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Pectins, a class of dietary fibers abundant in vegetables and fruits, have drawn 
considerable interest due to their potential anti-inflammatory properties. 
Numerous studies have indicated that incorporating pectins into infant formula 
could be a safe strategy for alleviating infant regurgitation and diarrhea. Moreover, 
pectins have been shown to modulate cytokine production, macrophage 
activity, and NF-kB expression, all contributing to their anti-inflammatory effects. 
Despite this promising evidence, the exact mechanisms through which pectins 
exert these functions and how their structural characteristics influence these 
processes remain largely unexplored. This knowledge is particularly significant 
in the context of gut inflammation in developing preterm babies, a critical 
aspect of necrotizing enterocolitis (NEC), and in children and adults dealing with 
inflammatory bowel disease (IBD). Our mini review aims to provide an up-to-
date compilation of relevant research on the effects of pectin on gut immune 
responses, specifically focusing on preterms and newborns. By shedding light 
on the underlying mechanisms and implications of pectin-mediated anti-
inflammatory properties, this review seeks to advance our knowledge in this area 
and pave the way for future research and potential therapeutic interventions.
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1 Chemical structures of pectins and general effects

Pectins, a class of dietary fibers naturally found in fruits and vegetables (1), exhibit highly 
viscous and water-soluble properties and are susceptible to fermentation by the intestinal 
microbiota (2). Multiple studies have suggested that incorporating pectins into infant formula 
is safe and could alleviate infant regurgitation and diarrhea, while also promoting overall 
physical development (3–10). Several clinical trials involving regurgitating infants fed with a 
pectin-thickened formula have reported reduced regurgitation episodes (3–7). Furthermore, 
due to its remarkable water-retention properties (11), pectin may also influence infant stool 
frequency, consistency, and potentially reduce the incidence of diarrhea (3, 8, 9, 12). Pectins, 
being extracted from plant material without undergoing chemical modification, primarily 
consist of polysaccharides with a small proportion of oligosaccharides (13). While there are 
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structural differences between pectin oligosaccharides (POS) and 
human milk oligosaccharides (HMOs) (14), the ingestion of POS has 
been shown to influence the composition of the infant’s fecal 
microbiota and provide benefits akin to HMOs, including a decreased 
risk of infection by pathogenic bacteria and virus (15, 16). It is worth 
noting that HMOs represent the most significant solid component in 
breast milk, surpassing carbohydrates and fat (17). HMO 
concentration is highest in colostrum (20 g/L) and then decreases by 
about 20% at day 30 of lactation (18).

The molecular structure of pectins is notably complex, consisting 
of a homogalacturonan (HG) backbone core region comprising 
1,4-α-D-galacturonic acid (GalA) units that can undergo methylation 
or acetylation, along with branched regions primarily composed of 
rhamnogalacturonan type I  (RGI) (19). The HG backbone 
incorporates monosaccharides with β-(1,3)-D-xylose residues 
(xylogalacturonan) or branched structures with alternating α-(1,4)-
GalA and α-(1,2)-rhamnose (Rha), the latter of which can be linked 
to RGI (20). RGI possesses intricate side chains of neutral sugars 
attached to the rhamnose residues, while the HG backbone may also 
include complex branches like aceric acid and apiose with distinct side 
chains, referred to as rhamnogalacturonan type II (RGII) (21). After 
HG, RGI is plants’ second major pectic fraction (21) (Figure 1). While 
pectins share the same fundamental repeating elements, their 
quantities and chemical structures can vary depending on their 
source, location within the plant, and the extraction methods 
employed (15). Pectins demonstrated varying degrees of esterification 
and a wide range of molecular weights, ranging from 60 to 900 kDa, 
precluding their intestinal absorption (19, 20, 22, 23). Notably, the 
structural characteristics of pectin directly influence the development 
of gut microbial communities (15).

In addition, pectins can have dual immunomodulatory effects: (a) 
direct interactions with the intestinal barrier and engagement with 

immune receptors, such as Toll-like receptors (TLRs), resulting in 
reduced inflammation, and (b) indirect effects via modulation of the 
gut microbiota through fermentation and production of SCFA (24–
26). These properties are particularly relevant in intestinal 
inflammatory diseases, such as necrotizing enterocolitis (NEC), which 
remains a leading cause of mortality in premature neonates (27). In 
this review, we  aim to provide a comprehensive overview of the 
immunomodulatory effects of pectins in the context of preterms and 
newborns and their potential role in modulating the neonatal gut 
epithelial barrier and microbiota. Understanding the impact of pectins 
on the epithelium and microbiota can offer valuable insights into their 
potential therapeutic applications for mitigating intestinal 
inflammation and promoting neonatal health.

2 Preterm microbiota

Preterm neonates exhibit a distinct gut microbiota composition 
compared to full-term neonates (28). Unlike vaginally born infants, 
preterm neonates delivered by cesarean section (C-section) tend to 
be colonized by maternal skin bacteria, leading to an abundance of 
Staphylococcus, Corynebacterium, Propionibacterium spp., and a 
deficiency of Lactobacillus, Bifidobacterium, and Bacteroides (28). This 
difference in microbiota colonization can significantly affect the 
neonate’s immune system (28, 29). Notably, C-section delivery has 
been associated with an increased risk of celiac disease, asthma, 
obesity, and type 1 diabetes in newborns (29). During vaginal delivery, 
Escherichia coli, Staphylococcus, and Streptococcus, play a crucial role 
in creating an anaerobic environment, which allows the colonization 
of strict commensal anaerobes such as Bacteroides, Clostridium, and 
Bifidobacterium spp. (29, 30). The diversity of the infant gut microbiota 
continues to increase over time with a significant shift at weaning (31, 

FIGURE 1

Schematic structure of pectins.

https://doi.org/10.3389/fnut.2023.1286138
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Donadio et al. 10.3389/fnut.2023.1286138

Frontiers in Nutrition 03 frontiersin.org

32). This process is delayed in preterm neonates delivered by 
C-section, potentially affecting the growth of commensal anaerobic 
bacteria (29).

Apart from the mode of delivery, other factors can disrupt the 
neonate’s microbiota, including early antibiotic use and feeding 
practices. Early antibiotic administration reduces microbiome 
diversity in the neonate’s stool and eliminates the growth of 
commensal bacteria impairing the innate immune defense (29, 33, 
34). Microbial colonization triggers and accompanies rapid 
morphological and functional changes in the gut (31, 32). It has 
been proposed that impaired colonization in preterm infants leads 
to dysmotility of the intestinal tract, and uncontrolled 
inflammation, triggering disease states including neonatal NEC 
(27, 35). The host’s central strategy to maintain its homeostatic 
relationship with the microbiota is to minimize contact between 
the microbiota and the epithelial cell surface, thereby limiting 
tissue inflammation (36). This segregation is partially accomplished 
by secretory-IgA (SIgA) (37). However, the presence of SIgA, a 
predominant immunoglobulin in the human gut, relies on the 
gastrointestinal tract’s colonization by microbiota. SIgA is critical 
in attenuating inflammatory reactions in the intestine, particularly 
in preterm infants (37–40). For example, germ-free mice, lacking 
microbiota, demonstrate a marked reduction of SIgA in the gut 
(41–43). Moreover, previous studies have shown that pectin-fed 
animals have significantly higher levels of SIgA and IgA than 
controls (e.g., cellulose-fed animals) (44–47).

The feeding modality can also shape the infant’s gut microbiota. 
Formula feeding, for instance, can impact the microbiota by increasing 
the prevalence of Clostridium difficile, Bacteroides fragilis, and 
Escherichia coli, while reducing the prevalence of beneficial 
commensal bifidobacteria (29). Lack of breastfeeding prevents 
neonates from acquiring prebiotics from human breast milk, resulting 
in lower microbial diversity and unusual gut colonization with 
pathogenic proteobacteria, such as Enterobacter, Escherichia, and 
Klebsiella in preterm newborns (48–50). The immature intestinal 
mucosal barrier in preterms also allows the passage of pathogenic 
bacteria and bacterial toxins through the epithelial cells (49). Finally, 
infants can inherit bacteria associated with antibiotic resistance from 
their mothers through breastfeeding (51).

Since, pectin and POS are fermented in the intestine by 
Bacteroides, Bifidobacteria, Lactobacilli, Enterococcus, and Clostridium 
(13), it is anticipated that the microbial community in preterm 
neonates will differ in its ability to metabolize pectin substrates and, 
consequently, produce short-chain fatty acids (SCFA) compared to 
full-term babies. Unlike full-term babies, preterm infants with a 
deficiency of Lactobacillus, Bifidobacterium, and Bacteroides are 
expected to exhibit a reduced capacity for pectin degradation. 
Bacteroides, known for their pivotal role in breaking down various 
plant polymers, possess many carbohydrate-active enzyme 
(CAZymes) genes (52). Furthermore, pectin substrates may also foster 
the growth of beneficial bacteria. For instance, RGI-enriched citrus 
pectin has been shown to selectively promote the growth of 
Bifidobacterium, Lactobacillus, and Faecalibaculum spp. (53). Larsen 
and colleagues have also demonstrated that the abundance of 
beneficial bacteria such as Bifidobacterium, Christensenellaceae, 
Prevotella copri, and Bacteroides spp. can either increase or decrease 
depending on the specific pectin substrate, suggesting that the 
microbial community in preterm infants can be modulated using 

structurally different pectins to promote the growth of more beneficial 
bacteria (54).

3 Pectins and intestinal barrier in NEC

NEC is a severe inflammatory disease of premature neonates’ 
gastrointestinal tract, characterized by intense intestinal necrosis (55, 
56). NEC’s mortality rate can reach 30%, leaving the survivors with 
severe neurodevelopmental delays (56, 57). While the exact 
mechanisms responsible for NEC development are still debated, they 
may involve factors such as the prematurity of the intestine, intense 
production of inflammatory cytokines, defective mucus production, 
and low expression of tight junctions (TJ) proteins, leading to 
increased intestinal permeability and penetration of pathogenic 
bacteria and toxin, causing tissue injury and intestinal necrosis (56, 
58). One potential mechanism by which pectins can contribute to 
preventing intestinal inflammatory diseases is by preserving the 
integrity of the intestinal layer and enhancing mucosal immunity (24). 
The intestinal layer is safeguarded by several physical barriers, 
including gastric acid, the mucus layer, and a tight monolayer of 
intestinal epithelial cells (IECs) held together by TJ to prevent the 
transfer of pathogens and toxins from the lumen into the circulation 
(59). These TJ play a crucial role in maintaining the gastrointestinal 
barrier’s integrity by regulating the permeability of the intestinal cell 
layer (58).

The mucus layer is a protective barrier separating the IECs from 
the luminal content and the microbiota. It mainly consists of mucins, 
glycoproteins produced by goblet cells, with MUC2 being the 
predominant mucin in the small and large intestines (59). Pectins can 
stimulate the production of MUC2 (60). Additionally, the mucus layer 
contains defensins, antimicrobial components derived from Paneth 
cells, and SIgA that protects against pathogen invasion (61–63). The 
mucus coating is composed of two layers: an outer layer, housing 
commensal bacteria, and an inner layer, which acts as a barrier against 
bacterial penetration (64). Neonates with NEC may have fewer goblet 
cells producing mucus, resulting in impaired mucus production after 
infection (65, 66). While not yet confirmed in humans, a neonatal rat 
NEC model demonstrates that HMOs provide protection against NEC 
(67). Survival rates and pathology scores show significant 
improvement when HMOs are introduced into orally administered 
formula. These beneficial effects are hypothesized to be  mediated 
through specific receptors that mimic pathogen lectins, preventing 
interactions with host glycans. It is worth noting that pectin and POS 
also exhibit antiadhesive and antimicrobial properties, similar to 
HMOs (14). Additionally, pectins possess mucoadhesive properties by 
adhering to densely mucin-grafted glycans (68) and preventing 
pathogen colonization.

NEC patients often exhibit higher production of pro-inflammatory 
cytokines, such as TNF-α and IL-1β, which increase intestinal TJ 
permeability, causing bacterial translocation and boosting the 
inflammatory state in the gut (58). Pectins can also directly interact 
with TLR signaling pathways, thereby reducing inflammation (69, 70). 
For instance, pectins have been found to inhibit IL-6 secretion 
induced by TLR2-1 (70, 71). Additionally, TLR4 can serve as a 
receptor for non-canonical ligands, including carbohydrates present 
in pectins (72). It is believed that the increased expression of TLR4 on 
IECs might explain the excessive inflammatory response with high 
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production of pro-inflammatory cytokines including IL-6, IL-8, and 
TNF-α found in NEC patients (73). TLR4 is responsible for detecting 
lipopolysaccharide (LPS), a critical outer membrane component of 
gram-negative bacteria, which stimulates the NF-κb pathway to 
produce pro-inflammatory cytokines, such as IL-8 and TNF-α (74). 
TLR4 also increases intestinal stem cell apoptosis and decreases IEC 
proliferation and migration, impairing intestinal mucosal healing and 
regeneration, thereby favoring NEC development (56).

4 Impact of pectin structure and 
origin on its function

Several studies have observed that pectins with different structures 
have distinct modulatory effects on the immune system. Most of the 
studies were conducted using pectins from citrus (e.g., lemon) (75, 
76), but also with pectins from apple (77), cacao (78), and papaya (69). 
Pectins have a backbone composed of GalA that varies in the degree 
of methyl-esterification (DM), and the immunomodulatory effects of 
pectins are dependent on the DM. In vitro and in vivo studies (Tables 1, 
2, respectively) showed that pectins, with different chemical structures 
and degrees of DM, can strengthen the mucus layer by directly 
stimulating mucin production by goblet cells.

In vitro studies have shown that pectins from citrus, lemon, and 
orange with higher DM (DM52 to 90) were able to reduce expression 
of NF-κB, IL-1β, IL-6, and IL-10 in a dose-dependent manner, reduce 
the activation of TLR2-1, TLR3, and TLR4, and increase the activation 
of TLR2 (70, 71, 79–81). In contrast, pectins with low DM (DM7 to 
30) from citrus, lemon, orange, and papaya improved epithelial barrier 
integrity, reduced secretion of IL-10, and IL-6 in a dose-dependent 
manner, and reduced the activation of TLR2, TLR2-1, TLR3, TLR8, 
TLR9 [69; 70; 71; 80; 81]. Interestingly, the reduction of IL-6, iNOS, 
and COX-2 expression, the activation of TLR2 and TLR4, and the 
inhibition of TLR2 were achieved for some pectins regardless of the 
DM (69, 71, 79, 81, 82). Pectins with a low DM of 50 can penetrate the 
mucin layer and interact with IEC (24). Treating polarized monolayers 
of human T84 intestinal epithelial cells with lemon pectin, especially 
pectins with DM30 and DM74, can also improve their transepithelial 
electrical resistance (81). Moreover, low-methoxyl pectin from lemon 
can restore epithelial barrier integrity by increasing TJ protein 
expression such as occluding and zonula occludens (ZO-1) (86). The 
immunomodulatory effects of pectins in in vitro studies has been 
summarized in Table 1.

An increasing amount of evidence on in vivo models (Table 2) 
suggests that pectins from apple, artichoke, citrus, lemon, orange, and 
pear can have anti-inflammatory properties, including the capacity to 
regulate cytokine production, macrophage activity, and TLR 
expression (83, 85, 87, 88). Apple pectin treatment decreased the 
production of TNF-α and inflammation in the colon in a DMH/ 
DSS-induced colitis model (77). Native artichoke pectin and modified 
artichoke pectin reduced the expression of IL-6, TNF-α, iNOS, and 
ICAM and also increased the expression of TJ proteins MUC1 and 
occludin (84). Citrus and lemon pectins with low DM reduced the 
production of IL-1β, IL-6, and TNF-α, reduced neutrophil migration, 
improved epithelial barrier integrity, and increased expression of 
occludin in doxorubicin-induced ileitis (70, 82) and carerulein-
induced pancreatitis (86). A compilation of the immunomodulatory 
effects of different pectins in animal models is shown in Table 2.

It is essential to acknowledge that many referenced in vivo studies 
(Table 2) were conducted on mice or rats a few weeks old, not neonates. 
While in vitro experiments (Table 1) provide some insights into cell 
responses, the question remains whether preterm and neonatal cells 
will exhibit similar responses as the established cell lines. Hence, there 
is a strong rationale for developing advanced models, like neonatal gut 
organoids cultured under anaerobic conditions, which can accurately 
replicate the interactions between pectin, neonatal gut cells, and 
microbiota to validate and extend these findings.

5 Pectin consumption stimulates the 
production of SCFA by the microbiota

Pectin consumption stimulates the production of SCFA by the gut 
microbiota, which has beneficial effects on gut health (24, 25). SCFA, 
such as butyrate, stimulates mucin secretion in vitro through the 
upregulation of MUC3, MUC4, and MUC12 genes in the LS174T 
human colorectal cancer cell line (89). A low-fiber diet causes a shift 
in the gut microbiota to mucin degraders bacteria (e.g., A muciniphila, 
B. thetaiotaomicron) to fulfill their energy requirements (90). When 
pectins and other soluble fibers like inulin and β-glucan are fermented 
in the large intestine, they produce SCFAs due to their higher viscosity 
and solubility. This fermentation process stimulates the growth of 
healthy bacteria and reduces the growth of pathogenic bacteria (91). 
SCFAs, particularly acetate, propionate, and butyrate, serve as a 
primary energy source for colonocytes and play a crucial role in 
maintaining normal colonic function (92). They help in lowering 
intestinal pH, stimulating electrolyte and fluid absorption, increasing 
blood flow, and preventing pathogen overgrowth and intestinal 
inflammation (1, 91, 93, 94).

The production of SCFAs also contributes to reducing 
inflammation through different mechanisms, including the activation 
of G-protein-coupled receptors (GPRs), which inactivate the NF-κB 
pathway in immune and intestinal cells (91, 95). GPR41 and GPR43 
are important for immune surveillance in the colon, stimulating the 
secretion of cytokines IL-1β and IL-18 (91). GPR43 is mainly 
expressed in innate immune cells, such as neutrophils and 
macrophages (96). GPR109, activated by butyrate, inhibits the 
pro-inflammatory NF-κB pathway (91, 96). Furthermore, SCFAs 
inhibit the production of pro-inflammatory cytokines IL-8, IL-12, 
IL-1, and TNF-α, and decrease NF-κB expression (95). The main three 
GPRs activated by SCFA are expressed in the enteroendocrine cells of 
the colonic epithelium, the polymorphonuclear immune cells, and 
smooth muscle cells (91).

Butyrate, in particular, modulates immune cells, such as 
macrophages, dendritic cells, and lymphocytes, inhibiting the 
production of cytokines IL-12p70 and IL-23 (91). It also regulates the 
proliferation of stem cells from the intestinal crypts (97). SCFAs are 
crucial for regulating intestinal inflammation by controlling the 
migration of immune cells to sites of injury and modulating their 
activation state (95). Additionally, they inhibit histone deacetylases 
(HDACs) in the IECs and immune cells (92). HDCA inhibition 
reduces the expression of NF-κB in immune cells and, as a result, 
decreases the production of pro-inflammatory cytokines (92). Studies 
have shown that SCFA can reduce the pro-inflammatory response by 
modulating TLR4 signaling pathway, reducing leukocyte infiltration, 
increasing the production of the anti-inflammatory cytokine IL-10, 
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TABLE 1 In vitro studies on the immunoregulatory activities of pectins.

Dietary source
Specific pectin 
characteristic

In vitro model
Immunomodulatory activity 
of pectins

References

Apple Apple pectin (AP) Colon cancer cell lines 

HT29

AP: ↓ TLR4 expression in the cell 

membrane

Liu et al. (77)

Redistributed TLR4 to the cytoplasm

AP+LPS: ↓ TNF-a production

Cacao pod husk Modified with different degrees of 

DM and DE

Murine peritoneal 

macrophages

MOP: ↑ anti -inflammatory IL-10 Amorim et al. (78)

OP (native pectin), MOP 

(modified pectin)

↑ pro-inflammatory TNF-a and IL-12 

production in macrophages

Citrus Pectins with different DE (DE30, 

DE60, DE90)

LPS-activated 

macrophages RAW264.7 

and murine peritoneal 

macrophages

All pectins: ↓ iNOS and COX-2 expression Chen et al. (79)

DE90: ↓ NF-kB activation

Citrus Pectins with different DE (DE30, 

60, 90)

PBMC DE60, DE90: ↓ IL-1b and ↑ IL-1ra in a 

dose-dependent manner

Salman et al. (80)

DE30: ↓ IL-10 in a dose-dependent manner

Citrus Native citrus and orange pectins Murine macrophage 

RAW264.7

Orange pectin ↓ IL-6 Ishisono et al. (76)

Orange

Lemon Pectins with all DM already in 

low doses

HEK-Blue hTLR4 reporter 

cell line

↑ TLR4 Vogt et al. (81)

Pectins with high and low DM 

(DM30 and DM74)

HEK-Blue hTLR2 reporter 

cell line

DM74: ↑ TLR2 in a dose-dependent 

manner

DM30 and DM74: Improved epithelial 

barrier integrity in intestinal epithelial cells

Lemon Pectins with high and low DM HEK-Blue hTLR2 reporter 

cell line

DM7: ↓ TLR2 Sahasrabudhe et al. (70)

DM7 and DM75: ↓ IL-6 and IL-10 secretion 

in human dendritic cells

DM7: ↓ IL-6 secretion in mouse 

macrophages RAW264.7

Lemon Citrus pectin (CP) with non-

esterified Gal-A residues

HEK-Blue mTLR2 

reporter cell line

All pectins ↓ TLR2 in a dose-dependent 

manner

Beukema et al. (82)

Pectins with a blockwise distribution of 

non-esterified Gal-A have a stronger effect 

on mTLR2 inhibition

Lemon lemon pectins with high and low 

DM

HEK-Blue hTLR2 reporter 

cell line

DM33: ↓ TLR2-1 Beukema et al. (71)

DM52: ↓ TLR2-1, TLR3, TLR4

All pectins: ↓ IL-6

Orange orange pectins with high and low 

DM

HEK-Blue hTLR2, 3, 5, 8, 

9 reporter cell lines

DM32: ↓ TLR3 and TLR8

DM64: ↑ TLR2

DM64: ↓ TLR2-1, 3, TLR5, TLR8, TLR9

MCP Pectasol-C Human lymphocytes ↑ T-cytotoxic, B and NK cells in a dose-

dependent manner

Ramachandran et al. (75)

K562 chronic myeloid 

leukemia cells

↑ NK-cell activity on K562 cells in a dose-

dependent manner

Papaya Unripe pectin (longer chain and 

low DM)

HEK-Blue hTLR3,4 and 9 

reporter cell lines

↓ TLR3 and TLR9 Prado et al. (69)

All pectins: ↑ TLR2 and TLR4

PBMC, human peripheral blood mononuclear cells; DE, degree of esterification; DM, degree of methyl-esterification; TLR, toll-like receptor, MCP, modified citrus pectin.
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TABLE 2 In vivo studies on the immunoregulatory effects of pectins.

Pectin source Chemical structure In vivo model
Immunomodulatory activity of 
pectins

References

Apple Oligogalactan from apple 5-week old ♂ mice of Institute of 

Cancer Research (20/group)

DMH/DSS-induced mouse 

colitis

↓ tumor formation in the colon Liu et al. (77)

↓ inflammation in the colon

↓ TLR4 expression in colonic tissue

↓ TNF-a

Apple Native apple pectin (AP) 4-week old ♀ Balb-c mice (6/

group)

DSS- induced mouse colitis

AP: ↑ fecal and mesenteric lymph node (MLN) IgA Lim et al. (44)

DS+AP: ↑ MLN IgA

AP: ↓ CD4+/CD8+ cells

Apple Native 6-weeks old ♂ BALB/c mice and 

IL-10-/- mice (5/group)

↓ TNF-a production Ye and Lim (83)

↓ IgM and IgG expression in spleen in IL-10−/− mice

↑ CD4+ and CD8+

Artichoke and citrus Artichoke pectin (AP)

Modified Artichoke pectin (APwA)

Citrus pectin (CP)

7-9-weeks old ♂ C57BL/6 mice 

(6/group)

DSS- induced mouse colitis

AP and APwA: ↓ TNF-a, iNOS, ICAM-I expression Sabater et al. (84)

AP and CP: ↓ IL-6 production

AP: ↑ MUC-1 and occluding expression

CP: ↑ ZO-1 and villin expression

Citrus Citrus pectin and MCP (Pectasol-C) 8-week old ♀ BALB/c mice (5/

group)

Both pectins: ↑ IL-4, IL-17 and IFN-g production Merheb et al. (85)

MCP: ↑ TNF-a production

CP: ↓ IL-1b production

Lemon Lemon pectins with DM7 7-10-weeks old ♀ C57BL/6 mice 

(n/group n.i.)

Doxorubicin-induced ileitis

↓ TNF-a and IL-6 production Sahasrabudhe et al. (70)

↓ neutrophil influx

↓ apoptosis in the crypts

Lemon Pectins with low DM (DM18) and high 

Gal-A residues

10-weeks old ♀ C57BL/6 mice 

(n/group n.i.) Doxorubicin-

induced ileitis

↓ apoptotic cells in the crypts Beukema et al. (82)

↓ histopathological score

Prevented doxorubicin-induced villus degeneration

All pectins: ↓ neutrophil influx

All pectins: ↓ IL-6 and MCP-1 secretion in the 

peritoneal cavity

Lemon Low DM pectins (DM7) ♀ BALB/c mice (6-8/group) 

Caerulein-induced acute 

pancreatitis

↓ IL-6, IL-1b and TNF-a production Sun et al. (86)

Improved epithelial barrier integrity

↑ occludin expression

MCP MCP Pectasol-C Weeks old ♂ Wistar rats (15/

group)

↓ TLR4, MyD88, pNF-kB-p65 expression Xu et al. (87)

↓ IL-1b, IL-18, TNF-a

Orange Pectins with DM64 10-weeks old ♀ C57BL/6 mice 

(5/group)

Citrobacter rodentium-induced 

colitis

Prevented intestinal barrier dysfunction Beukema et al. (26)

Enhanced microbiota diversity

Citrus Native citrus pectin 7-9-weeks old ♂ C57BL/6 mice 

(n/group n.i.)

DSS-induced colitis

↓ IL-1b, TNF-a, IL-17A in the colon Ishisono et al. (76)

Orange Orange pectin: more arabinose and 

galactose, high content of neutral sugar 

side chain

TNBS-induced colitis Ameliorates TNBS-induced colitis in a side chain-

dependent manner

Pear Native Asian pear pectin 6–8-week ♂ BALB/c mice (11/

group)

↓ IFN-g and ↑ IL-5 in bronchial fluid Lee et al. (88)

↑ IFN-g and ↓ IL-5 in splenic cells

normalized pulmonary histopathological changes

↓ serum IgE

DE, degree of esterification; DM, degree of methyl-esterification; DMH, 1,2-dimethylhydrazine; DSS, dextran sulfate sodium; MCP, modified citrus pectin; TNBS, 2,4,6-trinitrobenzoic 
sulfonic acid; n/group n.i.: number per group not informed; ♂: male; ♀: female; ↓: reduced secretion/expression; ↑: increased secretion/expression.
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and reducing the pro-inflammatory cytokines IL-6, IL-12, and 
TNF-α (92).

6 Conclusion and future directions

It is crucial to emphasize that neonates, unlike full-term infants, 
do not consume pectins through a regular diet. Nonetheless, there are 
two potential pathways through which pectins could inhibit NEC 
development. Firstly, direct immunomodulatory effects of pectins 
have been demonstrated both in vitro (Table 1) and in vivo studies 
(Table 2). Secondly, pectins may indirectly affect NEC by modulating 
the gut microbiota. Considering these pathways, pectins, which are 
natural compounds found in vegetables, could be  added as a 
supplement to breast milk to help reduce inflammation in neonates 
with NEC or even mitigate the risk of NEC in preterm neonates within 
neonatal intensive care units.

Challenges and outstanding questions.
1. What are the best sources of pectin? Natural or “modified” 

pectins?
2. What is the minimum amount of pectin to observe anti-

inflammatory effects?
3. Are the pectin anti-inflammatory effects age-related?
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Glossary

DM Methyl-esterification

GalA Galacturonic acid

GPRs G-protein-coupled receptors

HDACs Histone deacetylases

HG Homogalacturonan

HMOs Human milk oligosaccharides

IBD Inflammatory bowel disease

IECs Intestinal epithelial cells

LPS Lipopolysaccharide

NEC Necrotizing enterocolitis

POS Pectin oligosaccharides

RG Rhamnogalacturonan

Rha Rhamnose

SCFA Short-chain fatty acids

TJ Tight junctions

TLR Toll-like receptor
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