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Koumiss, a traditional fermented dairy product made from fresh mare milk, 
is a sour beverage that contains an abundance of microbial communities, 
including lactic acid bacteria, yeast and others. Firstly, probiotics such as 
Lacticaseibacillus in koumiss can induce the secretion of immunoglobulin G 
in serum and interleukin-2  in the spleen while beneficial Saccharomyces can 
secrete antibacterial compounds such as citric acid and ascorbic acid for specific 
immunopotentiation. Additionally, more isoflavone in koumiss can regulate 
estrogen levels by binding to its receptors to prevent breast cancer directly. 
Bile salts can be  converted into bile acids such as taurine or glycine by lactic 
acid bacteria to lower cholesterol levels in vivo. Butyric acid secretion would 
be increased to improve chronic gastrotis by regulating intestinal flora with lactic 
acid bacteria. Finally, SCFA and lCFA produced by Lacticaseibacillus inhibit the 
reproduction of pathogenic microorganisms for diarrhea prevention. Therefore, 
exploring the mechanisms underlying multiple physiological functions through 
utilizing microbial resources in koumiss represents promising avenues for 
ameliorating chronic diseases.
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Introduction

Koumiss, with a long history, is one of the favored traditional dairy products among 
nomadic people living in the grasslands of northern China. It is a fermented beverage and is also 
known as kumiss, chigo, chige, arrag, or airag. It has an acidic-alcoholic profile, a milky white 
appearance, and a subtle aroma and flavor. Koumiss is usually fermented naturally using 
traditional methods with fresh mare milk and can provide abundant nutrients for drinkers from 
June to September in Inner Mongolia, Xinjiang, Tibet, and other provinces in China (1–3). 
Traditional methods of making koumiss using natural fermentation are described here. Fresh 
mare milk is filtered and cooled to approximately 20°C; it is subsequently poured into a wooden 
barrel, leather bag, or plastic barrel that contains some koumiss residue as a fermentation starter. 
Next, a wooden stick is used to stir the fresh mare milk violently to form a mixture that then 
ferments naturally at ambient temperature for 1–3 days (4). The yeast, lactic acid bacteria, other 
microorganisms, and alcohol content are determined by fermentation time. Notably, the stirring 
operation is very important for homogenization during fermentation to allow for the more 
uniform distribution of acidity and to break casein clots in the gel formation of proteins. Finally, 
koumiss with good consistency and structure, as well as delicate taste, are obtained (5, 6). 
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Therefore, the short shelf life of koumiss, only 3–5 days, coupled with 
the relatively low milk output of mares, has restricted opportunities 
for large-scale industrial production and consumer acceptance. 
However, the complex microbial communities present in koumiss, 
including benificial lactic acid bacteria, yeast, etc., have been found to 
help regulate gut microbiota, metabolites, and host immunity (5, 7). 
Koumiss also possesses preventive and therapeutic properties against 
chronic diseases such as pulmonary tuberculosis, hyperlipidemia, and 
cardiovascular and cerebrovascular diseases (5, 8, 9). At the same time, 
some potential harmful bacteria still survives in the 
fermentated koumiss.

Nutritional ingredients of koumiss

Fresh mare milk

Fresh mare milk with particular composition, hypoallergenicity, 
and nutraceutical properties (10), the raw material of koumiss, 
contains many nutrients essential for the human body. These include 
proteins, fats, lactose, galactose, vitamins, enzymes, and minerals, etc. 
(Table 1). The nutrients in mare milk are comparable to those found 
in human breast milk (HBM) and can be used as a substitute for infant 
formula (1, 11). Additionally, the contents of essential amino acids, 
unsaturated fatty acids, and lactose which can promote calcium 
absorption among humans, are greater in mare milk than in other 
domestic animal milks (12). Furthermore, fresh mare milk is more 
easily digested and absorbed by the human body. This is because 
digestible whey protein constitutes approximately 40% of the total 
protein, more than twice as much as found in cow milk. The 
indigestible casein is also relatively lower in contents (13). The lower 
fat content and smaller fat droplets in fresh mare milk are more easily 
absorbed by the human body (14, 15).

Fresh mare milk is rich in vitamins C, A, E, D, B1, B2, B12, and 
calcium, phosphorus, and other mineral elements, of which the ratio 
of calcium and phosphorus is 2:1 which is very similar to HBM (16). 
Mare milk also contains large numbers of essential trace elements such 
as Zn, Cu, V, Cr, Ni, Co, Mo, and other elements not essential but 
beneficial to the human body, such as Sr., Rb, Ba, and Li (11). An 
additional twelve rare elements that positively affect the human body 
have also been found in mare milk. The contents of rare elements from 
high to low are Sc, Ce, Nd, La, Y, Sm, Eu, Pr, Gd, Yb, Er, and Ho (11). 
Additionally, the content of lysozyme in mare milk is twice that of 
HBM and promotes recovery from gastric ulcers and upper respiratory 
infections, as well as healing wounds and postoperative scars. The 
combination of lysozyme and lactoferrin in mare milk is also a type of 
natural anti-infection substance with bactericidal effects (5, 17, 18).

Koumiss

The abundant nutrients and bioactive compounds found in 
koumiss are also metabolized by probiotic lactic acid bacteria, yeast, 
and other microorganisms in addition to those found in fresh mare 
milk. Unique tastes and high nutritional values in koumiss are the 
results of enzyme catalysis by lactic acid bacteria and yeast, such as the 
metabolism of carbohydrates and amino acids and the biosynthesis of 
fatty acids, which all benefit the pancreas and promote digestion (11, 
12, 19). Gastrointestinal motility disorders can also be  relieved 
because the acid amines and peptones converted from casein and 
albumin in koumiss can be absorbed easily and quickly by patients 
(13). Whey proteins rather than caseins are major proteins in the 
koumiss (20). Additionally, a variety of volatile organic compounds in 
koumiss, including lactic acid, ethanol, carbon dioxide, and other 
substances converted from lactose by lactic acid bacteria and yeast 
would prove beneficial for consumers who are lactose intolerant 
(Table 1) (3, 12). Essential fatty acids, such as α-linoleic acid and 
linolenic acid, are higher in koumiss than in other unsaturated fatty 
acids and can also be produced through natural fermentation (21).

Furthermore, organic acids, aromatic compounds, extracellular 
polysaccharides, peptides, enzymes, bacteriocins, and other special 
nutrients are also produced during natural fermentation. The organic 
acids and bacteriocins inhibit harmful microorganisms, and bioactive 
peptides have excellent anticancer and antioxidant properties (5, 12). 
Therefore, the high nutritional values and rich functional components 
identified in koumiss are primarily the results of the original fresh 
mare milk and microbiological metabolites found in it (Table  1) 
(11, 22).

Prevention of chronic diseases by 
drinking koumiss

Koumiss can effectively improve specific 
immunopotentiation

Numerous probiotics found in koumiss, especially lactic acid 
bacteria, can directly regulate the intestinal flora balance and 
microenvironment. As a result, the probiotics and their metabolites 
can improve specific immunopotentiation (23–25). Lacticaseibacillus 
casei Zhang isolated from koumiss can effectively inhibit the 
inflammatory response caused by polyinosinic:polycytidylic acid 
(Poly I:C). Poly I:C is often used as an analog double-stranded RNA 
(dsRNA) virus to simulate the viral infection process in macrophage 
cells (RAW264.7) (26). Research has shown that L. casei Zhang in 
koumiss can prevent or mitigate inflammatory reactions by reducing 

TABLE 1 The nutrient composition of koumiss.

Nutrients Contents Nutrients Contents Nutrients Contents

Protein 1.80–2.26% Lactose 2.58–4.30% V
C 1.76–5.79 mg/100g

Fat 0.60–2.20% Lactic acid 0.70–9.00% V
E 19.00–99.80 μg/100g

Lipid 0.60–1.30% Ethanol 0.60–13.68% VB1 4.14–9.00 μg/100g

Ash content 0.39–0.50% Carbon dioxide 0.50–0.90% VB2 5.06–100.00 μg/100g

Total solids 10.60–11.30% Titratable acidity 98.63±3.25(°T) Folic acid 10.97 μg/100g
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the amount of tumor necrosis factor-α (TNF-α) in serum (27, 28). 
Additionally, L. casei Zhang contributes to immunopotentiation by 
increasing the level of total immunoglobulin G (IgG) in serum and the 
content of interleukin-2 (IL-2) in the spleen. This induces the 
activation of T and B lymphocytes, enhances NK cell activity, and 
increases the activity of monocytes and macrophages against tumor 
cells or bacteria (Figure 1) (29–31). L. casei Zhang can stimulate the 
activation of T helper cells and NK cells, which then secrete the 
proinflammatory cytokine interferon γ (IFN-γ). IFN-γ can bind to the 
transmembrane glycoprotein receptor IFN-γR, inducing macrophage 
cells and T lymphocytes to flow to the inflammatory site and enhance 
immune reactions (28, 32, 33). Another strain isolated from koumiss, 
Lactobacillus acidophilus NCFM, can increase the murine dendritic 
cell expression of interferon β (IFN-β), interleukin-12 (IL-12), and 
interleukin-10 (IL-10). These observations demonstrate the strong 
antiviral ability of koumiss (26, 34).

Drinking koumiss which contains L. casei Zhang can promote the 
transcription of toll-like receptor 3 (TLR3) for double-stranded 
ribonucleic acid (dsRNA) in the pattern recognition receptor family. 
This is located on the surface of epithelial cells. Consequently, TLR3 
upregulates the expression of proinflammatory factors by recognizing 
ligands and activates the nuclear factor kappa B (NF-κB) signaling 
pathway, thereby effectively promoting immune responses (26, 35). 
Additionally, the transcription of the immune receptor TLR9 by 
L. casei Zhang present in koumiss can activate plasmacytoid dendritic 
cells (pDCs) and B lymphocytes, thus enhancing immunological 
effects when the human body is stimulated by harmful bacteria 
carrying common unmethylated CpG motifs in their genomes (26, 
36, 37).

Consuming koumiss probiotics has been shown to increase the 
expression of peroxisome proliferator-activated receptor α/β/δ (PPAR-
α/β/δ) in mice kidney proximal tubule cells, thereby enhancing 
immune responses (38, 39). Among them, fatty acids β-oxidation 
(FAO) in renal proximal tubules is promoted by high-expression of 
PPAR-α in acute kidney injury (AKI) disease induced by cisplatin 
(CP) or ischemia/reperfusion (I/R). Thus, the lipoperoxides, including 

4-hydroxy-2-hexenal, would be reduced by probiotics in koumiss, 
which help alleviate or hinder oxidative stress-mediated AKI. This also 
prevents cell apoptosis and proximal tubular cell death from occurring 
(40–42). Therefore, probiotics in koumiss can prevent kidney damage 
and protect kidney function (43, 44).

Saccharomyces cerevisiae isolated from koumiss can secrete 
antibacterial compounds, the main ingredients of which include citric 
acid, ascorbic acid, lactic acid, malic acid, and killer toxins (45, 46). 
These antibacterial compounds can effectively increase the 
concentration of immunoglobulin A (IgA), which can rapidly initiate 
the humoral immune response, and increase the number of beneficial 
bacteria while reducing the number of harmful bacteria or viruses in 
the gastrointestinal tract, together strengthening the resistance to 
various diseases (47–49). These antibacterial compounds in koumiss 
can also increase the concentrations of CD3+ and mature T 
lymphocytes in peripheral lymphoid organs to enhance the immune 
function of lymphoid organs or can decrease the concentrations of 
CD8+ in T lymphocytes to regulate the ratio of CD4+/CD8+ (50, 51). 
Humoral immunity is increased by antibacterial compounds and 
would be increased when infected by Escherichia coli O8 (51, 52). The 
antibacterial compounds can increase the numbers of Bifidobacterium 
and inhibit extraintestinal pathogenic E. coli in the cecum. 
Additionally, they can regulate the pH of the intestine and inhibit 
harmful bacteria by producing acetic acid. This helps maintain a 
normal microflora structure in the cecum, promoting physical health 
and preventing various diseases (51). Therefore, koumiss consumption 
can effectively strengthen the body’s immunocompetence and anti-
inflammatory responses.

Koumiss can effectively reduce the 
occurrence of cancer

The probiotics found in koumiss have been shown to strengthen 
the immune system, suppress tumor growth, and prevent the 
accumulation of carcinogenic compounds. Lactic acid bacteria is 

FIGURE 1

The mechanism of immunopotentiation in various ways with koumiss. Drinking koumiss with L. casei Zhang can induce the secretion of interleukin-2 
(IL-2) in the spleen, which in turn increases the activation of T and B lymphocytes, enhances NK cell activity, and ultimately enhances 
immunopotentiation. Furthermore, the increased content of IL-2 in the spleen enhances the activation of monocytes and macrophages against tumor 
cells and bacteria.
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considered the dominant probiotic involved in the process of koumiss 
fermentation (53, 54). Additionally, it has been found that lactic acid 
bacteria isolated from koumiss collected in Xinjiang, China effectively 
reduced the number of colon cancer HT-29 cells. When 
Limosilactobacillus reuteri (Lactobacillus reuteri) BCRC14625 
(1.0 × 109 CFU/mL) was cultured together with HT-29 cells, there was 
a significant increase in lactate dehydrogenase (LDH) activity 
(p < 0.05), resulting in damage to the cell membrane. In contrast, 
L. reuteri BCRC14625 has been observed inducing HT-29 cancer cells 
to secrete nitric oxide (NO), leading to apoptosis of the cells. 
Therefore, koumiss may be both a potential preventive and therapeutic 
agent for treating colon cancer (55–57).

Long-term consumption of koumiss had been shown to reduce 
Bacteroides uniformis concentrations, which are responsible for 
degrading isoflavones in vivo (p = 0.016). This results in a greater 
concentration of isoflavones that can bind to estrogen receptors (ERα 
and ERβ) as estrogen-like compounds in patients. Therefore, the level 
of estrogen in the body can be regulated to prevent hormone-induced 
breast cancer and other cancers (Figure 2) (58–60). Drinking koumiss 
can potentially serve as an early predictor of gastric cancer, while also 
relieving the symptoms of chronic atrophic gastritis. Furthermore, 
consuming koumiss can significantly reduce blood platelet counts, 
which in turn, may prevent inflammation and cancer (60–63).

Interferon γ (IFN- γ) levels can be increased greatly in vivo by 
L. casei Zhang isolated from koumiss (28). IFN-γ plays an important 
role in the antiproliferation of ovarian cancer, rectal cancer, and 
hepatocellular carcinoma. High doses of IFN-γ have been shown to 
promote the transcription and synthesis of protease caspase 3 and 
caspase 7. These activate the apoptosis process of cancer cells by 
initiating Janus kinase-signal transducers and activators of the 
transcription 1-caspase (JAK-STAT1-caspase) signal (32, 64, 65). 
Research has shown that IFN-γ can downregulate the expression of 
vascular endothelial growth factor A (VEGFA), which in turn disturbs 
the proliferation and survival of endothelial cells (66). This leads to 
blocking angiogenesis in the tumor microenvironment, ultimately 
preventing tumor growth. IFN-γ can also block the interleukin 
8-chemokine receptor CXCR2 (CXCL8-CXCR2) axis, which prevents 
the timely transportation of CXCR2+ CD68+ immunosuppressive 

macrophages to the tumor microenvironment (TME). This enhances 
the therapeutic effects of programmed cell death protein 1 (PD-1) 
blockade therapy for pancreatic cancer (67).

Consuming koumiss can also significantly reduce the levels of 
lithocholic acid and bile acid in feces, which can help prevent 
intrahepatic cholestasis and reduce liver cancer incidence (68–71). 
These findings demonstrate that the probiotics found in koumiss 
should be  effective in reducing the incidence rates of tumors 
and cancers.

Koumiss can effectively reduce in vivo 
cholesterol levels

The results of high throughput sequencing have shown that lactic 
acid bacteria is the dominant flora present in koumiss. Through 
assimilation of lactic acid bacteria, cholesterol in the cell membrane 
can be bound to the phospholipid tail, upper-phospholipid, and polar 
head regions, and thereby be converted to coprostanol and reduce 
cholesterol levels in vivo (60, 72–74). The binding of lactic acid 
bacteria with bile acids can inhibit its absorption by the small 
intestine and facilitate its excretion in feces. Endogenous cholesterol 
is then sequentially converted into bile acid, ultimately leading to a 
reduction in cholesterol levels (74, 75). Additionally, the contents of 
short-chain fatty acids (SCFAs) such as propionate and butyrate in 
the intestine increases in the presence of three lactic acid bacteria 
strains (Lactobacillus helveticus MG9-2, Lactiplantibacillus plantarum 
LIP-1, and Limosilactobacillus fermentum E7301) isolated from 
koumiss. The activity of pyruvate dehydrogenase in the liver is 
effectively restrained thereby leading to the inhibition of fatty acid 
synthesis and ultimately resulting in a reduction in the concentration 
of cholesterol in serum and the liver (74, 76). lactic acid bacteria in 
koumiss can also effectively increase high-density lipoprotein in the 
blood, which can reduce or block the flow of cholesterol into the liver 
(77, 78).

Lacticaseibacillus casei in koumiss collected from Xinjiang has 
been shown to secrete bile salt hydrolase, which catalyzes the 
deconjugation of bile salts in enterohepatic circulation (55). This leads 

FIGURE 2

The mechanism of cancer prevention effectively with koumiss. Drinking koumiss can reduce the concentration of Bacteroides uniformis in vivo by 
some certain ways, which in turn inhibits the degradation of isoflavones in the intestine. This results in more isoflavones being available to accelerate 
binding to estrogen receptors (ER α and ER β) as estrogen-like compounds, directly regulating the level of estrogen in vivo to prevent hormone-
induced breast cancer and other cancers.

https://doi.org/10.3389/fnut.2023.1270920
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Xue et al. 10.3389/fnut.2023.1270920

Frontiers in Nutrition 05 frontiersin.org

to the release of glycine or taurine groups from the steroid’s core 
molecular structure, converting conjugated bile acid into free bile acid 
that is excreted in feces. As a result, the bile acid content in the body 
is reduced (Figure  3) (79, 80). Additionally, the expression of the 
farnesoid x receptor is significantly downregulated, while that of 
cholesterol 7-alpha hydroxylase (CYP7A1) is upregulated, both of 
which can accelerate the conversion of bile acid from endogenous 
cholesterol in the liver. This ultimately helps maintain normal 
metabolic activities (Figure 3) (81–83).

A total of seven metabolites naturally found in koumiss have 
been identified in the feces of patients with hyperlipidemia who had 
been drinking koumiss for an extended period. These metabolites 
include stearic acid, sphingosine, tyrosine, α-tocotrienol, 
γ-tocotrienol, butyric acid, and butyrate (84). Stearic acid, a 
saturated fatty acid, can increase the oxidation rate of low-density 
lipoprotein (LDL) cholesterol in the blood after being converted to 
oleic acid (85). Sphingosine is bound to cholesterol to form a 
complex that can limit intestinal cholesterol absorption. Sphingosine 
can also attenuate the affinity of transporter Niemann Pick C1 like 1 
(NPC1L1) toward cholesterol (86). Additionally, tyrosine can 
be converted to adrenaline, which further promotes the process of 
lipid hydrolysis in vivo (87), and α-tocotrienol and γ-tocotrienol 
downregulate the expression of HMG CoA reductase to inhibit the 
synthesis of endogenous cholesterol and linoleic acid promotes 
β-oxidation, thus reducing the synthesis of endogenous triglycerides 
(TGs). Butyrate accelerates the hydrolysis of fatty acids, leading to a 
reduction in the concentration of TGs in the blood, and can also 
block the transportation of Very Low-Density Lipoprotein 
Cholesterol (VLDL-C) from the liver to the blood (84). Therefore, 
consuming koumiss can help reduce cholesterol through 
multiple processes.

Koumiss treats chronic gastritis and 
regulates intestinal flora

Koumiss is a functional drink that can be used to treat chronic 
gastritis. Studies have shown that when mice consumed koumiss, their 
intestinal numbers of Eubacterium rectale and Faecalibacterium 
prausnitzii significantly increased (60). These two intestinal 
microorganisms secrete butyric acid, which can regulate intestinal flora 
disorders and effectively promote gut content isolation and hypodermis 
among intestinal epithelial cells, thus stabilizing colon cells. These 
actions can inhibit the growth of cancer cells and reduce inflammation, 
making koumiss an effective treatment for chronic gastritis caused by 
Prevotella copri (enterotype 2) in the gut (Figure 4) (60, 88).

Koumiss had also been shown to be  effective in treating 
gastrointestinal inflammation caused by Salmonella typhimurium ATCC 
14028 (89). Consuming koumiss can boost the relative abundance of 
Akkermania muciniphila and Lachnospiraceae in the intestine. 
Autonomic control of systemic glucose metabolism and energy balance 
of A. muciniphila can inhibit the growth and reproduction of Toxoplasma 
gondii in the intestinal tract. SCFAs produced by Lachnospiraceae not 
only stimulated the proliferation of colon epithelial cells and reduce 
colonic transit time but also provide nutrients for the colon mucosa, 
preventing mucosal atrophy. By maintaining primal gastrointestinal 
morphology and normal physiological functioning, koumiss provides an 
effective treatment option (90–92).

Other health functions of koumiss

A large number of Lacticaseibacillus paracasei and abundant 
paracaseins are also found in koumiss (Figure 5). Some substances, 

FIGURE 3

The mechanism of cholesterol content reduction with koumiss in vivo. Drinking koumiss can increase the content of bile salt hydrolase (BSH) secreted 
by Lacticaseibacillus casei, which can accelerate the conversion of bile salts into bile acid, taurine, or glycine in enterohepatic circulation. The excessive 
bile acid can be absorbed by the feces and excreted out of the body. Furthermore, the requirements of bile acid would down-regulate the expression 
level of farnesoid x receptor (FXR) and up-regulate CYP7A1, accelerating the conversion of cholesterol to bile acid. This, in turn, significantly lowers the 
content of cholesterol levels in vivo.
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such as short-chain or long-chain fatty acids produced by L. paracasei 
can effectively inhibit the reproduction of pathogenic microorganisms 
(Figure  5). Paracaseins can induce endogenous mucin secretion, 
promote the expression of tight junction proteins, and inhibit the 
transmission of the NF-kB MLCK signal pathways (Figure 5). As a 
result, the intestinal damage caused by E. coli can be reduced and the 
intestinal mucosal barrier can be  strengthened to effectively treat 
diarrhea (Figure 5) (93).

Consumption of koumiss can increase the numbers of Vibrio 
desulfovibrio in mouse guts and generate more H2S. This can lead to 
the disordered oxidation pathway of butyric acid in cells, resulting 

in DNA chain breakage, inhibition of ATP-dependent K+ channels, 
and the release of cytochrome C which can help reduce both 
pulmonary and extrapulmonary tuberculosis in hosts (94, 95). It 
has also been reported that drinking koumiss can prevent 
tuberculosis caused by the pathogen Mycobacterium tuberculosis 
H37RV (89).

Consuming koumiss has been shown to effectively repair 
glomerular damage and prevent chronic liver and kidney diseases by 
increasing platelet-derived growth factor c (PDGF-c) and platelet-
derived growth factor receptor alpha (PDGFR-α) expression (38, 96). 
Additionally, L. casei Zhang in koumiss downregulates the expression 

FIGURE 4

The mechanism of chronic gastrotis improvement with koumiss. Drinking koumiss can significantly increase the numbers of Eubacterium rectale and 
Faecalibacterium prausnitzii in the intestine by some certain ways, which can secrete more butyric acid to regulate the intestinal flora and help the 
intestinal and gut contents separated by intestinal epithelial cells (IECs) and then protect the colonic epithelial cells. As a result, chronic gastritis caused 
by Prevotella copri (P-enterotype) can be effectively treated.

FIGURE 5

The mechanism of diarrhea treatment with koumiss. Drinking koumiss can enhance the number of Lacticaseibacillus paracasei and paracasein in vivo. 
SCFA and lCFA are produced by L. paracasei to inhibit the reproduction of pathogenic microorganisms. On the other hand, paracasein can catalyze the 
secretion of intestinal mucins and TJ while inhibiting the transmission of NF-KB-MLCK, reducing the damage of the intestine by Escherichia coli. This, 
in turn, helps maintain the integrity of the intestinal mucosal barrier (IMB) and prevents diarrhea.
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of toll-like receptors 4 (TLR4) in the liver, promotes the production of 
TNF-α and oxidative stress responses, and effectively protects the liver 
(97). Furthermore, koumiss contains angiotensin-converting enzyme 
inhibitors, which can reduce Angiotensin II (Ang II) generation and 
reduce hypertension (98–100).

Microbial community alternation 
during koumiss fermentation

It has been found that total of 12 phyla, 124 genera, and 227 
species were found across 29 koumiss samples while 18 phyla, 286 
genera, and 491 species across 13 fresh mare milk samples (101). 
Alghough fresh mare milk is rich in LAB, such as Lactobacillus 
helveticus, Lactiplantibacillus plantarum, L. kefiranofaciens and 
Lactococcus lactis, potential microbiological hazards can not 
be ignored as well. Variable levels of total microbial count (TMC) are 
3.40–5.87 (log CFU/ml) in the fresh mare milk, including some 
potentially pathogens such as Acinetobacter, Klebsiella, Escherichia, 
Brucellosis, Campylobacter, Mycobacteriosis, Bacillus, Staphylococcus, 
Streptococcus Cronobacter, and others (10). However, the koumiss 
microbiota mainly comprised LAB instand of potential pathogens, 
and sequences representing pathogenic bacteria were not detected 
(101). In koumiss, Lactobacillus (such as Lentilactobacillus diolivorans, 
Lactobacillus acidophilus, Lacticaseibacillus casei, Latilactobacillus 
curvatus), Streptococcus, and Saccharomyces cerevisiae are still the 
dominated the microbial community as the starter (102, 103). 
Therefore, the bacterial microbiota diversity of the koumiss was more 
simplex than the fresh mare milk. In spite of these researches, lower 
abundance of potential pathogens would be also living in the koumiss 
during the natural fermentation process and would become the 
microbiological hazards that should be  further assessed with 
accurate methods.

Conclusions and future perspectives

Koumiss, a traditional fermented dairy product with a long 
production history, is rich in nutrients such as vitamins C and E, has 
a balanced calcium-phosphorus ratio, and contains various beneficial 
trace elements. The natural fermentation process of koumiss leads to 
the formation of a unique flora structure consisting of a large variety 
of probiotic compounds. These produce organic acids, extracellular 
polysaccharides, functional peptides, and other metabolites. Therefore, 
koumiss can be regarded as a medicinal food that provides a series of 
special health functions, including immunity enhancement, cancer 
and tumor prevention, cholesterol reduction, chronic gastritis 
treatment, and intestinal flora regulation, among others. But, 
we should be pay attention to the potential pathogens in koumiss. So, 
standardized koumiss fermentation process should be established with 
the excellent probiotics as the starter to control the growth and 
reproduction of harmful bacteria in the future.

Although the special health functions of koumiss have been 
confirmed through limited animal testing, further studies are needed 
to elucidate the molecular mechanisms that enable its preventive and 
therapeutic effects on human diseases. This involves isolating and 
identifying many unique probiotics present in koumiss for more 
specialized applications. Furthermore, the molecular regulatory 
mechanisms underlying the alteration of intestinal flora, as well as 
other treatments using the probiotics and their metabolites found in 
koumiss, must be further explored by researchers. In contrast, harmful 
metabolites produced by these potential pathogens in koumiss should 
be  distinguished by metabolomics technology. And the clinical 
allergies, intolerances, or contraindications of koumiss should 
be studied furtherly.
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