

RDS −0.883** 0.900**

SDS −0.455 0.574

RS 0.700* −0.807**

K −0.845** 0.800**

* and **Correlation is significant at the 0.05 level and 0.01 level, respectively.

and RS contents (32). The FWHM480 of WS-GMP complexes
positively correlated with the RDS (r = 0.900, p < 0.01) and k
value (r = 0.800, p < 0.01), but negatively correlated with the RS
(r = −0.807, p < 0.01). Compared with the correlation coefficient
between RS/RDS and 1Ht , RS/RDS had stronger correlation with
FWHM480. This result indicated that short-range molecular order
plays a more significant role in the content of RS and RDS. Similar
results of a stronger positive correlation between the short-range
ordering and RS contents were found in previous studies (32, 34).
The above results of correlation analyses also suggested that the
decreased digestion of WS-GMP complexes is more related to the
increasing ordered structure.

4 Conclusion

The water content and heating conditions can affect the
formation of starch-lipid complexes. The higher water content and
the heating conditions of 90◦C for 60 min after 100◦C for 10 min
are helpful for the formation of more complexes with the better
short-range order. The heating conditions of 90◦C for 60 min after
100◦C for 10 min facilitates the formation of type II complexes,
and the amounts of type II complexes increased with increasing
water content. The digestion rate of WS-GMP complexes decreased
slightly with increasing water content, however, the extent of
starch digestion decreased significantly after further heating at
90◦C for 60 min. The digestion difference of WS-GMP complexes
are mainly determined by the structure order caused by different
heating conditions rather than the number of complexes. This
study provided new insights into the formation of starch-lipid
complexes, which is of great significance for modulation of the
functional and nutritive properties of starchy food.
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