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Background: Minerals and trace elements were involved in the pathogenesis and 
progression of diabetes. However, the association of mixed exposure to essential 
elements and toxic elements with gestational diabetes mellitus (GDM) is poorly 
understood.

Objective: This study aims to examine the associations between serum calcium 
(Ca), iron (Fe), zinc (Zn), copper (Cu), magnesium (Mg), and cadmium (Cd) 
concentrations in early pregnancy and GDM risk in Chinese pregnant women.

Method: A total of 1,168 pregnant women were included in this prospective 
cohort study. The concentrations of serum elements were measured using 
the polarography method before 14 gestational weeks and an oral glucose 
tolerance test was conducted at 24–28 gestational weeks to diagnose GDM. 
Binary logistic regression analysis and restricted cubic spline were applied to 
evaluate the association between serum individual element and GDM. Bayesian 
kernel machine regression (BKMR) and weighted quantile sum (WQS) regression 
were used to assess the associations between mixed essential elements and Cd 
exposure and GDM risk.

Results: The mean concentrations of Zn (124.65 vs. 120.12  μmol/L), Fe (135.26 vs. 
132.21  μmol/L) and Cu (23.33 vs. 23.03  μmol/L) in the GDM group were significantly 
higher than those in the control group. Single-element modeling results 
suggested that second and fourth-quartile maternal Zn and Fe concentration, 
third and fourth-quartile Cu concentration and fourth-quartile Ca concentration 
were associated with an increased risk of GDM compared to first-quartile values. 
Restricted cubic spline analysis showed U-shaped and non-linear relationships 
between Cd and GDM. According to the BKMR models and WQS analyses, a six-
element mixture was significantly and positively associated with the risk of GDM. 
Additionally, Cd, Zn, and Cu contributed the most strongly to the association.

Conclusion: Serum Zn, Cu, Fe, and Ca exposure during early pregnancy showed 
a positive association with GDM in the individual evaluation. The multiple-
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evaluation showed that high levels of elements mixture, particularly Cd, Zn, and 
Cu, may promote the development of GDM.

KEYWORDS

elements, gestational diabetes mellitus, mixed exposure, zinc, copper, cadmium

1 Introduction

Gestational diabetes mellitus (GDM) is characterized by poor 
glucose tolerance, which occurs or is first discovered during pregnancy 
and affects 9%–26% of pregnant women worldwide (1, 2). The latest 
available data showed that the total incidence of GDM in mainland 
China ranged from 12.8% to 16.7%, which raised growing public 
health concerns (3). The negative health effects of GDM on mothers 
and infants have been well established (4). To date, most diagnostic 
criteria guidelines for GDM recommend the oral glucose tolerance 
test (OGTT) during gestationally 24–28 weeks, leading to a narrow 
therapeutic window (5, 6). However, evidence of identified effects was 
provided from the experimental intervention that was applied to 
prevent GDM in the first trimester of pregnancy, reinforcing the need 
for biomarkers in early pregnancy.

Minerals and trace elements were considered to play specific roles 
in the pathogenesis and progression of diabetes. Increasing animal 
and metabolic studies demonstrated that several essential elements, 
including zinc (Zn), iron (Fe), manganese (Mg), copper (Cu), and 
calcium (Ca), can affect glucose metabolism and insulin sensitivity 
with downstream effects on hyperglycemia and GDM (7, 8). For 
example, Zn is involved in the synthesis and secretion of insulin from 
the pancreatic beta-cells (9), while Mg-containing enzymes are 
involved in glucose homeostasis (10). Previous epidemiologic studies 
mainly focused on heavy metals (11–14), while only a few studies that 
have investigated the effects of essential elements on the risk of GDM 
have yielded inconsistent results (15, 16). A nested case-control study 
with 305 pairs of GDM and controls showed that the increase of Cu 
concentration was positively correlated with the risk of GDM, and Zn 
had a negative impact on GDM (17). However, there is no association 
between Zn and Cu and GDM (16, 18), and even opposite results have 
been reported in other studies (15). Recently, a retrospective study 
from South China indicated that serum Mg and Ca in the first 
trimester were significantly associated with fasting plasma glucose 
during mid-pregnancy (15), but these findings are not supported by 
the studies of others (19, 20).

It has also been shown that elevated heavy metal levels, such as 
cadmium (Cd), can impair insulin secretion by inducing damage to 
pancreatic islet b-cells through oxidative stress (21). A number of 
epidemiologic studies have evaluated Cd as it relates to GDM (12, 22, 
23). It has been revealed that many toxic effects of cadmium (Cd) 
action result from interactions with essential elements, including Zn, 
Fe, and Ca (24). However, in most population-based studies, only a 
single effect of individual essential elements on GDM has been 
evaluated. In the real world, pregnancies are exposed to both essential 
and heavy elements rather than one single element or one class of 
elements, thus investigating the relationship between the mixed 
essential and heavy elements and GDM is also required. Due to the 
multicollinearity and mixture among elements, the traditional logistic 

regression used in most previous studies may be  biased and 
underestimate the actual risk in a “real world” situation (25).

Therefore, this prospective cohort study aims to use two novel 
statistical analysis models, Bayesian kernel machine regression 
(BKMR) and weighted quantile sum (WQS) regression, to investigate 
the association between essential serum elements (Mg, Fe, Cu, Zn, and 
Ca) plus Cd during the first trimester and GDM. These statistical 
analysis models have already been applied to untangle the combined 
effects of mixed elements on other health conditions (e.g., miscarriage 
and allergy) (26, 27).

2 Materials and methods

2.1 Study design and population

This study was based on a prospective cohort conducted at 
Huazhong University of Science and Technology Union 
Shenzhen  Hospital in Shenzhen, China (registration number: 
ChiCTR2200056287). Pregnant women residing in Shenzhen city and 
coming for their first prenatal care visit (before 12 weeks) were invited 
to participate in the study, with the willingness to provide blood 
samples at 24–28 weeks of pregnancy, 32–37 weeks of pregnancy and 
42 days of postpartum and to complete a face-to-face interview 
questionnaire. At baseline, a total of 6,201 pregnant women aged 
20–45 years were enrolled from April 2019 to May 2021. According to 
our pre-specified inclusion and exclusion criteria of participants for 
the present analysis (Supplementary Figure S1), the pregnant women 
with preexisting type 1 or type 2 diabetes before pregnancy (n = 27), 
multiple pregnancies (n = 46), in vitro fertilization (n = 122), hepatitis 
(n = 149) and hyperthyroid (n = 66) were excluded. Further, we also 
excluded pregnancies with missing information on any serum 
elements (e.g., Fe et al.) at the first trimester (n = 4,080) and OGTT 
during gestational 24–28 weeks (n = 543), leaving 1,168 pregnant 
women included in the final analysis. Maternal demographic 
characteristics and pregnancy outcomes were compared between the 
mothers who were included in the analyses and the mothers who were 
excluded from the analyses. As a result, baseline maternal covariates 
and pregnancy outcomes were primarily similar between these two 
groups (Supplementary Table S1). Ethical approval for this cohort was 
given by the Ethics Committee of Huazhong University of Science and 
Technology Union Shenzhen Hospital (No. 2019072644).

2.2 Measurements of serum elements in 
the first trimester

Zn, Ca, Cu, Mg, Fe, and Cd concentrations were measured in blood 
serum samples collected during the first trimester of pregnancy (median: 
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9 weeks of gestation). The venous blood samples (3 mL) were collected 
by professional nurses in the morning and then transported to the 
laboratory within 1 h for measurement of serum elements concentration 
using the polarography method (LK98B, LANBIAO, Tianjin, China). 
Following a rigorous vortex mixing procedure, 40 μL of serum sample 
was transferred into the rotating cup of the vitamin analyzer and 2 mL 
of sample processing solution (analytically pure, LANBIAO) was 
supplemented. In each batch, we also processed and analyzed a blank 
sample, consisting solely of 1.2% HNO3, to monitor and control any 
potential contamination vigilantly. Notably, the spike recovery values for 
serum metals fell within the range of 98.25% to 105.66%. The detection 
limit of the polarographic channel was ≤1 × 10−10 mol/L, and 
measurements of six serum elements were above the detection limit for 
all of the samples. The average inter-day coefficients of variation (CV) 
for six serum elements range from 3.75% to 9.02%.

2.3 Assessment of GDM

All pregnant women in the current study underwent a routine 75 g 
oral glucose tolerance test at 24–28 gestational weeks to diagnose 
GDM. Serum glucose concentrations were measured enzymatically on 
a 7600–010 automated biochemical analyzer (Hitachi, Tokyo, Japan). In 
accordance with the International Association of Diabetes and 
Pregnancy Study Group (IADPSG) criteria, GDM was diagnosed if any 
of the following conditions were met: the fasting plasma glucose was 
>5.1 mmol/L and/or postprandial blood glucose at 1 h was >10.0 mmol/L 
and/or postprandial blood glucose at 2 h was >8.5 mmol/L (5).

2.4 Covariates

Socio-demographic information collected at baseline via standard 
questionnaires by face-to-face interview included: household 
registration (local resident or temporary resident), maternal education 
level (junior middle school and below, high school or university and 
above), family history of diabetes (at least one of the immediate family 
members had type 1 diabetes or type 2 diabetes; Yes or no), previous 
history of diabetes (yes or no), gravidity (one time or ≥2 times), 
history of abortion (yes or no), maternal age (continuous) and 
pre-pregnancy body weight (continuous). Height was measured 
without shoes to the nearest 0.1 cm by trained nurses. Pre-pregnancy 
body mass index was calculated as pre-pregnancy body weight (kg) 
divided by height squared (m2). Fetal gender (male or female), parity 
(one time or ≥2 times), gestational age at delivery, birth weight and 
birth height were derived from the maternal delivery records. A priori, 
the above variables except pregnancy outcomes were selected as 
potential confounders based on previous literature (28–30). We also 
constructed a directed acyclic graph (DAG; Supplementary Figure S2) 
to retain a minimally sufficient number of confounders in the 
regression models (31). The following confounders were identified as 
being important: maternal age, maternal education level, 
pre-pregnancy BMI and self-reported history of diabetes.

2.5 Statistical analysis

Characteristics of the study population were described as means 
and standard deviations (SD) for continuous variables and frequencies, 

as well as the frequency and percentage of categorical variables. 
Differences across groups with or without GDM were tested using 
t-tests, χ2 tests or Fisher’s exact test when appropriate. Serum element 
concentrations were natural log (ln) transformed due to the positively 
skewed distribution. In addition, Pearson’s correlation analysis was 
used to explore the correlations between the levels of six elements in 
serum. The multivariate imputation by chained equations (MICE) 
method was carried out to account for missing values for a small 
proportion of missing pre-pregnancy BMI (1.80%) and parity (0.17%) 
values. A total of 5 imputations were performed separately, and the 
imputed datasets were pooled together as a single dataset with mean 
values for pre-pregnancy BMI and mode values for parity.

Our statistical analysis consists of four parts. First, the 
concentrations of the serum element were divided into four categories 
according to the quartile they fell into, and the lowest group was used 
as the reference. A binary logistic regression model was fit to 
investigate the dose-response associations between individual element 
concentration and GDM, including (1) model 1: without any 
adjustment and (2) model 2: adjusted for a minimally sufficient set of 
confounders (maternal age, maternal education level, pre-pregnancy 
BMI, and self-reported history of diabetes) identified by DAG. Tests 
for linear trends were performed using the median concentrations of 
elements in each quartile as a continuous variable.

Second, a restricted cubic spline regression with three knots at 
25th, 50th and 75th was used to evaluate the possible nonlinear 
relationship between the levels of serum elements and GDM. Third, 
the weighted quantile sum (WQS) regression model was applied to 
evaluate the joint effect of elements. All elements are considered in this 
approach, and elements included in this model were restricted to have 
the same effect direction for the association. The WQS index that 
reflects the body burden of element mixtures and the weight that 
suggests the contribution of each element were calculated, respectively. 
Two sets (positive and negative) of WQS regression models in relation 
to GDM were conducted, each of which derived a WQS index by 
bootstrapping 10,000 times separately. A similar procedure has been 
used in several epidemiologic studies (32, 33).

Finally, the probit extension of Bayesian kernel machine regression 
(BKMR) was used to flexibly model the adjusted association of the 
element mixture at the first trimester on the risk of GDM with 
consideration of the possible nonlinear and non-additive associations 
between element mixtures and GDM. We conducted a component-
wise variable selection method with 10,000 iterations by a Markov 
chain Monte Carlo (MCMC) algorithm and estimated the posterior 
inclusion probability (PIP) that reveals the relative importance of each 
element exposure for selecting crucial elements. Higher values 
indicate higher importance, and the threshold value of PIP was set at 
0.5 (34). The covariates adjusted for in spline analyses, WQS and 
BKMR models were similar to model 2 in the multivariate logistic 
regression analysis.

In order to verify the robustness of our main results, two 
sensitivity analyses were performed: firstly, a model with adjustment 
for the full set of confounders because these factors have been proved 
to either affect the levels of elements, the glucose level or the risk of 
GDM. Secondly, to address potential bias resulting from the weak 
correlation observed between Cd and other elements, we selected the 
quantile g-computation model as an alternative analysis method. This 
approach is renowned for its impartiality, even when dealing with 
decreased correlations between the two exposures, and was used to 
replicate our findings (35). All the analyses were performed using R 
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statistical software (version 4.2.1, http://www.r-project.org). For all 
analyses, a significant p-value (two-tailed) was defined as p < 0.05.

3 Results

A total of 1,168 women were included in this study, of whom 383 
(32.79%) were diagnosed with GDM at 24–28 weeks of gestation 

(Table 1). Compared to pregnant women without GDM, GDM women 
were more likely to be primiparous (p = 0.04) and have a family history 
of diabetes (p < 0.01). They also tend to be older (p = 0.02) and have a 
higher pre-pregnancy BMI (p < 0.01) and a lower gestational age at 
delivery (p = 0.03). There were no significant differences between the 
GDM and non-GDM with respect to key maternal and fetal 
characteristics: household registration, education level, self-reported 
history of diabetes, gravidity, history of abortion, fetal gender, birth 
weight and birth height (all p > 0.05).

The mean and standard deviation for serum levels of elements for 
the cases and controls are shown in Table 2. The levels of serum Zn, 
Cu, and Ca were significantly higher among cases than among 
controls (all p < 0.05), while the levels of serum Mg, Fe, and Cd in the 
case group were comparable to those in the control group (all p > 0.05). 
As shown in Supplementary Figure S3A, strong correlations were 
observed for the serum levels of non-toxic trace elements in pregnant 
women with GDM. A similar result was also observed in non-GDM 
(Supplementary Figure S3B).

The risk of GDM results in association with each element in crude 
and single-element models were evaluated (Table 3). Serum Zn, Cu, 
Ca, and Fe were significantly and positively associated with GDM in 
crude models (all p < 0.05). Except for the element Fe, the other three 
elements also demonstrated a significant trend in p-values. After 
adjusting the founders, these associations are similar to those in the 
crude models to a great extent. In the adjusted models, an increased 
risk of GDM was found for women with second-quartile (OR = 1.48, 
95% CI: 1.03–2.13 for Zn; OR = 1.73, 95% CI: 1.20–2.49 for Fe) and 
fourth-quartile (OR = 1.68, 95% CI: 1.17–2.41 for Zn; OR = 1.57, 95% 
CI: 1.09–2.26 for Fe) serum Zn and Fe concentrations compared to 
women with first-quartile concentrations. Serum Cu concentration 
was still positively associated with the risk of GDM, with ORs of 1.60 
(95% CI, 1.12–2.29) and 1.45 (95% CI, 1.01–2.07) for concentrations 
in the third and fourth quartile, respectively, relative to those in the 
first quartile. Additionally, the risk of GDM with a fourth-quartile 
serum Ca concentration was associated with an OR of 1.64 (95% CI, 
1.15–2.34) relative to the risk with a first-quartile concentration. The 
spline analyses suggested a linear association for GDM and Zn, Cu, 
Ca, and Fe (all p > 0.05) but a nonlinear association for Cd 
(Supplementary Figure S4; p = 0.03).

The result derived from WQS regression revealed a significantly 
positive association between mixed exposure and GDM (OR: 1.38; 
95% CI: 1.08–1.76) (Table 4). The major contributor to the element 
mixture index (WQS index) was Cd (28.75%), followed by Zn 
(24.97%) and Cu (21.89%) (Figure 1).

TABLE 1 Descriptive characteristics of the study population.

Characteristics GDM, 
N =  383

Non-GDM, 
N =  785

p-
valuea

Maternal age, years 32.77 ± 4.20 32.15 ± 3.78 0.02

Pre-pregnancy BMI, kg/

m2
21.96 ± 2.78 20.60 ± 3.74 <0.01

Household registrations, 

n (%)
0.15

  Local resident 249 (65.01) 543 (69.17)

  Temporary resident 134 (34.99) 242 (30.83)

Maternal education, n 

(%)
0.36

  Junior middle school 

and below
15 (3.92) 27 (3.44)

  High school 159 (41.51) 295 (37.58)

  University and above 209 (54.57) 463 (58.98)

Family history of 

diabetes, n (%)
<0.01

  Yes 7 (1.83) 0 (0.00)

  No 376 (98.17) 785 (100.00)

Self-reported history of 

diabetes, n (%)
0.08

  Yes 8 (2.09) 6 (0.76)

  No 375 (97.91) 779 (99.24)

Gravidity, n (%) 0.93

  1 100 (26.11) 203 (25.86)

  ≥2 283 (73.89) 582 (74.14)

Parity, n (%) 0.04

  1 170 (44.39) 300 (38.22)

  ≥2 213 (55.61) 485 (61.78)

History of abortion, n 

(%)
0.54

  Yes 157 (40.99) 307 (39.11)

  No 226 (59.01) 478 (60.89)

Fetal gender, n (%) 0.74

  Male 202 (52.74) 406 (51.72)

  Female 181 (47.26) 379 (48.28)

Gestational age at 

delivery, weeks

38.45 ± 1.38 38.65 ± 1.60 0.03

Birth weight, g 3282.56 ± 447.82 3287.02 ± 477.40 0.88

Birth height, cm 49.90 ± 1.75 49.82 ± 2.09 0.52

BMI, body mass index; GDM, gestational diabetes mellitus. aTwo-sample student’s t-test or 
Pearson’s chi-squared test or Fisher’s exact test when appropriate.

TABLE 2 Comparison of concentrations of serum trace elements 
between GDM and the non-GDM pregnancies.

Elements GDM, 
N =  383a

Non-GDM, 
N =  785a

p-valueb

Mg (mmol/L) 1.60 ± 0.14 1.59 ± 0.14 0.16

Zn (μmol/L) 124 ± 26 120 ± 26 0.03

Cu (μmol/L) 23.33 ± 1.95 23.03 ± 2.01 0.02

Ca (mmol/L) 1.55 ± 0.11 1.53 ± 0.12 0.02

Fe (μmol/L) 135 ± 28 132 ± 27 0.07

Cd (μg/dl) 0.24 ± 0.09 0.24 ± 0.09 0.24

GDM, gestational diabetes mellitus. aData are presented as mean ± SD.
bp-values were derived from two-sample student’s t-test.
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Supplementary Figure S5 summarizes the results of the 
probabilities of inclusion derived from the BKMR model. The PIP 
value of Cu (0.56) was the highest, followed by Ca (0.51). The 
overall associations between the element mixture and GDM are 
shown in Figure 2A. The serum element mixture at early pregnancy 
was significantly associated with a higher risk of GDM when all 
elements were at the 65th percentile or above compared to their 
50th percentile, while a decreased risk of GDM was observed when 
all elements were at the 40th percentile or below. The individual 
effect of serum levels of six elements on GDM was not significant 
(Figure  2B). According to the univariate exposure-response 
associations between a single element and GDM, the dosimetry 
response curve for Cd tended to be a “U” shape and linear curves 
were observed for the other elements, which were consistent with 

the results of spline analyses (Figure 3). No interaction effect was 
found among the six elements in the bivariate exposure-response 
analysis, since the slopes of the exposure-response function of a 
specific element were similar at the different percentiles of other 
elements, with others fixed at the 50th percentile 
(Supplementary Figure S6). Moreover, the interaction among six 
elements was also explored, with no pronounced interaction effect 
found (Supplementary Figure S7).

Sensitivity analyses were conducted by adjusting all the potential 
covariates instead of the minimum sufficient set of covariates, and the 
results were similar (Supplementary Figures S8–S10; 
Supplementary Table S2). Similar to the WQS model, the quantile 
g-computation model showed that these six elements were 
significantly and positively correlated with GDM, both in the 

TABLE 3 The association between trace elements and gestational diabetes mellitus using the logistic regression model.

Elements Case/control Model 1 Model 2

OR (95% CI)a p-value p-trend OR (95% CI)b p-value p-trend

Mg 0.11 0.15

  Q1 85/214 1.00 (ref.) — 1.00 (ref.) —

  Q2 96/194 1.25 (0.88 to 1.77) 0.22 1.26 (0.88 to 1.81) 0.21

  Q3 105/188 1.41 (1.00 to 1.99) 0.05 1.40 (0.98 to 2.01) 0.06

  Q4 97/188 1.30 (0.91 to 1.85) 0.14 1.28 (0.89 to 1.83) 0.19

Zn 0.02 0.01

  Q1 80/211 1.00 (ref.) — 1.00 (ref.) —

  Q2 97/195 1.31 (0.92 to 1.87) 0.13 1.48 (1.03 to 2.13) 0.04

  Q3 96/196 1.29 (0.91 to 1.84) 0.16 1.37 (0.95 to 1.98) 0.09

  Q4 109/183 1.57 (1.11 to 2.23) 0.01 1.68 (1.17 to 2.41) <0.01

Cu <0.01 <0.01

  Q1 84/211 1.00 (ref.) — 1.00 (ref.) —

  Q2 82/211 0.98 (0.68 to 1.40) 0.90 1.03 (0.71 to 1.49) 0.87

  Q3 111/179 1.56 (1.10 to 2.21) 0.01 1.60 (1.12 to 2.29) 0.01

  Q4 105/184 1.43 (1.01 to 2.03) 0.04 1.45 (1.01 to 2.07) 0.04

Ca 0.02 0.02

  Q1 87/223 1.00 (ref.) — 1.00 (ref.) —

  Q2 103/207 1.28 (0.91 to 1.80) 0.16 1.36 (0.96 to 1.94) 0.09

  Q3 86/182 1.21 (0.85 to 1.73) 0.29 1.22 (0.85 to 1.77) 0.28

  Q4 106/173 1.57 (1.11 to 2.22) 0.01 1.64 (1.15 to 2.34) <0.01

Fe 0.05 0.06

  Q1 76/216 1.00 (ref.) — 1.00 (ref.) —

  Q2 107/184 1.65 (1.16 to 2.36) <0.01 1.73 (1.20 to 2.49) <0.01

  Q3 96/196 1.39 (0.97 to 1.99) 0.07 1.42 (0.98 to 2.06) 0.06

  Q4 103/189 1.55 (1.09 to 2.21) 0.02 1.57 (1.09 to 2.26) 0.02

Cd 0.19 0.22

  Q1 107/221 1.00 (ref.) — 1.00 (ref.) —

  Q2 82/198 0.86 (0.60 to 1.21) 0.38 0.87 (0.61 to 1.23) 0.43

  Q3 86/187 0.95 (0.67 to 1.34) 0.77 0.94 (0.66 to 1.34) 0.74

  Q4 107/179 1.23 (0.89 to 1.72) 0.21 1.23 (0.87 to 1.73) 0.23

aOR, odds ratio; CI, confidence interval; ref., reference.
bAdjusted for maternal age, maternal education, pre-pregnancy BMI and self-reported history of diabetes.
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unadjusted analysis (β: 0.21, 95% CI: 0.04–0.38) and after adjusting 
for covariates (β: 0.22, 95% CI: 0.04–0.39), yielding comparable results.

4 Discussion

In this study, we explored the associations between serum levels 
of six elements (Mg, Cu, Fe, Ca, Zn, and Cd) during the first trimester 
and the risk of GDM among Chinese pregnant women. The positive 
relationship of GDM with Zn, Cu, Fe, and Ca was observed in crude 
and adjusted models. In addition, a significant positive joint effect of 

the six elements mixture on the GDM risk was found, while Cd, Zn, 
and Cu appeared to be more critical in the element mixture. However, 
no significant individual effect of elements on GDM was found in 
BKMR models.

The concentrations of serum elements included in this study differ 
from those of several previous studies in China or neighbouring 
countries. Specifically, the levels of serum Cu, Mg, Fe, Ca, and Zn in 
GDM were lower than that reported for GDM women in Wuhan 
determined by inductively coupled plasma mass spectrometry, as well 
as that of GDM women in Shanghai using inductively coupled plasma-
atomic emission spectrometry (17, 36). In contrast, the serum Cd 
concentrations in healthy pregnant and GDM women (0.24 μg/dL) 
were comparable to those of occupationally exposed men (2.58 μg/L), 
but markedly higher than healthy people in previous studies done in 
China (1.076 μg/L) and Korea (1.34 μg/L) (36). It is worth noting that 
a wide variation exists in individual element exposure levels across the 
trimesters (37), and dietary intake and environmental levels of trace 
elements seemed to vary by geographic region (38, 39). Therefore, the 
difference in serum element concentrations between our study and 
previous studies may be partly due to the differences in dietary habits, 
environmental exposure and detection methods.

In the current study, Zn concentrations in GDM patients were 
markedly higher than in the non-GDM group. Some (36, 40), but not 
all (18) cross-sectional studies agreed with our results, revealing that 
type 2 diabetic or GDM patients have suboptimal Zn status in the 
blood due to increased urinary depletion. Similarly, inconsistent 

TABLE 4 WQS model to estimate the associations between WQS index 
and gestational diabetes mellitus.

Outcomes Univariate Multivariateb

OR 
(95% 
CI)a

p-value OR 
(95% 
CI)a

p-value

Positive 1.38 (1.08 

to 1.76)

<0.01 1.44 (1.11 

to 1.86)

<0.01

Negative 1.22 (0.97 

to 1.49)

0.06 1.24 (0.98 

to 1.54)

0.06

aOR, odds ratio; CI, confidence interval.
bAdjusted for maternal age, maternal education, pre-pregnancy BMI and self-reported 
history of diabetes.

FIGURE 1

WQS model regression index weights for the gestational diabetes mellitus.
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results were observed among studies with a population-based cohort 
design (15, 18). The difference in albumin levels might partially 
explain the above discrepancy to some extent. About 70% of the Zn is 
bound to albumin and any pathological alteration of albumin affects 
the blood Zn levels (41). It has been reported that lower serum zinc 
was observed relating to altered Zn-binding serum proteins in 
advanced CKD and chronic dialysis patients (42). Normalization of 

blood Zn levels according to the serum albumin levels should 
be considered in future studies investigating the relationship between 
blood Zn and GDM.

It has been speculated that Cu can promote the development of 
diabetes by continuously providing an active site and increasing 
oxidative stress, suggesting that Cu may contribute to glucose 
metabolic disorders through ROS generation (43). Previous studies 

FIGURE 2

Univariate exposure-response functions (95% CIs) between exposure to single elements and the gestational diabetes mellitus while fixing other metals 
at their 50th percentiles. (A) Overall effect of metal mixture (estimates and 95%CI). (B) Single metal association (estimates and 95% CI, estimated zero 
means null).

FIGURE 3

The overall effect and individual effect (estimates and 95% CIs) of serum elements on the risk of gestational diabetes mellitus.
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mainly focused on the difference in Cu concentrations between GDM 
and the controls, without further exploration of the relation between 
Cu and GDM risk due to the small sample size (36, 44–46). For 
example, Wang et al. reported that compared to the control group 
(n = 90), the Cu concentration of the GDM group (n = 46) was 
significantly higher (36). Only a few studies have ventured into this 
territory. Both case-control and nested case-control studies indicated 
significantly increased odds of GDM in association with higher 
concentrations of plasma Cu (17, 47). Recently, a study published in 
the United  States also corroborated these discoveries (16). Our 
findings regarding the positive relationship between serum Cu level 
and the risk of GDM are in agreement with previous studies on type 
2 diabetes among general populations, offering support to the 
hypothesis that Cu was involved in the pathogenesis of abnormal 
glucose metabolism (48).

Ca homeostasis is considered a significant contributory factor in 
regulating proper insulin secretion and action (49). Currently, most 
epidemiological research studying the relationship between Ca and 
glucose homeostasis is based solely on dietary level, whereas limited 
studies are on the internal exposure level. In contrast to the protective 
effect of dietary Ca on diabetes (50, 51), a meta-analysis of four studies 
indicated that both total serum Ca (RR: 1.38, 95% CI: 1.15–1.65) and 
albumin-corrected Ca (RR:1.29, 95% CI:1.03–1.61) were associated 
with incident diabetes, which was in line with ours (52). Moreover, a 
body of growing epidemiologic studies implicated that elevated 
exposure to Cd promotes the progression of diabetes (12, 22, 23, 53). 
However, it is noteworthy that only one of these studies delved into 
the dose-response relationship, yielding non-significant results (53). 
To the best of our knowledge, our study is the first to report the 
U-shape effects of serum Cd in the first trimester on GDM. This 
finding needs further validation.

Even if a single compound is below the safe limits, exposure to 
multiple compounds may be related to adverse health consequences. 
In order to determine the joint effects and the possible interactions 
among elements, we  used the BKMR and WQS methods in this 
pregnant population (32, 33). The results showed a positive combined 
effect of six elements on GDM. It is noticeable that the association of 
individual element with GDM risk was attenuated and no longer 
statistically significant along with the increasing concentrations of 
other elements in the BKMR model. A relatively strong correlation 
was observed among the essential elements in the current study, and 
the trends of these elements with GDM were all positive. Considering 
the possible overlapping biological functions of essential elements, it 
may not be surprising to detect the context-dependent nature of the 
effects of these elements (54). However, other essential elements, such 
as selenium and manganese, are not measured in this study, which 
guarantees future research. Further, Zn and Cu were identified to play 
a more critical role in the risk of GDM under the context of various 
essential elements, suggesting the mechanism of Zn and Cu involved 
in the progression of GDM may be, at least partly, independent of 
other essential elements.

Regarding confounding factors associated with the risk of GDM, 
maternal age, parity, family history of diabetes and pre-pregnancy 
BMI were included in the analysis. Notably, we found that the odds of 
GDM were elevated among primiparous pregnant women, those of 
advanced age, individuals with a family history of diabetes, and those 
with a higher pre-pregnancy BMI. These findings align with the 
conclusions of prior studies. Additionally, our study observed a 

relatively high proportion of GDM diagnoses, amounting to 32.79%, 
which is consistent with various reported prevalence rates in different 
geographic regions of China. It is worth noting that another study, 
encompassing 690 Chinese pregnant women using the diagnostic 
criteria of IADPSG, also reported a GDM prevalence of 33.3% (55). 
The advanced age of the pregnant women in our study, with a mean 
age of 32.77 and 32.15 years, could potentially account for this higher 
prevalence. This observation aligns with the conclusions drawn from 
a meta-analysis, which reported that the incidence of GDM in older 
Chinese pregnant women could reach as high as 30.3% (3).

The primary strength of our study is that this study is among the 
few to evaluate prospective associations between specific essential 
elements at early pregnancy and GDM risk. The prospective design 
and early measurements of elements minimize the possibility of 
reverse causation and differential measurement errors. Despite the 
strengths, several limitations should be noted. First, all the participants 
included in our study are from Shenzhen, China, which limits the 
generalizability of our findings to other populations. However, the 
relative homogeneity of this study population in ethnic background 
and environmental exposure enhances the internal validity of our 
findings. Second, elements were measured only in blood samples 
obtained prior to the 14th week of gestation. While the concentration 
of elements in blood has been established as a reliable biomarker of 
exposure, future studies should consider including measurements 
during the third trimester and at the time of delivery to provide 
valuable posterior evidence and a more comprehensive understanding 
of their role in GDM. Third, we  failed to measure other forms of 
serum elements (e.g., ferritin) or key proteins (e.g., albumin) in the 
current study. Fourth, although various confounding factors like age, 
pre-pregnancy BMI, gestational age and parity were controlled in our 
study, there might be other residual confounding that we did not 
measure but may impact the association examined, such as 
supplements use during pregnancy. Fifth, limited essential elements 
and only one toxic metal were included in our study. However, as an 
exploratory analysis, our study could serve as a valuable starting point 
for future research endeavors, which may expand the range of 
elements studied to provide a more comprehensive understanding.

5 Conclusion

In conclusion, Zn, Cu, Fe, and Ca exposure in early pregnancy 
showed a positive association with GDM in the individual evaluation. 
The multiple evaluations showed that high levels of a mixture of six 
elements (Zn, Cu, Fe, Ca, Mg, and Cd), particularly Cd, Zn, and Cu, 
may promote the development of GDM.
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