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In order to achieve rapid detection of galactooligosaccharides (GOS), 
fructooligosaccharides (FOS), calcium (Ca), and vitamin C (Vc), four micronutrient 
components in infant formula milk powder, this study employed four methods, 
namely Standard Normal Variate (SNV), Multiplicative Scatter Correction (MSC), 
Normalization (Nor), and Savitzky–Golay Smoothing (SG), to preprocess the 
acquired original spectra of the milk powder. Then, the Competitive Adaptive 
Reweighted Sampling (CARS) algorithm and Random Frog (RF) algorithm were 
used to extract representative characteristic wavelengths. Furthermore, Partial 
Least Squares Regression (PLSR) and Support Vector Regression (SVR) models 
were established to predict the contents of GOS, FOS, Ca, and Vc in infant 
formula milk powder. The results indicated that after SNV preprocessing, the 
original spectra of GOS and FOS could effectively extract feature wavelengths 
using the CARS algorithm, leading to favorable predictive results through the 
CARS-SVR model. Similarly, after MSC preprocessing, the original spectra of Ca 
and Vc could efficiently extract feature wavelengths using the CARS algorithm, 
resulting in optimal predictive outcomes via the CARS-SVR model. This study 
provides insights for the realization of online nutritional component detection 
and optimization control in the production process of infant formula.
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1. Introduction

Infant formula powder is highly favored by consumers due to its rich nutritional 
composition, including proteins, fats, carbohydrates, vitamins, minerals, and other essential 
nutrients for infant growth. It also offers advantages such as long shelf life and convenience 
in transportation. In the production process, accurate control of the content of proteins, fats, 
and carbohydrates is necessary. Additionally, precise monitoring of other micronutrients is 
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crucial for ensuring the quality of the powder and is a key direction 
for future research in infant formula powder development (1–3). 
Infant formula manufacturing companies often fortify their formulas 
with oligosaccharides such as galacto-oligosaccharides (GOS) and 
fructo-oligosaccharides (FOS) to regulate the balance of infant gut 
microbiota, enhance immune function, and promote infant brain 
development. Nutrients like calcium (Ca) and vitamin C (Vc) are 
also added to enhance infant metabolism and support the generation 
of red blood cells and skeletal tissue. Therefore, the quantitative 
analysis of micronutrients in formula is crucial for quality control 
during the production process. Currently, conventional chemical 
detection methods are commonly used to determine the content of 
micro-nutrients such as GOS, FOS, Ca, and Vc in infant formula 
powder. However, these methods have drawbacks, including time-
consuming sample preparation, complex procedures, and sample 
damage. The efficiency of conventional chemical methods is no 
longer sufficient to meet the requirements of accurate and intelligent 
control (4). Therefore, it has become an urgent need in the infant 
formula powder production industry to develop a rapid, efficient, 
and accurate online detection method for the content 
of micronutrients.

Near-infrared spectroscopy (NIRS) analysis, known for its 
simplicity, accuracy, rapidity, efficiency, and non-destructive nature, 
has been widely applied in various fields such as food (5–8), 
pharmaceuticals (9–11), and chemical engineering (12–14). It has 
also been utilized for rapid detection of milk powder and dairy 
products (15–17). The establishment of NIR fast detection model 
usually includes three processes: spectrum preprocessing by 
standard normal transform (SNV), feature wavelength extraction 
by competitive adaptive Reweighted sampling (CARS) and model 
establishment by partial least squares regression (PLSR). The 
accuracy of model prediction is also closely related to the algorithm 
used in the modeling process. Wu et  al. (18) established a least 
square support vector regression (LSSVR) prediction model based 
on infrared spectroscopy, achieving the determination of milk 
powder brands and the detection of major nutritional components 
including proteins, fats, and carbohydrates. Asma et  al. (15) 
developed a partial least square regression (PLSR) prediction model 
to predict the particle size, dispersibility, and bulk density of milk 
powder. Cattaneo and Holroyd (19) used near-infrared spectroscopy 
to establish a PLSR prediction model for detecting adulteration of 
melamine and microbial contamination in milk powder. Currently, 
most research focuses on brand determination, prediction of high-
content nutrient levels, detection of physical properties and 
adulteration of milk powder (20, 21). However, due to the complex 
structures and low concentrations of micronutrients like GOS, there 
is limited literature on the rapid detection of GOS and FOS using 
NIRS analysis.

In this study, we aimed to establish a near-infrared quantitative 
model for micronutrients. Considering the complexity of infant 
formula powder composition, the variation in particle size, and the 
influence of external light radiation and noise during near-infrared 
spectroscopy scanning (22), this study aims to find the amount of 
GOS, FOS, Ca, and Vc micronutrients in infant formula powder by 
pre-processing the near-infrared spectra, extracting characteristic 
wavelengths, and establishing quantitative prediction models. This 
research will provide references for online detection and optimization 
control of nutritional components.

2. Materials and methods

2.1. Experimental materials

A total of 170 samples of infant formula powder were 
collected from an infant formula powder production company, 
including infant formula powder, larger infant formula powder, 
and toddler formula powder, with 120 samples containing GOS 
and 80 samples containing FOS. All samples contained Vc and Ca 
as nutritional components. After collection, the samples were 
stored in sealed bags to minimize the influence of external 
oxygen on the powder samples.

2.2. Spectral acquisition

Before collecting the spectra using a near-infrared spectrometer, 
the powder samples were kept at room temperature in the laboratory 
for a certain period to reduce measurement errors caused by 
temperature variations (23). The instrument was preheated for 30 min 
prior to measurement to prevent deviations from the true spectral 
characteristics (24). A Bruker MPA near-infrared spectrometer 
(Bruker Optics Inc., United  States) was used to collect the near-
infrared spectra of the samples. The spectral range was set from 
800 nm to 2,500 nm, and the resolution was set at 4 cm−1 (25).

2.3. Chemical value determination

2.3.1. Galactooligosaccharides content 
determination

The GOS content in the infant formula powder samples was 
determined using an enzymatic method (26). The GOS raw materials 
from the same batch were subjected to preprocessing analysis. The 
GOS content was measured using an ion chromatography-
electrochemical pulse amperometric detector, which has high 
sensitivity. GOS raw materials usually contain other components such 
as lactose, glucose, and galactose. Based on the principle of consistent 
ratio of low-degree oligosaccharides in the raw materials and infant 
formula powder, a set of characteristic peaks for GOS was selected. 
The GOS content in the infant formula powder was indirectly 
determined using the same batch of raw material syrup as the 
reference. The content range of GOS in the test samples was 
determined to be 5–29 mg·kg−1 through chemical analysis.

2.3.2. Fructooligosaccharides content 
determination

The FOS content in the milk powder samples was determined 
according to the national standard GB 5009.255–2016 “determination 
of fructosan in food.” The milk powder samples were extracted with 
hot water. The sucrose in the sample solution was hydrolyzed into 
glucose and fructose by sucrase. Glucose and fructose were then 
reduced to their corresponding sugar alcohols by sodium borohydride, 
and the excess sodium borohydride was neutralized with acetic acid. 
The fructosan in the sample solution were hydrolyzed into fructose 
and glucose by fructan hydrolase. The fructose content was 
determined using ion chromatography with pulsed amperometric 
detector. The content of fructosan was calculated based on conversion 
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factors. The content range of FOS in the test samples was determined 
to be 4.4–26.6 mg·kg−1 through chemical analysis.

2.3.3. Calcium content determination
The Ca content in the milk powder samples was determined 

according to the national standard GB 5009.92–2016 “determination 
of calcium in food.” Flame atomic absorption spectroscopy was used 
to measure the Ca content in the milk powder samples after digestion. 
Lanthanum solution was added as a releasing agent, and the 
absorbance values measured at 422.7 nm were proportional to the Ca 
concentration within a certain concentration range. The Ca content 
was quantitatively determined by comparing with a standard series. 
The content range of Ca in the test samples was determined to 
be 3.1–7.12 mg·kg−1 through chemical analysis.

2.3.4. Vitamin C content determination
The Vc content in the milk powder samples was determined 

according to the national standard GB 5413.18–2010 “Determination 
of Vitamin C in Infant Food and Dairy Products.” Vc was oxidized to 
dehydroascorbic acid in the presence of activated carbon. It reacted 
with o-phenylenediamine to form a fluorescent substance, and the 
fluorescence intensity was measured using a fluorescence 
spectrophotometer. The fluorescence intensity was proportional to the 
concentration of Vc, and the content was quantified using an external 
standard method. The content range of Vc in the test samples was 
determined to be 0.54–1.82 mg·kg−1 through chemical analysis.

2.4. Spectral preprocessing

The infant formula powder samples were randomly divided into 
calibration and prediction sets in a 7: 3 ratio. The calibration set was 
used for model training, and the prediction set was used for model 
prediction. Four preprocessing methods, namely Standard Normal 
Variate (SNV), Multiplicative Scatter Correction (MSC), 
Normalization (Nor), and Savitzky–Golay smoothing (SG), were 
applied individually. The optimal preprocessing method was 
determined by establishing a Partial Least Squares (PLS) model.

2.5. Spectral feature wavelength extraction

2.5.1. Competitive adaptive reweighted sampling 
algorithm

The CARS algorithm is a feature wavelength extraction method 
based on the theory of Darwinian evolution (27, 28). Absolute values 
of regression coefficients and the weights corresponding to each 
wavelength are calculated. It retains the wavelength points with the 
highest absolute weight coefficients and removes those with smaller 
weights. The feature wavelengths were determined based on the lowest 
Root Mean Square Error of Cross Validation (RMSECV). The 
parameters for the CARS algorithm were set as follows: maximum 
number of principal components = 10, number of cross-
validations = 10, and number of Monte Carlo runs = 40.

2.5.2. Random frog algorithm
The RF algorithm is an efficient method for selecting variables 

from high-dimensional data (29, 30). It calculates the probability of 

each wavelength being selected after N iterations and sorts them 
accordingly. The wavelengths with higher probabilities are selected for 
model building. To ensure convergence, the iteration parameter N was 
set to 10,000, and the number of selected feature wavelengths was 
set to 40.

2.6. Model establishment

2.6.1. Partial least squares regression
The PLSR algorithm is used to establish prediction models (31, 

32). The optimal number of latent variables for the PLSR model was 
also determined. After 10 rounds of training, the performance of the 
10 models was evaluated, and the best hyperparameters were selected 
as the optimal number of latent variables for the PLS model.

2.6.2. Support vector regression
The SVR algorithm uses a nonlinear kernel function to map 

low-dimensional input to a high-dimensional feature space and 
performs linear regression in the high-dimensional feature space (33, 
34). It is suitable for handling problems with a small number of 
samples, nonlinearity, and high dimensionality. A Gaussian function 
was selected as the kernel function, and the values of the parameters 
c and g were set within the range of [−10, 10] with a step size of 0.5.

2.7. Model evaluation

The results of the models were evaluated using four indicators: 
related coefficient of calibration set (Rc), root mean square error of 
calibration set (RMSEC), related coefficient of prediction set (Rp), and 
root mean square error of prediction set (RMSEP) (35). A higher 
related coefficient indicates a closer prediction value to the true value 
and a stronger relationship between variables. A lower root mean 
square error indicates better model fitting ability.

3. Results and discussion

3.1. Spectral preprocessing

Four spectral preprocessing methods, namely SNV, MSC, Nor, 
and SG, were applied to the original spectra of the infant formula 
samples, and corresponding PLSR prediction models were established. 
The calibration set and prediction set were randomly divided in a 7: 
3 ratio. The results of the PLSR models with different preprocessing 
methods are shown in Table 1. According to the evaluation criteria, it 
can be observed from the table that SNV preprocessing yielded better 
modeling results for GOS and FOS compared to the original spectra 
and the other three preprocessing methods. The PLSR prediction 
model for GOS achieved an Rc of 0.8093, RMSEC of 0.4289, Rp of 
0.7592, and RMSEP of 0.4861. The PLSR prediction model for FOS 
yielded Rc of 0.8858, RMSEC of 0.1516, Rp of 0.8712, and RMSEP of 
0.1948. Similarly, MSC preprocessing yielded better modeling results 
for Ca and Vc compared to the original spectra and the other three 
preprocessing methods. The PLSR prediction model for Ca achieved 
Rc of 0.8685, RMSEC of 0.0351, Rp of 0.8488, and RMSEP of 0.0426. 
The PLSR prediction model for Vc yielded an Rc of 0.6157, RMSEC 
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of 0.0181, Rp of 0.5937, and RMSEP of 0.0247. Although there was an 
improvement in the model results after preprocessing, the overall 
improvement was not significant, especially for Vc. Therefore, further 
research is needed to explore feature wavelength extraction algorithms 
and other modeling methods to enhance the model performance.

Figures 1–3 present the original spectral plots and the plots after 
optimal preprocessing for GOS, FOS, Ca, and Vc. Near-infrared 
spectra are usually influenced by the combination and overtone 
frequencies of hydrogen-containing groups such as O-H, N-H, and 

C-H (36). It can be  observed from Figures  1A, 2A, 3A that the 
absorption peaks in the spectra of the experimental samples are 
generally consistent, with prominent characteristic peaks around 
8,246 cm−1, 6,700 cm−1, 5,770 cm−1, 5,180 cm−1, and 4,748 cm−1. The 
preprocessed spectral plots are shown in Figures 1B, 2B, 3B, where 
MSC and SNV preprocessing methods effectively reduced the 
spectral interference caused by varying levels of external light 
scattering and enhanced the correlation between the spectra and the 
data, this is consistent with other research findings (37).

TABLE 1 Modeling results of different pretreatment methods.

Nutrient composition Pretreatment method Rc RMSEC Rp RMSEP

GOS None 0.6724 0.5401 0.6695 0.5021

SNV 0.8093 0.4289 0.7592 0.4861

MSC 0.8045 0.4376 0.6727 0.4836

FOS SG 0.7591 0.4847 0.577 0.4847

Normaliz 0.7658 0.4568 0.6027 0.6474

None 0.8025 0.1924 0.7095 0.3376

SNV 0.8858 0.1516 0.8712 0.1948

MSC 0.8394 0.1925 0.6533 0.2185

Ca SG 0.8724 0.1571 0.7727 0.2578

Normaliz 0.8684 0.1704 0.8162 0.2309

None 0.8213 0.0397 0.8083 0.0393

SNV 0.8678 0.0337 0.8233 0.0435

MSC 0.8685 0.0351 0.8488 0.0426

Vc SG 0.8464 0.0396 0.8121 0.0354

Normaliz 0.8314 0.0356 0.8291 0.0436

None 0.5347 0.0201 0.4055 0.0223

SNV 0.5524 0.0175 0.5364 0.0245

MSC 0.6157 0.0181 0.5937 0.0247

SG 0.5602 0.0196 0.538 0.0211

Normaliz 0.5179 0.0193 0.4833 0.0340

These are standard normal variate (SNV), multiplicative scatter correction (MSC).

FIGURE 1

(A, B) GOS original spectrum and SNV pretreatment spectrum.
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3.2. Feature wavelength selection

3.2.1. Competitive adaptive reweighted sampling 
algorithm

Figure 4A depicts the process of feature wavelength extraction 
using CARS for GOS. From Figures 4Aa, it can be observed that as the 
number of samples increases, the sampling ratio of the variable subset 
starts to decrease and gradually stabilizes. Figures 4Ab shows that as 
the number of samples increases, the RMSECV of the eliminated 
unimportant wavelengths decreases slowly. However, it starts to 
increase when important wavelengths are eliminated. The lowest 
RMSECV is achieved when the Monte Carlo run reaches 23, resulting 
in the extraction of 26 feature wavelengths by CARS. The distribution 
of wavelengths is shown in Figure 4B. Figure 5A illustrates the process 
of feature wavelength extraction using CARS for FOS. The lowest 
RMSECV is achieved when the Monte Carlo run reaches 24, resulting 
in the extraction of 31 feature wavelengths. The distribution of 
wavelengths is shown in Figure 5B. Figure 6A shows the process of 

feature wavelength extraction using CARS for Ca. The lowest 
RMSECV is achieved when the Monte Carlo run reaches 17, resulting 
in the extraction of 101 feature wavelengths. The distribution of 
wavelengths is shown in Figure 6B. Figure 7A presents the process of 
feature wavelength extraction using CARS for Vc. The lowest 
RMSECV is achieved when the Monte Carlo run reaches 25, resulting 
in the extraction of 26 feature wavelengths. The distribution of 
wavelengths is shown in Figure 7B. Comparing the feature wavelengths 
selected by the CARS algorithm with the original full wavelengths, 
GOS, FOS, Ca, and Vc achieved reductions of 98.33, 98.01, 93.51, and 
98.33%, respectively. This demonstrates that the CARS algorithm is 
capable of significantly reducing the number of wavelengths 
effectively (27).

3.2.2. Random frog algorithm
Figure 8A illustrates the probability of each wavelength being 

selected after 10,000 iterations during the process of feature 
wavelength extraction using the Random Frog (RF) algorithm for 

FIGURE 2

(A, B) FOS original spectrum and SNV pretreatment spectrum.

FIGURE 3

(A, B) Ca and Vc original spectrum and MSC pretreatment spectrum.
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FIGURE 6

(A, B) Ca uses CARS algorithm to screen characteristic wavelength variable process and wavelength distribution.

FIGURE 5

(A, B) FOS uses CARS algorithm to screen characteristic wavelength variable process and wavelength distribution.

FIGURE 4

(A, B) GOS uses CARS algorithm to screen characteristic wavelength variable process and wavelength distribution.
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GOS. The x-axis represents the number of wavelengths, and the y-axis 
represents the probability of a wavelength being selected. From the 
figure, it can be observed that wavelengths near the absorption peaks 
at 4800 cm−1, 6,000 cm−1, 6,800 cm−1, and 8,100 cm−1 have a higher 
probability of being selected. Although wavelengths near other feature 
peaks are also selected, the probability of selection is relatively low. 
Ultimately, the top  40 wavelengths with the highest selection 
probabilities are chosen as feature wavelengths, as shown in 
Figure  8B. Figures  9A, 10A, 11A represent the probability of 
wavelength selection for FOS, Ca, and Vc, respectively. The 
distributions of the 40 selected feature wavelengths are shown in 
Figures 9B, 10B, 11B respectively. It can be observed that the selected 
feature wavelengths are distributed near the feature peaks. The feature 
wavelengths selected by the RF algorithm for GOS, FOS, Ca, and Vc 
achieved a reduction of 97.43% compared to the original full 
wavelengths. The RF algorithm has demonstrated effective feature 
wavelength extraction performance. The advantages of RF algorithm 
have also been verified in other literature, which is consistent with the 
conclusion of this study (29).

3.3. Model construction

3.3.1. Partial least squares regression prediction 
models

PLSR prediction models for GOS, FOS, Ca, and Vc in infant 
formula milk were established based on feature wavelength extraction 
using the CARS and RF algorithms (Table 2). Compared to the full 
spectral range PLSR models, both the CARS-PLSR models and 
RF-PLSR models showed improved prediction performance for the 
four nutritional components. Considering the comprehensive 
evaluation of Rc and Rp, the prediction performance of the CARS-
PLSR models was superior. The CARS-PLSR models for GOS, FOS, 
Ca, and Vc showed an increase in Rc by 0.0998, 0.0447, 0.0351, and 
0.07, a decrease in RMSEC by 0.1146, 0.0406, 0.0055, and 0.001, an 
increase in Rp by 0.1362, 0.0521, 0.0440, and 0.0799, and a decrease 
in RMSEP by 0.1201, 0.0302, 0.0074, and 0.0071, respectively. This 
indicates that the CARS algorithm effectively reduces the interference 
of irrelevant spectral variables in modeling and improves the 
performance of the prediction models (28).

FIGURE 7

(A, B) Vc uses CARS algorithm to screen characteristic wavelength variable process and wavelength distribution.

FIGURE 8

(A, B) GOS uses RF algorithm to screen characteristic wavelength process and characteristic wavelength distribution.
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FIGURE 10

(A, B) Ca uses RF algorithm to screen characteristic wavelength process and characteristic wavelength distribution.

FIGURE 11

(A, B) Vc uses RF algorithm to screen characteristic wavelength process and characteristic wavelength distribution.

FIGURE 9

(A, B) FOS uses RF algorithm to screen characteristic wavelength process and characteristic wavelength distribution.
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3.3.2. Support vector regression prediction 
models

Compared to the full spectral range PLS models, the CARS-SVR 
models and RF-SVR models showed significant improvements in the 
prediction performance for GOS, FOS, Ca, and Vc (Table  3). 
Considering the comprehensive evaluation of Rc and Rp, the 
prediction performance of the CARS-SVR models for all four 
nutritional components was superior to the RF-SVR models and 
CARS-PLS models. The CARS-SVR models showed an increase in Rc 
by 0.1480, 0.1104, 0.1187, and 0.3722, a decrease in RMSEC by 0.1267, 
0.1063, 0.0193, and 0.0127, an increase in Rp by 0.1923, 0.0951, 
0.0869, and 0.3502, and a decrease in RMSEP by 0.1857, 0.0616, 
0.0007, and 0.0132 for GOS, FOS, Ca, and Vc, respectively.

After establishing the SVR models based on feature wavelength 
extraction, it was found that the SVR models outperformed the PLSR 
models in both the calibration and prediction sets. This improvement 
can be attributed to the complex composition of infant formula milk 
powder, which contains multiple nutritional components. The 
interactions between different functional groups and absorption peaks 
of different categories contribute to the existence of complex nonlinear 
relationships between near-infrared spectroscopic data and the 
content of micronutrients in infant formula milk powder. The ability 
of PLSR to handle nonlinearity is significantly inferior to SVR. SVR, 
with its core utilization of nonlinear kernel functions, effectively 
enhances the correlation between spectroscopic data and the 
physicochemical content of the components (33, 34, 38).

Therefore, utilizing feature wavelength extraction algorithms 
and establishing nonlinear SVR models is a more effective 
approach for the rapid detection of GOS, FOS, Ca, and Vc 
contents in infant formula milk powder. The comparison between 
the predicted values and true values of the CARS-SVR models for 
the four nutritional components is illustrated in Figures 12, 13, 
14, 15. It can be  observed from the figures that the deviation 
between the predicted and true values is low, indicating good 
calibration and prediction performance (39). To meet the 
requirements of online detection and optimization control in the 
milk powder production process, future research can focus on 
expanding the range of sample content, improving the 
applicability of the models, and investigating the feasibility of this 
method for rapid prediction in liquid milk powder ingredients 
(40–43). These efforts will provide valuable insights for online 
optimization control.

4. Conclusion

In this study, standard normal variate (SNV) preprocessing 
method was applied to preprocess the original spectra of GOS and 
FOS samples in infant formula milk powder, while multiplicative 
scatter correction (MSC) preprocessing method was applied to 
preprocess the original spectra of Ca and Vc samples. Feature 
wavelength extraction was performed using the CARS and RF 

TABLE 2 Result of PLSR modeling.

Nutrient 
composition

Pretreatment 
method

Characteristic 
wavelength 

number

Rc RMSEC Rp RMSEP

GOS
CARS-PLSR 26 0.9091 0.3143 0.8954 0.3660

RF-PLSR 40 0.8878 0.3282 0.7612 0.6119

FOS
CARS-PLSR 31 0.9305 0.1110 0.9233 0.1646

RF-PLSR 40 0.9308 0.1344 0.8824 0.1442

Ca
CARS-PLSR 101 0.9036 0.0296 0.8928 0.0352

RF-PLSR 40 0.8728 0.0343 0.8528 0.0396

Vc
CARS-PLSR 26 0.6857 0.0171 0.6736 0.0176

RF-PLSR 40 0.7016 0.0166 0.644 0.0219

TABLE 3 Result of SVR modeling.

Nutrient 
composition

Pretreatment 
method

Characteristic 
wavelength 

number

Rc RMSEC Rp RMSEP

GOS
CARS-SVR 26 0.9573 0.3022 0.9515 0.3004

RF-SVR 40 0.9566 0.2983 0.9273 0.4048

FOS
CARS-SVR 31 0.9962 0.0453 0.9663 0.1332

RF-SVR 40 0.9859 0.0851 0.9547 0.1427

Ca
CARS-SVR 101 0.9872 0.0158 0.9357 0.0419

RF-SVR 40 0.9506 0.0326 0.9353 0.0366

Vc
CARS-SVR 26 0.9879 0.0054 0.9439 0.0115

RF-SVR 40 0.9892 0.0045 0.9218 0.0155
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FIGURE 13

Comparison of FOS model predicted value and real value.

FIGURE 12

Comparison of GOS model predicted value and real value.

FIGURE 14

Comparison of Ca model predicted value and real value.
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algorithms, and PLSR and SVR models were established. Among 
them, the CARS-SVR model exhibited the best predictive 
performance, with Rc values of 0.9573, 0.9962, 0.9872, and 0.9879 for 
GOS, FOS, Ca, and Vc, respectively. The corresponding RMSEC 
values were 0.3022, 0.0453, 0.0158, and 0.0054, Rp values were 0.9515, 
0.9663, 0.9357, and 0.9439, and RMSEP values were 0.3004, 0.1332, 
0.0419, and 0.0115. This study provides a reference for the online 
detection and optimization control of nutritional components in the 
production process of infant formula milk powder.
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