Previously we have reported a r16S gene next generation sequencing study on the effect of high fat diets in the intestinal microbiota using a murine model. However, many important microbial traits occur at strain level and, in order to detect these population changes, culture-dependent approaches need to be applied. With this goal, we decided to study a very well-known commensal genus,
A collection of 75 distinct enterococcal strains isolated from feces of mice fed a standard diet or high-fat diets enriched with butter, refined olive oil, or extra virgin olive oil and after 0, 6 or 12 weeks of diet, were genetically and phenotypically characterized in search of virulence factors, biogenic amine production and antibiotic resistance. All strains were tested for the susceptibility
No drastic polyphenol effect was found except at high concentrations. However, when carrying out a comparative statistical study in the 75 strains of the collection according to the different diets, we have detected significant differences between the strains isolated from mice fed with a diet enriched with virgin olive oil and the rest of the diets. EVOO strains also presented less resistance to antibiotics and a more beneficial profile overall.
These results support the prebiotic role of polyphenols, showing how they are able to modulate the set of strains that comprises a genus in the gut, allowing them to adapt to a changing environment in the host’s intestine and possibly exerting effects on its physiology.