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Objective: Pelvic inflammatory disease (PID) is a prevalent gynecological disorder. 
Dietary trace minerals play an important role in combating many chronic diseases 
including PID. However, it is unknown whether dietary trace minerals and PID 
are related. This study aimed to examine the relationship between dietary trace 
minerals (copper, iron, selenium, and zinc) and PID.

Methods: Data of women participants from the National Health and Nutrition 
Examination Survey (NHANES) 2015–2018 were enrolled in this cross-sectional 
investigation. Univariate and multivariate linear regression analyses of the 
relationship between dietary trace minerals and PID were performed, and 
restricted cubic spline (RCS) analyses were applied to visualize those relationships.

Results: In total, 2,694 women between the ages of 20 and 59  years participated 
in the two NHANES cycles. In the univariate analyses, a significant negative 
relationship was identified between PID and dietary copper intake [odds ratio 
(OR)  =  0.40, 95% confidence interval (CI): 0.24–0.67, p  <  0.01] but not with iron 
(OR  =  0.96, 95% CI: 0.90–1.03, p  =  0.25), selenium (OR  =  1.0, 95% CI: 0.99–1.0, 
p  =  0.23), and zinc (OR  =  0.94, 95% CI: 0.86–1.03, p  =  0.17) intake. Following the 
adjustment for age and race (model 1), a robust correlation was found between 
dietary copper intake and PID (OR  =  0.23, 95% CI  =  0.09–0.61, p  <  0.01), as 
indicated by the fully adjusted model 2 (OR  =  0.29, 95% CI  =  0.09–0.90, p  =  0.03). 
Simultaneously, a significant trend was found between copper intake and PID 
across the quintile subgroups (p for trends <0.05), suggesting a robust relationship. 
Furthermore, the RCS analysis demonstrated a linear correlation between PID and 
dietary copper intake (overall p  <  0.01, non-linear p  =  0.09).

Conclusion: Decreased dietary copper intakes are linked to PID. However, 
additional research is needed to fully investigate this relationship due to the 
constraints of the study design.
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1 Introduction

Pelvic inflammatory disease (PID) is a polymicrobial infection 
that generally occurs in the women’s genital tract and often leads to 
the impairment of the endometrium, oviduct, and ovaries (1). The 
clinical manifestations of PID include long-term infertility, 
extrauterine pregnancies, and chronic pelvic pain (2). The cause of 
PID is associated with many factors, including race, age, and smoking 
status (3). Young people and African or Caucasian people are 
especially prone to PID (4). A study has estimated that 4 to 12% of 
women of reproductive age have PID worldwide (5). However, few 
studies on the epidemiological trends of PID among different areas of 
the world have been conducted due to challenges with the invasiveness 
and sensitivity of screening methods (6). In the United  States, 
approximately 0.5 to 1 million cases of PID develop annually, and the 
average cost is up to $3,025 per episode for PID therapy (7, 8). At the 
same time, the majority of PID patients are prone to experience 
disease recurrence, resulting in additional burdens on society and 
healthcare systems (9). Hence, it is crucial to examine the risk factors 
associated with PID to enable early intervention.

Diets enriched with antioxidants (fruit and vegetables), vitamins 
(vitamins B6, A, C, E), and macronutrients (n-3 fatty acids) improve 
immune system functioning and eliminate free radical damage, which 
can help control chronic pelvic pain, including PID (10). Although 
trace minerals account for only a small part of the diet, they are 
essential to ensure normal function and health, and the excessive or 
inadequate consumption of trace elements is detrimental to the 
inherent metabolic balance of the body (11). Trace elements, including 
copper, iron, selenium, and zinc, are vital for maintaining metabolic 
balance, especially in cell function, DNA repair, and antioxidant 
defense (12). Previous studies have indicated that dietary trace 
minerals have powerful regulatory effects on the oxidative activation 
of protein kinase C, prostaglandin synthesis, and Ca2+ receptors 
which, in turn, increase chronic pain intensity (13). A study has 
revealed that copper is closely related to inflammatory responses in 
many chronic diseases, such as metabolic disorders and cancer (14). 
Additional studies have illustrated that the intake of dietary copper 
and selenium is linked to many diseases including gynecological 
tumors and metabolic syndrome (15–17). Meanwhile, dietary intake 
of iron and zinc was found to be  negatively correlated with 
fibromyalgia, characterized by widespread muscle soreness, and other 
chronic symptoms such as fatigue, anxiety, and depression (18). 
However, the relationship between dietary trace elements and PID is 
not fully understood.

To this end, using data from the NHANES, the current study 
aimed to determine if dietary trace elements and PID were correlated 
after controlling for covariates.

2 Methods

2.1 Study design and participants

Based on the large sample size of the NHANES, data from 2015 to 
2018 (two cycles: 2015–2016 and 2017–2018) before the coronavirus 
disease in 2019 were selected for analysis. Since PID occurs in women’s 
genital tracts, only females were recruited. All women participants 
were initially interviewed at home using the sample person and family 

demographics questionnaires, followed by either another interview or 
health examination at a mobile examination center (MEC). During 
these MEC examinations, participants were screened for direct 
anthropometrics, height, weight, blood draws, and various other 
health-related tests (19). Before the study, all subjects provided written 
informed consent, and no external ethical approval was needed since 
the research was approved by the National Center for Health Statistics 
Ethics Review Board (https://www.cdc.gov/nchs/nhanes/irba98.htm, 
continuation of protocol #2011–17, protocol #2018–01). The analysis 
only included women participants whose data were complete. 
We excluded 15,749 participants with missing PID, 167 with missing 
dietary trace minerals, and 615 missing covariates from the 19,225 
eligible individuals. This research eventually included 2,694 
individuals aged 20–59 years from the entire US population. The 
original NHANES study was a random sampling trial, and our 
research adopted a cross-sectional method based on the NHANES 
database. The women’s selection scheme is shown in Figure 1. At the 
same time, our study was weighted to allow the representation of the 
entire population in the US.

2.2 Measurement of PID

Based on a self-reported questionnaire of reproductive health, the 
diagnosis of PID was ascertained at the MEC by trained interviewers 
who used the built-in Computer-Assisted Personal Interview (CAPI) 
system, which enquired, ‘Have you ever been treated for an infection 
in the fallopian tubes, uterus, or ovaries, also called a pelvic infection, 
pelvic inflammatory disease, or PID?’. A “PID group” was formed 
from participants who replied “yes” whereas a “without PID group” 
was formed from those who answered “no” (20).

2.3 Measurement of dietary trace minerals

The dietary intake data was acquired at the MEC through standard 
dietary interviews, called What We Eat in America (WWEIA), and 
types and amounts of food and beverages consumed during the 24-h 
period immediately prior to the interview were obtained. WWEIA 
interviews were randomly allocated to the participants on the day of 
the interview. Before they could start working independently in the 
MEC, all dietary interviewers were asked to complete a standardized 
training course and engage in practice interviews under supervision. 
Finally, the daily total intakes of trace minerals (copper, iron, selenium, 
and zinc) from foods and beverages were then collated to obtain daily 
trace intake data. By using the recommended dietary allowance 
(RDA) in women (0.9 mg/day for copper, 18 mg/day for iron, 55 mcg/
day for selenium, and 11 mg/day for zinc) (21), values of dietary trace 
minerals over 10-fold of the RDA were excluded as outliers.

2.4 Assessment of covariates

Based on related studies (20, 22), regular period, democratic data 
(race, education level, age, marital status, and poverty), BMI, smoking 
status, diabetes mellitus (DM), and hypertension were treated as 
covariates. Regular period data were assessed through the reproductive 
health questionnaire that asked, ‘Had regular periods in past 
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12 months (eligible for participants aged 12 years older)?’, and women 
who were pregnant or who had bleeding as result of medical issues, 
hormonal treatments, or surgical procedures were excluded. The 
CAPI method was used to collect information from in-depth 
interviews with participants in their homes conducted by trained 
interviewers. Participants in the survey answered these questions 
using hand cards depicting response options or information. The 
interviewer directed the respondent to the appropriate hand card 
during the interview, and the complete data of democratic covariates 
was obtained. Educational levels were classified as lower than high 
school, high school, and college, whereas marital status was classified 
as married, spinsterhood, divorced/separated, or widowed. 
Subsequently, the poverty income ratio (PIR) was divided into three 
groups: low (≤ 1), medium (1–3), and high (> 3) (22). The data of 
weight and height were obtained electronically from the measuring 
devices to minimize potential data entry errors, and the individual’s 
body mass index (BMI) was obtained using the formula BMI = weight 
(kg)/height (m2). After that, BMI was categorized into: obese (≥ 
30.0 kg/m2), overweight (25–29.9 kg/m2), normal weight (18.5–
24.9 kg/m2), and underweight (< 18.5 kg/m2) (23). The CAPI system 
was used to conduct in-home interviews by trained interviewers who 
administered a “smoking-cigarette usage” questionnaire to determine 
whether respondents smoked and then assigned to three classes of 
smoking status: never (no more than 100 cigarettes in whole life), 
former (over 100 cigarettes in whole life and quit smoking right now), 
and now (over 100 cigarettes in whole life and smoke some days or 
every day). After resting for at least 5 minutes, the blood pressure of 

participants was measured three consecutive times. Repeated attempts 
were made to measure blood pressure if the first one was incomplete 
or interrupted. All systolic and diastolic blood pressure measurements 
were performed in the MEC, and hypertension was diagnosed based 
on the threshold of systolic/diastolic blood pressure at 140/90 mmHg. 
Blood specimens were processed, stored, and shipped to a specific site 
for testing the glucose. Women’s DM condition was classified as no 
DM, pre-DM (impaired glucose tolerance (IGT), impaired fasting 
glucose (IFG), or combined IFG and IGT), and DM (24).

2.5 Statistical analysis

R (v4.2.1) and R Studio (v2022.07.1) were employed to analyze 
statistical data. Dietary weights were adopted to ensure the rigor and 
accuracy of the study under the least common denominator strategy 
of sampling weight guidance of the NHANES. Categorical variables 
are presented as proportions (n) and percentages (%), whereas 
continuous variables are presented as mean and standard error (SE). 
Categorical and continuous characteristics were analyzed using the 
chi-squared tests and t-tests, respectively. To verify the correlation 
between dietary trace minerals and PID, dietary trace minerals that 
were shown to be  statistically significant in univariate logistic 
regression analysis were then subjected to multivariate logistic 
regression analyses. Adjustments for age and race were made to Model 
1, whereas adjustments for all other covariates were made to Model 2 
(regular period, demographics, BMI, smoking status, hypertension, 

FIGURE 1

Screening procedure flowchart (NHANES 2015–2018).
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and DM). Subsequently, restricted cubic splines (RCS) were adopted 
to assess the linear and non-linear associations, and these relationships 
were tested using quintile logistic regression analyses. Subgroup 
analyses and interaction tests were conducted to evaluate potential 
interactions, and RCS was administered to determine how dietary 
trace minerals correlated with PID after stratification of meaningful 
interaction terms. The criterion for statistical significance was 
established at a two-tailed p-value <0.05.

3 Results

3.1 Description of participants

According to the study’s eligibility criteria, 2,694 female 
participants were enrolled, and the average age of the participants was 
40 ± 0.4 years. Among these participants, 32.67% were non-Hispanic 
white, 23.01% were non-Hispanic black, 16.82% were Mexican 
American, and 27.51% were from other races. There were 2,529 
(93.88%) participants without PID and 165 (6.12%) with PID. A 
detailed description of the women participants is provided in Table 1. 
Of those individuals with PID, the weighted mean concentration of 
dietary trace minerals was 0.95 mg/day (copper), 10.96 mg/day (iron), 
89.9 mg/day (selenium), and 8.30 mg/day (zinc), respectively. There 
were 56 (54.79%) participants who were Non-Hispanic White, 96 
(57.39%) had a college education, and 131 (86.8%) participants 
without diabetes. Participants with PID were more likely to have the 
following characteristics relative to those without the disorder: a lower 
copper intake (p < 0.01), irregular period (p < 0.01), older age (p < 0.01), 
non-married status (p < 0.01), better economic situation (p < 0.01), 
obesity or overweight (p < 0.01), history of no or current smoking 
status (p < 0.01), and hypertension (p < 0.01).

3.2 PID correlation with dietary trace 
minerals

The correlation between dietary copper intake and PID was 
substantially negative, as indicated in Table 2 (OR = 0.40, 95% CI: 
0.24–0.67), whereas the same trend was not significant in iron 
(OR = 0.96, 95% CI: 0.90–1.03), selenium (OR = 1.0, 95% CI: 0.99–1.0), 
and zinc (OR = 0.94, 95% CI: 0.86–1.03). The correlation between 
dietary copper intake and PID was negative in a univariate analysis. 
Hence, multivariate logistic regression was used to delve deeper into 
the correlation between copper and PID. Dietary copper intake was 
shown to be significantly correlated with PID after adjusting for age 
and race (model 1) (OR = 0.41, 95% CI = 0.23–0.70). This association 
remained consistent in model 2 (OR = 0.51, 95% CI = 0.28–0.90) after 
adjusting for all covariates.

3.3 Relationship between PID and various 
quintiles of dietary copper intake

When divided into quintiles (Table  3), the quintile of copper 
intake (Q5 > 1.49 mg/day) served a protective role in PID, regardless 
of the unadjusted or adjusted models (crude model: OR = 0.23, 95% 
CI = 0.09–0.58; model 1: OR = 0.23, 95% CI = 0.09–0.61; model 2: 

OR = 0.29, 95% CI = 0.09–0.90). Simultaneously, a significant trend 
was observed between copper intake and PID across the quintile 
subgroups (p for trend <0.05), suggesting the robustness of this 
relationship. To visualize the correlation between dietary copper 
intake and PID, an RCS plot was generated (Figure 2), demonstrating 
an approximately linear correlation between the two variables (overall 
p-value <0.01, non-linear p-value = 0.09).

3.4 Subgroup analysis

To reduce heterogeneity, subgroup analyses were conducted, and 
the interaction between covariates and dietary copper intake was 
further examined (Figure 3). Here, nearly all ORs in the subgroup 
were lower than one except for the women participants in the 
underweight group, indicating a consistent negative relationship 
between copper intake and PID. Copper intake was positively related 
to PID in the underweight subgroup (OR = 1.61, 95% CI = 0.81–3.19), 
although without a statistically significant difference (p = 0.15). 
Interaction effects were also shown to be statistically significant for age 
(p for interaction = 0.01) and BMI (p for interaction = 0.01). To 
investigate the influence of meaningful interactions, RCS was 
conducted for better visualization in model 2 (all covariates were 
adjusted except for the grouping variable) (Figures 4, 5). Age-stratified 
analyses revealed a parabolic association between PID and copper 
intake (overall p value = 0.137, non-linear p value <0.05). In the age 
subgroup of 20–40 years old, the correlation between dietary copper 
intake and PID increased before the 1.19 mg/day point and then 
decreased gradually. In contrast, in the 41–59-year-old subgroup, a 
linear pattern of correlation was observed between dietary copper 
intake and PID (overall p-value <0.01, non-linear p-value = 0.13). 
After stratifying by BMI, copper intake was shown to significantly 
correlate with PID in the overweight subgroup (overall p-value = 0.01, 
non-linear p-value <0.01). The association between dietary copper 
intake and PID remained relatively stable until around 0.85 mg/day 
and then decreased rapidly. However, no significant p-values were 
observed in the underweight (overall p-value = 1.0, non-linear 
p-value = 0.99), normal weight (overall p-value = 0.17, non-linear 
p-value = 0.81), or obese subgroups (overall p-valuep = 0.92, non-linear 
p-value = 0.80).

4 Discussion

PID is a chronic and recurrent disease that significantly impacts 
the well-being of patients, causing considerable suffering. Until now, 
few studies have been done on the dietary recommendations for 
women with PID. This is the first research to our knowledge to 
investigate the link between PID and dietary trace minerals. Based on 
the large sample size of the NHANES, dietary copper intake was 
shown to exhibit a significant negative linear relationship with PID; 
however, no difference was found in the correlation between other 
trace minerals (iron, selenium, and zinc) and PID. In addition, 
we found that age and BMI may have meaningful interactions between 
copper intake and PID. In the younger age subgroup, the relationship 
exhibited a curved pattern; however, in the older age subgroup, it 
showed a straight line. Similarly, a curved relationship was observed 
in the overweight subgroup.
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TABLE 1 Characteristics of the women participants [mean and standard errors (SE); proportions (n) and percentage (%)].

Characteristics Total Without PID (n =  2,529) PID (n =  165) p-value

Copper (mg/day) 1.12 (0.02) 1.14 (0.02) 0.91 (0.05) < 0.01

Iron (mg/day) 12.31 (0.21) 12.40 (0.23) 10.96 (0.98) 0.18

Selenium (mcg/day) 99.18 (1.28) 99.77 (1.32) 89.90 (6.94) 0.17

Zinc (mg/day) 9.52 (0.16) 9.60 (0.16) 8.30 (0.76) 0.10

Regular period (n, %) 0.01

 No 875 (32.48) 798 (35.23) 77 (48.93)

 Yes 1819 (67.52) 1731 (64.77) 88 (51.07)

 Age (years) 40.23 (0.40) 40.03 (0.42) 43.40 (1.13) 0.01

Race (n, %) 0.32

Non-Hispanic White 880 (32.67) 824 (60.60) 56 (54.79)

Non-Hispanic Black 620 (23.01) 567 (11.74) 53 (16.63)

Mexican American 453 (16.82) 435 (10.38) 18 (6.59)

Other races 741 (27.51) 703 (17.28) 38 (21.99)

Marital (n, %) 0.02

 Married 1,567 (58.17) 1,479 (62.58) 88 (55.29)

 Widowed 59 (2.19) 53 (2.08) 6 (5.35)

 Divorced/separated 416 (15.44) 374 (13.28) 42 (25.80)

 Spinsterhood 652 (24.2) 623 (22.06) 29 (13.56)

Education (n, %) 0.20

 Less high school 398 (14.77) 370 (9.15) 28 (13.52)

 High school 560 (20.79) 519 (21.45) 41 (29.10)

 College 1736 (64.44) 1,640 (69.40) 96 (57.39)

Poverty (n, %) < 0.01

 Low 597 (22.16) 546 (16.44) 51 (24.96)

 Medium 1,133 (42.06) 1,054 (33.92) 79 (51.69)

 High 964 (35.78) 929 (49.64) 35 (23.35)

BMI (n, %) < 0.01

 Underweight 55 (2.04) 54 (2.52) 1 (0.17)

 Normal weight 745 (27.65) 712 (30.97) 33 (12.48)

 Overweight 660 (24.5) 618 (24.21) 42 (36.63)

 Obese 1,234 (45.81) 1,145 (42.31) 89 (50.73)

Smoke (n, %) < 0.01

 Never 488 (18.11) 433 (18.19) 55 (37.30)

 Former 1825 (67.74) 1757 (66.36) 68 (36.09)

 Now 381 (14.14) 339 (15.45) 42 (26.61)

Hypertension (n, %) < 0.01

 No 1942 (72.09) 1851 (77.10) 91 (62.44)

 Yes 752 (27.91) 678 (22.90) 74 (37.56)

Diabetes mellitus (n, %) 0.55

 No 2,186 (81.14) 2055 (83.39) 131 (86.80)

 Pre-diabetes mellitus 156 (5.79) 147 (5.45) 9 (4.57)

 Diabetes mellitus 352 (13.07) 327 (11.15) 25 (8.63)

The format of mean ± standard error (SE) is used to present continuous variables, whereas counts and percentages are used to present categorical variables. Categorical and continuous 
characteristics were analyzed using the chi-squared tests and t-tests, respectively.
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Currently, dietary iron intake is mainly focused on pregnancy and 
anemia among women (25, 26). However, it has been shown that 
dietary iron intake exhibited no relationship with non-pregnancy 
diseases such as gynecological cancers (15). In our study, dietary iron 
intake was not significantly different between the PID and non-PID 
groups, as supported by insignificant results from logistic regression 
analysis. Selenium is now recognized as an important trace nutrient 
with anti-inflammatory function (27). Compared with the control 
group, in men, selenium supplementation improved inflammatory 
parameters (28). No significant link was found between selenium in 
the diet and PID in this study, which may be  explained by sex 

differences and disease-specific factors. Zinc deficiency is closely 
related to an increased risk to pregnancy health because of its vital role 
in some enzymatic reactions (29), and bone mineral density is 
associated with zinc intake in a positive manner (30). However, in the 
present study, univariate analysis of dietary zinc intake and PID 
showed no significant relationship, suggesting avenues for future 
research. Compared to non-pregnant women, the urine levels of trace 
element silicon in pregnant women were higher, which might 
be accounted for by the differences in the gastrointestinal tract, kidney 
excretion, and metabolism in pregnant women (31). The trace 
elements metabolism also changed between gestational weeks (32). 
Consequently, as a non-pregnancy disease, PID might not be easily 
susceptible to changes in common trace elements.

Copper performs an integral function in the secretion of 
inflammatory products and is linked to many inflammatory diseases by 
regulating the nuclear factor kappa-B and mitogen-activated protein 
kinase pathways (14). Another study has shown that copper is capable of 
activating nicotinamide adenine dinucleotide phosphate hydrogen in 
mitochondria, thus mediating metabolic and epigenetic processes toward 
the inflammatory state (33). The dietary copper intake was demonstrated 
to be correlated with inflammatory disorders and serum estradiol levels 
in women (34, 35). Adequate copper intake is vital to maintain the 

TABLE 3 Weighted multivariate logistic analyses between quintiles of dietary copper intake and PID (odds ratios, 95% confidence intervals).

Dietary copper 
intake (mg/day)

Crude model Model 1a Model 2b

95% CI p 95% CI p 95% CI p

Copper 0.40 (0.24, 0.67) < 0.01 0.41 (0.23, 0.70) < 0.01 0.51 (0.28, 0.90) 0.03

Q1 ≤ 0.63 Reference Reference Reference

Q2 0.63–0.86 0.85 (0.40,1.81) 0.66 0.85 (0.39,1.85) 0.68 0.91 (0.39, 2.14) 0.80

Q3 0.87–1.09 0.67 (0.36,1.26) 0.20 0.69 (0.35,1.34) 0.26 0.83 (0.34, 2.03) 0.63

Q4 1.10–1.48 0.59 (0.28,1.27) 0.17 0.60 (0.27,1.34) 0.20 0.84 (0.32, 2.20) 0.68

Q5 > 1.49 0.23 (0.09,0.58) < 0.01 0.23 (0.09,0.61) 0.01 0.29 (0.09, 0.90) 0.04

P for trend < 0.01 < 0.01 0.04

There was no adjustment made to the crude model.aAge and race adjustments were made to Model 1.
bAll covariates (age, regular period, demography, BMI, smoke, hypertension, and DM) were adjusted to Model 2.

FIGURE 2

The RCS between dietary copper intake and the risk for PID.

TABLE 2 Weighted univariate logistic analyses between dietary trace 
minerals and PID (odds ratios, 95% confidence intervals).

Dietary trace 
minerals

Univariate analysis (crude model)

95% CI p

Copper (mg/day) 0.40 (0.24, 0.67) < 0.01

Iron (mg/day) 0.96 (0.90, 1.03) 0.25

Selenium (mcg/day) 1.0 (0.99, 1.0) 0.23

Zinc (mg/day) 0.94 (0.86, 1.03) 0.17
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antioxidant capacity of the body (36). Although, to our knowledge, no 
study has been conducted on dietary copper intake and PID, evidence has 
shown that using non-hormonal copper-containing intrauterine devices 
could effectively decrease pelvic pain, which highlights the importance of 
the copper mechanism in PID (37). Our data showed a consistent negative 

linear correlation between copper intake and PID, which remained stable 
across different models. Our findings imply that copper intake can aid in 
the fight against PID, which may contribute to its regulatory role in 
inflammation. However, a key consideration is that excessive copper 
intake may be harmful to health. Therefore, future research is needed to 

FIGURE 3

Subgroup analysis between dietary copper intake and the risk for PID.

FIGURE 4

The RCS between dietary copper intake and the risk for PID in age-stratified subgroups (adjusted for all covariates except age).
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determine the specific turning points of copper intake that are effective in 
preventing and managing PID.

Age and body weight were independently associated with pelvic 
disease, especially in older and obese women (38). In our study, age 
and BMI covariates were identified as interaction terms between 
copper intake and PID. In the younger age group, it appears that 
adequate copper intake (>1.19 mg/day), which exceeds the RDA, may 
have a protective effect against PID. However, in the older age group, 
the relationship between copper intake and PID is assumed to 
be linear from the beginning of copper intake. According to a disease 
burden analysis, women younger than 25 years old had a higher rate 
of PID than older women (39). Young women may be more susceptible 
to the modulatory effects of high estrogen and progesterone levels, 
which in turn makes them less susceptible to the influence of copper 
intake. Among the different BMI subgroups, only the overweight 
participants showed a significant non-linear relationship between 
copper intake and PID, while no significant correlations were found 
in other BMI subgroups. Although there was an initially positive 
correlation between copper intake and PID in the underweight 
subgroup, this relationship disappeared in the subsequent multivariate 
RCS, which could be due to the presence of confounding variables. 
Before reaching a copper intake of 0.85 mg/day (close to the RDA), the 
link between copper intake and PID in the overweight subgroup 
(≥30.0 kg/m2) was flat and decreased rapidly when the RDA of copper 
was reached. A retrospective study has shown that obese PID patients 
were identified to be associated with an unfavorable clinical course 
(9). Thus, adequate copper intake may become even more important 
for older and overweight women with PID. Poultry was considered a 
valuable food for its abundance of minerals (specifically iron, zinc, and 
copper) and moderate energy (40). Therefore, intake of a certain 
amount of meat rich in copper may be beneficial for women with 
PID. However, the trace minerals consumed are not equivalent to the 
actual uptake of minerals, and the absorption efficiency may also be a 
critical factor. Before being absorbed, dietary copper (Cu2+) was first 
reduced to cuprous copper, then absorbed by the intestinal epithelial 
cells, and finally transported to the liver for processing and activation 

(41). Thus, people with gastrointestinal disease or liver diseases may 
present a low absorption efficiency of dietary copper. Furthermore, 
copper imbalance was associated with liver pathological features, 
including oxidative stress and mitochondrial dysfunction, which in 
turn affect the copper absorption efficiency (42). Hence, future studies 
on dietary copper absorption efficiency and PID will be required to 
apply our findings to real-world situations.

To our knowledge, our research is the first to investigate whether 
PID is linked to dietary trace minerals. A significant negative 
relationship between PID and dietary copper intake was identified, 
though not in iron, selenium, and zinc. Additionally, multiple linear 
regression was used to verify the solid relationship between dietary 
copper intake and PID after adjusting for several covariates. Our study 
may have important implications regarding the setting of 
recommended dietary copper intake for women with PID. However, 
there were several limitations to this research. To begin with, this was 
a cross-sectional study; therefore, no causal relationship could 
be  determined based on the accurate dietary trace intake 
recommendation for women with PID. Second, the diagnostic nature 
of the PID questionnaire inevitably introduced some degree of 
selection bias. Thirdly, although efforts were made to incorporate 
related confounding factors, we  were unable to address all 
confounders. Finally, sampling errors inherent in the NHANES data 
cannot be ruled out. Given these limitations, large prospective cohort 
studies are necessary to validate the link between dietary copper 
intake and determine the recommended intake of dietary trace 
minerals for women with PID.

5 Conclusion

Overall, our study suggested that decreased dietary copper 
intakes are linked to PID. However, no significant link was found 
for other dietary trace minerals (iron, selenium, and zinc). To 
confirm our findings, more large-scale prospective investigations 
are needed.

FIGURE 5

The RCS between dietary copper intake and the risk for PID in BMI stratified subgroup (adjusted for all covariates except BMI). (A) subgroup of 
underweight; (B) subgroup of normal weight; (C) subgroup of obesity; (D) subgroup of overweight.
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