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Introduction: Astaxanthin (AST) is a type of carotenoid with strong antioxidant 
effects. However, the development and use of AST are limited by its water 
insolubility and low bioavailability. This study aims to investigate whether AST@
PLGA can inhibit UC and reveal its possible mechanism.

Methods: We tested the particle size, polydispersity index, and zeta potential of 
AST@PLGA. Then, the in vitro release and antioxidant capacity of AST@PLGA were 
tested. Finally, the mouse model of colitis was established and SOD, MDA, TNF-α, 
IL-1β, IL-6 and P38 as well as ERK were detected from mice.

Results: Particle size, polydispersity index and zeta potential of AST @PLGA 
were 66.78 ± 0.64 nm, 0.247 and -9.8 ± 0.53 mV, respectively, and were stable 
within 14 days. Then, it was observed that the AST@PLGA nanoparticles not only 
maintained the effect of AST but also had a sustained release effect. Experiments 
in mice showed that AST@PLGA effectively reduced MDA, TNF-α, IL-1β and IL-6 
levels and increased SOD levels. AST@PLGA also downregulated the protein 
expression of P38 and ERK. The results showed the positive protective effect of 
AST@PLGA in inhibiting acute colitis.

Discussion: AST@PLGA nanoparticles have good stability and alleviating effect in 
colitis, which could be functional foods in the future.
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1. Introduction

Inflammatory bowel disease (IBD) is a chronic inflammatory disease of the gastrointestinal 
tract, mainly divided into ulcerative colitis (UC) and Crohn’s disease (CD). The incidence of UC 
is related to environmental factors, host immune status and intestinal environment (1). Under 
the combined effect of genetic, environmental and psychological factors, UC always suffers from 
neuroendocrine dysfunction, intestinal mucosal barrier damage and immune system imbalance, 
resulting in local intestinal mucosal damage (2). The main clinical symptoms of UC are urgent 
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urination, urinary incontinence, fatigue, increased stool frequency, 
mucus excretion, nocturnal bowel movements, abdominal discomfort, 
and bloody diarrhea (3). UC has become a global disease with a high 
mortality rate. Today, apart from colectomy, only lifelong treatment is 
possible. Current treatment options include aminosalicylic acid 
(ASA), glucocorticoids, immunosuppressants, and new biotherapies 
(4). Zhu et  al. (5) pointed out that elevated IL-36β levels may 
exacerbate UC by targeting Th2 cells and limiting the development of 
Foxp3 Treg cells, providing mechanisms and data to support the 
development of IL-36β inhibitors. However, these treatments are 
prone to drug resistance and side effects, so UC patients urgently need 
new and effective drugs.

Astaxanthin (AST) is a carotenoid and the most common source 
of natural AST is Haematococcus pluvialis (6). AST has attracted great 
attention in scientific studies due to its strong antioxidant activity and 
has played a role in many fields such as cosmetics, medicine, 
aquaculture, etc. Compared to beta-carotene and zeaxanthin, AST is 
more effective in preventing excessive oxidation of unsaturated fatty 
acid methyl ester, and its antioxidant activity is 10 times higher than 
that of β-carotene and 550 times higher than that of vitamin E, 
respectively (7, 8). The oxygen groups in the molecular structure of 
astaxanthin are different from those of other carotenoids, and at both 
ends of the molecular structure there is a polar region that neutralizes 
free radicals (9). As suggested by recent studies, AST could prevent 
neuronal damage in Parkinson’s disease by targeting the miR-7/SNCA 
axis (10). Kim et al. (11) reported that AST could reduce Helicobacter 
pylori-induced superoxide dismutase 2 (SOD2) levels and SOD 
activity, thereby protecting gastric epithelial cells from Helicobacter 
pylori infection. Yasui et al. (12) reported that AST inhibits colitis and 
colitis-associated colon carcinogenesis in mice by modulating 
inflammatory cytokines. However, AST contains 11 conjugated double 
bonds, which makes it very unstable, and its high lipophilicity and 
heat instability limit its use in biomedicine (13). Therefore, solving this 
problem is the focus of current research (14).

In recent years, nanoparticles have gradually become a research 
focus, providing an oral delivery approach that can improve drug 
stability in the gastrointestinal area and improve drug-specific 
targeting, absorption, solubility and bioavailability (15, 16). Recent 
studies have confirmed that the nano-drug system is a way to solve the 
AST problem. Mao et  al. (17) reported that encapsulation with 
nanostructured lipid carriers (NLC) significantly improved the 
physicochemical stability and potent antioxidant activity of AST. This 
finding showed that the properties of the nanocarrier made AST more 
stable and its biological activity was guaranteed. In addition, a soybean 
phosphatidylcholine-based liposome was used to encapsulate 
AST. This formulation increased the bioavailability of AST, reduced 
the cytotoxicity of free drugs, and protected bones from oxidative 
stress and inflammation through antioxidant and anti-inflammatory 
activities (18). Poly (lactic acid-co-glycolic acid) copolymer (PLGA) 
is one of the most commonly used biodegradable materials with good 
biocompatibility (19). It has been approved by the US Food and Drug 
Administration (FDA) as a safe substance for clinical use (20, 21). As 
a carrier, PLGA can load proteins, peptides and drugs (22). There are 
reports of the production of astaxanthin-containing nanoparticles for 
the treatment of ulcerative colitis (23). However, there are few reports 
of PLGA packaging of AST and is used for the treatment of colitis. 
Therefore, the properties and functions of AST-loaded PLGA 
nanoparticles (AST@PLGA) need to be further investigated.

In this study, AST@PLGA nanoparticles were prepared by the 
emulsion solvent evaporation method. The characterization and 
stability of the nanoparticles were tested for 14 days and the 
antioxidant activity of AST@PLGA was analyzed. Finally, the 
mechanism of AST@PLGA in acute colitis in mice was investigated. 
Our study may provide a new strategy to protect and improve the 
biological activity of AST.

2. Materials and methods

2.1. Materials

PLGA (lactide: glycolide 50:50; Mw 38,000–54,000) and poly vinyl 
alcohol (PVA, P875084) were purchased from MACKLIN (Shanghai, 
China). AST (SML0982) was purchased from Sigma-Aldrich (St 
Louis, MO, United  States). Dichloromethane and ethanol were 
purchased from SINOPHARM (Beijing, China).

2.2. Preparation of AST@PLGA 
nanoparticles

The AST@PLGA nanoparticles were prepared by the emulsion 
solvent volatilization method. 10 milligrams of AST and 100 mg of 
PLGA were dissolved in 1 mL of dichloromethane and then 
entirely dissolved by ultrasound as an organic phase. The organic 
phase was slowly added to the 1% PVA solution drop by drop, and 
the organic phase of 1 mL was added to 10 mL PVA solution, and 
then the emulsion was obtained by ultrasound. The emulsion was 
stirred on a magnetic stirrer for 3–4 h in the dark at room 
temperature and after centrifugation at 14,000 rpm for 40 min 
at 4°C. The pellet was resuspended in phosphate buffer 
solution (PBS).

2.3. Transmission electron microscopy

Transmission electron microscopy (TEM) briefly, 10 μL of AST@
PLGA was added to a dry copper net and stained with 2% phospho-
tungstic acid. After natural drying, Tecnai T12 transmission electron 
microscope was used to observe and photograph the samples.

2.4. Particle size, zeta potential, 
polydispersity index, and stability

Fifty microlitre of AST@PLGA was diluted to 1 mL with PBS, and 
then placed in a particle size or potential sample cell. A Malvern ES90 
particle analyzer was used to measure the average particle size, 
polydispersity index (PDI), and zeta potential of the nanoparticles 
using dynamic light scattering technology. The 14 days stability 
measurement was based on the experimental method of Elmowafy 
et al. (24) with some modifications. AST@PLGA nanoparticles were 
packaged separately and stored at 4°C in the dark for 14 days and the 
suspension medium used during storage was PBS. Particle size, PDI, 
and zeta potential of the nanoparticles were determined using 
dynamic light scattering.
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2.5. Drug loading

AST was added to the dichloromethane solution. The maximum 
absorption wavelength of the solution was measured using an EnSight 
multimode plate reader (PerkinElmer, Germany). The absorbance of 
different contents of the AST solution was detected at the maximum 
absorbance wavelength, and the standard curve was constructed. The 
solution of AST@PLGA nanoparticles was lyophilized and dissolved 
in 1 mL of dichloromethane, the absorbance was measured, and the 
content of AST was calculated according to the standard curve. The 
following equation (25) was used to obtain the drug loading:

 
DL

Weight of encapsulated AST

Weight of total nanoparticles
=

2.6. In vitro release study

The in vitro release rates of AST and AST@PLGA were determined 
by dialysis (26). Free AST and AST@PLGA were poured into dialysis 
bags (8,000–14,000 Da). The dialysis bags were then placed in a PBS 
buffer containing 0.1% Tween-80, kept at 37°C, and slowly stirred at 
a speed of 150 rpm/min for 8 h in an air bath constant temperature 
oscillator (Shanghai Pingxuan Scientific instrument Co., Ltd., China). 
Two millilitre samples in the dialysis bag were collected at 
predetermined intervals (0.5, 1, 2, 4, 8 h). The absorbance of each 
sample was measured to estimate the percentage of drug release.

2.7. Antioxidant activity

The 1,1-diphenyl-2-picryl-hydrazyl (DPPH) radical scavenging 
rate was determined according to the method of Yang and Li (27) and 
modified. First, The DPPH was diluted to 0.1 mM with 99.5% absolute 
ethanol, and different concentrations of AST and PLGA@AST were 
diluted by DMSO and PBS. Then the 100 μL sample solution and 50 μL 
of DPPH solution reacted for 30 min at room temperature in the dark, 
and the absorbance at 515 nm wavelength was measured as A1. Under 
the same conditions, 50 μL 99.5% absolute ethanol and 100 μL sample 
were measured as background control A2. Fifty microlitre of DPPH 
solution was added to 100 μL of PBS, and the absorbance was measured 
as blank control A0. The DPPH radical scavenging rate was calculated 
as follows: DPPH radical scavenging rate (%) = [1 − (A1–A2)/A0] × 100%.

The hydroxyl radical scavenging rate was determined by the method 
of Barreto et al. with modification (28). Fifty microlitre of 2.25 mmol/L 
FeSO4 aqueous solution, 50 μL of 9 mmol/L salicylic acid methanol 
solution, and 50 μL of sample solutions of different solubility were added 
in sequence to the 96-well plate, then 50 μL of 8.80 mmol/L H2O2 
methanol solution was added to start the reaction. After 30 min of 
reaction at 37°C, the absorbance A1 was measured at 510 nm wavelength. 
The absorbance was measured when the sample was replaced by 
methanol was A2. The absorbance was measured when the salicylic acid-
methanol solution and the H2O2 methanol were replaced by methanol 
was A0. The hydroxyl radical scavenging rate was calculated as follows: 
Hydroxyl radical scavenging rate (%) = [1 − (A1-A2)/A0] × 100%.

The determination of ferric iron-reducing capacity was based on the 
method of Bouabid et al. (29) with some modifications. First, the Ferric 
ion reducing antioxidant power (FRAP) solution was prepared by 

mixing 25 mL acetate buffer (300 mM), 2.5 mL 2,4,6-tripyridyl triazine 
(TPTZ) (2 mM), and 2.5 mL FeCl3·6H2O (20 mM). Then 5 μL sample 
solution, 150 μL FRAP working solution, and 15 μL distilled water were 
added successively to the 96-well plate, and the absorbance at a 
wavelength of 595 nm wavelength was determined after 10 min at 37°C.

2.8. Animals and treatments

Specific pathogen-free (SPF) male C57BL/6 mice were obtained 
from the Comparative Medicine Centre of Yangzhou University and 
the mice were 7 weeks old. The room was maintained under a light: 
dark (12 h: 12 h) cycle, and the temperature was controlled at 25°C. Mice 
were provided with deionized water and food ad libitum. The animal 
experiments were approved by the Jiangsu Administrative Committee 
for Laboratory Animals (The license number: SYXK (SU) 2022-0044).

Thirty-two mice were randomly divided into four groups, 
including normal group, DSS group (4% DSS), DSS + AST group (4% 
DSS + 25 mg/kg AST), and DSS + AST@PLGA group (4% DSS + AST@
PLGA with 25 mg/kg AST content). Except for the normal group, the 
other groups were fed 4% dextran sodium sulfate (DSS) aqueous 
solution once every other day for 14 consecutive days. After that, the 
mice were administrated intragastric for 7 days, and then killed 
under anesthesia.

2.9. The levels of cytokines in serum

Mice blood was collected in centrifugal tubes. After standing for 
1 h at 37°C, the centrifuge tubes were centrifuged at 3000 × g for 
10 min to collect serum. The content of Interleukin-6 (IL-6), 
Interleukin-1β (IL-1β), and tumor necrosis factor α (TNF-α) was 
detected according to ELISA assay kits (Boster, United States). The 
content of superoxide dismutase (SOD) and malondialdehyde (MDA) 
was detected according to SOD kit and MDA kit (Beyotime, China).

2.10. Histopathologic analysis of colon 
tissue

About 2 cm of fresh intestine was flushed and fixed in 4% 
paraformaldehyde solution. The intestines were buried in paraffin, and 
then sliced for 4–5 μm sections. Finally, the sections placed on a slide were 
stained for hematoxylin-eosin (HE) and immunohistochemical analysis.

2.11. Western blot

After washing with precooled PBS, the samples were lysed with 
RIPA buffer (Applygen, Beijing, China), including protease and 
phosphatase inhibitor cocktail (New Cell Molecular Biotech, Suzhou, 
China). The solution was centrifuged at 12,000 × g for 10 min at 
4°C. Total protein concentration in the supernatatnt was measured 
using bicinchoninic acid (BCA) protein assay kit.

Protein samples were added to respective channels, separated by 
polyacrylamide gel electrophoresis, and electro-transferred to the 
polyvinylidene difluoride membrane (Millipore, Germany). After 
sealing with 5% skim milk for 90 min, the membrane was incubated 
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with specific primary antibodies overnight at 4°C, then the secondary 
antibody incubation for 1 h. ECL chemiluminescence reagent (New 
Cell Molecular Biotech, Suzhou, China) was added to the image by the 
chemiluminescence imaging analysis system (Alpha, United States). 
Western Blot images were analyzed by Image J software.

The primary antibodies include Phospho-P38 MAPK (Thr180/
Tyr182), P38 MAPK (D13E1), Phospho-P44/42 MAPK (ERK1/2), 
P44/42 MAPK (ERK1/2), Anti-rabbit IgG, HRP-linked Antibody 
(7074S), Anti-mouse IgG, HRP-linked Antibody (7076S), β-Actin. All 
antibodies above were acquired from Cell Signaling Technology.

2.12. Statistical analysis

All results were analyzed by the software SPSS 26, and data were 
presented as mean ± SD. p-values <0.05 were regarded as statistically 
significant (*p < 0.05, **p < 0.01, and ***p < 0.001). The other statistical 
dates were calculated by GraphPad Prime 9.

3. Results

3.1. Characterization of AST@PLGA 
nanoparticles

The TEM image of AST@PLGA is shown in Figure 1A. The AST@
PLGA nanoparticles had a regular spherical shape. The particle size 
was 66.78 ± 0.64 nm and the PDI was 0.247 ± 0.02, which proved that 
the PDI was uniformly distributed in an aqueous solution (Figure 1B). 
The physical stability, dispersibility and in vivo properties of 
nanocarrier dispersions depend on the surface charge of the 
nanoparticles (30). The potential of AST@PLGA was 
−9.8 ± 0.53 mV. The AST@PLGA nanoparticles change the solubility 
in water. As shown in Figure 1C, AST was insoluble in water, while 
AST@PLGA showed water solubility after 0, 4, and 8 h. Therefore, 
we investigated the stability of the AST@PLGA aqueous solution in 
the refrigerator at 4°C for 14 days. As shown in Figures 1D–F, the 
particle size, potential and PDI of the AST@PLGA aqueous solution 
were not significantly different from those of the first day, namely the 
distribution and uniformity of AST@PLGA were stable in 14 days.

3.2. The drug loading of AST@PLGA and in 
viro release study

Figures  2A,B showed that AST was scanned at a specific 
concentration using an enzyme meter. AST was found to have a 
maximum absorption wavelength of 480 nm. When adjusting the 
absorption of different AST concentrations at 480 nm, the linear 
regression equation for AST resulted in y = 0.041x + 0.2971. Using this 
equation, the drug loading rate for AST@PLGA was calculated to 
be  6.89 ± 0.05%. Additionally, Figure  2C showed the in vitro release 
curves for AST and AST@PLGA. The study found that AST coated with 
PLGA can retain the drug more efficiently. The data showed that the 
amount of drug released by the AST group was 60.1 ± 1.73% at 2 h and 
70.3 ± 2.36% at 8 h. For AST@PLGA, the highest release rate was observed 
within 1 h, which accounted for 37.2 ± 3.82% of the total. This could 
be due to the loss of weakly adsorbed AST molecules on or near the 

surface of AST@PLGA (25). The release rate of AST@PLGA progressively 
slowed between 1 and 4 h; However, drug release persisted. After 8 h, the 
amount of substance released was 58.7 ± 0.81%. The total release of AST@
PLGA was lower than that of AST, indicating that AST@PLGA achieved 
sustained release. The results showed that the PLGA vector could 
successfully control the release of AST, ensuring a continuous supply of 
the substance to the body and prolonging its effect (31).

3.3. Antioxidant activity in vitro

AST was known for its potent antioxidant activity, so we  first 
determined the antioxidant activity of AST@PLGA in vitro. Hydroxyl 
radicals can age the human body and cause various diseases. Therefore, 
scavenging hydroxyl radicals was important for human health (32). As 
shown in Figure  3A, the flushing rates of AST and AST@PLGA 
decreased with time, and the flushing rates of AST@PLGA were higher 
than those of AST at 4 and 6 h. DPPH was a widely accepted stable 
radical tool for estimating the radical scavenging activity of antioxidants 
(33). The DPPH radical scavenging activity of AST was higher than that 
of AST@PLGA in 4 h. However, after 6 h, the effect of AST@PLGA was 
more remarkable (Figure 3B). The reduction and antioxidation ability 
of trivalent iron was a typical single electron transfer method. Trivalent 
iron ion complex (Fe3+) with iron ion complex (Fe2+) was used to 
measure total antioxidant activity (34). As shown in Figure 3C, the 
trivalent iron reduction and antioxidant capacity of AST and AST@
PLGA changed with time. The reduction of trivalent iron and 
antioxidant capacity of AST were weaker than that of AST@PLGA after 
2 h. Of the three tests used, the FRAP, DPPH, and hydroxyl radical 
scavenging tests measure the reducing ability of molecules, the ability 
to provide hydrogen or electrons, and the ability to scavenge ROS, 
respectively. Although there were different mechanisms, these assays 
were highly correlated when used to measure antioxidant activity (35, 
36). In short, AST still exhibited strong antioxidant activity after coating 
with PLGA. The antioxidant capacity of AST was slightly higher than 
that of AST@PLGA in the short term. However, the effectiveness of 
AST@PLGA was more sustained over time. This may be due to the 
encapsulation of AST in the particles by PLGA, thereby delaying its 
release. Compared to the unstable structure of AST, PLGA-coated AST 
could improve its water solubility, stability and bioavailability (37), 
which was consistent with the study in Figure 1C. The antioxidant 
experiments showed that PLGA nanoparticles maintained the 
antioxidant activity of AST for a long period of time.

3.4. The remission of clinical symptoms in 
colitis mice

AST can reduce inflammation in tissues and organs and is essential 
in combating intestinal inflammation and stomach ulcers caused by 
Helicobacter pylori (38). Studies have shown that AST can reduce 
DSS-induced weight loss, inflammatory infiltration and goblet cell 
depletion (14). As shown in Figures 4A,B, the body weight of mice 
gradually decreased after DSS water exchange, and the body weight of 
AST group and AST@PLGA group gradually increased after drug 
intervention. The length of the colon was 10.48 ± 0.42 cm in the control 
group, which decreased to 7.86 ± 0.56 cm in DSS-treated mice. AST@
PLGA protects colon length better than AST (p < 0.05) (Figures 4C,D). 
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Features of colitis include colonic mucosal injury, epithelial changes, loss 
of goblet cells, destruction of crypt structure, and inflammatory cell 
infiltration (39). In the control group, there was no obvious abnormality 
of the colonic mucosa and no inflammatory cell infiltration in the 
intestine. In the model group, while the colorectal epithelial mucosa was 
severely damaged, crypt branching, distortion, atrophy, goblet cell loss, 
inflammatory cell infiltration and other obvious phenomena occurred, 
there was some tissue fibrosis accompanied by free intestinal gland cells, 
which followed the symptoms of UC. In other groups there were 
varying degrees of infiltration of inflammatory cells, which were less 
severe than in the model group. The structure of the colon cavity in the 
AST@PLGA and AST groups was more expected. The results showed 
that DSS successfully induced UC in mice, and AST could alleviate the 
intestinal tissue damage of mice caused by DSS-induced UC. The 

ameliorative effect of AST and AST@PLGA on intestinal tissue damage 
was better than that of the DSS model group (Figure 4E). The results of 
body weight, colon length and intestinal tissue sections showed that 
both AST and AST@PLGA could inhibit colitis in mice, and the effects 
of AST@PLGA were more obvious than that of AST.

3.5. Effects on serum oxidative stress and 
tissue inflammatory cytokines secretion

Oxidative stress is not only a risk factor for the development of 
chronic inflammatory diseases such as UC, but is also associated with 
the pathogenesis and exacerbation of UC (40). Changes in SOD and 
MDA levels are essential indicators of oxidative stress in vivo. To further 

FIGURE 1

Characterization and stability of AST@PLGA nanoparticles. (A) TEM images of AST@PLGA nanoparticles. (B) The size of AST@PLGA nanoparticles. 
(C) Water solubility of AST and AST@PLGA nanoparticles. (D–F) Particle size, potential, and PDI of 14  days stability of AST@PLGA nanoparticles. p-values 
<0.05 were regarded as statistically significant (*p  <  0.05, **p  <  0.01, and ***p  <  0.001).

FIGURE 2

(A) UV–vis spectrum of AST. (B) Standard curve of AST. (C) In vitro release profiles of free AST and AST@PLGA. p-values <0.05 were regarded as 
statistically significant (*p  <  0.05, **p  <  0.01, and ***p  <  0.001).
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elucidate the inhibitory effects of AST@PLGA and AST on UC, the 
levels of proinflammatory cytokines IL-6, IL-1β, TNF-α, SOD and 
MDA were determined in the serum of mice. As shown in Figures 5A,B, 
the SOD activity was significantly reduced to 147.41 ± 4.77 U/mL 
(p < 0.001) and the MDA content was significantly reduced to 44.60 ± in 
the model group compared to the control group 1.79 μmol/L increased 
(p < 0.001), indicating the presence of oxidative stress levels. After 
treatment with AST@PLGA and AST, serum SOD activity increased to 
184.41 ± 0.66 and 161.83 ± 8.77 U/mL and MDA content decreased to 
21.02 ± 3.93 and 29.13 ± 3.61 μmol/L. The results of MDA assay showed 
that AST@PLGA and AST could inhibit oxidative stress, and the efforts 
of AST@PLGA were higher than that of AST. These results suggest that 
AST@PLGA can alleviate DSS-induced oxidative stress by regulating 
SOD activity and MDA levels in mice. Inflammation is one of the main 
triggering factors in the pathogenesis of UC, which can lead to damage 

to intestinal tissue. TNF-α, IL-1β and IL-6 played an essential role in the 
inflammatory response (41). The level of pro-inflammatory cytokines 
in the control group was significantly lower than in the model group 
(p < 0.001) (Figures 5C–E). AST@PLGA and AST significantly reduced 
the production of IL-6, IL-1β, and TNF-α (p < 0.01). These results 
indicated that AST@PLGA and AST can effectively inhibit the secretion 
of pro-inflammatory cytokines in DSS-induced UC in mice and the 
efforts of AST@PLGA were higher than that of AST.

3.6. Effect of astaxanthin on MAPK pathway 
in DSS-induced mice

The MAPK signaling pathway (ERK, P38) is a crucial downstream 
signaling pathway for ROS stimulation. Several studies have shown that 
the MAPK pathway contributes to various biological responses in 

FIGURE 3

Comparison of antioxidant activity between AST@PLGA nanoparticles and AST in vitro. (A–C) Antioxidation under time gradient. (The concentration of 
AST and AST@PLGA is 100  μg/mL) (A): hydroxyl radical scavenging rate, (B): DPPH radical scavenging rate, (C): reduction and antioxidation ability of 
trivalent iron. p-values <0.05 were regarded as statistically significant (*p  <  0.05, **p  <  0.01, and ***p  <  0.001), compared with the 0  h group #p  <  0.05.

FIGURE 4

The acute colitis model building method and the effect of AST@PLGA in mice. (A) A schematic diagram of model process. (B) The changes in body 
weight among different groups. (C,D) The changes in mice colon length and shape. (E) The histopathological changes of mouse colon tissue. p-values 
<0.05 were regarded as statistically significant (*p  <  0.05, **p  <  0.01, and ***p  <  0.001).
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different cell types, such as Inflammation, cell growth and differentiation, 
and cell death and survival (42). There was increasing evidence that 
activation of the ERK-MAPK pathway was involved in the pathogenesis, 

progression and oncogenic behavior of human colorectal cancer (43). 
The expression of P38 and ERK-MAPK signaling pathways was detected 
by Western blotting, and the results are shown in Figure  6. 

FIGURE 5

Changes of serum indexes in mice. (A,B) The content of SOD and MDA. (C–E) The content of proinflammatory cytokines IL-1β, IL-6 and TNF-α. p-
values <0.05 were regarded as statistically significant (*p  <  0.05, **p  <  0.01, and ***p  <  0.001).

FIGURE 6

AST inhibited MAPK pathway in mice. (A) The representative western blotting of p-P38, P38, p-ERK, and ERK in the colon. (B,C) The quantification of 
the protein expression of p-ERK/ERK and p-P38/P38. p-values <0.05 were regarded as statistically significant (*p  <  0.05, **p  <  0.01, and ***p  <  0.001).
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The phosphorylation levels of P38 and ERK were significantly increased 
in the model group. AST@PLGA can significantly downregulate the 
phosphorylation levels of P38 and ERK, AST can reduce phosphorylation, 
and the inhibitory effect of phosphorylation of key MAPK protein is not 
different from AST@PLGA. In this study, AST and AST@PLGA 
inhibited DSS-induced MAPK phosphorylation in mouse colonic 
epithelial cells, and the effect of AST@PLGA is better than that of 
AST. An inextricable relationship between MAPK and the NF-κB 
signaling pathway has been reported. The MAPK pathway can activate 
NF-κB to regulate the expression of pro-inflammatory cytokines or 
mediators. As expected, AST and AST@PLGA downregulated the 
expression of TNF-α, IL-6, and IL-1β. Therefore, the anti-inflammatory 
effects of AST and AST@PLGA may be  related to the activation 
inhibition of NF-κB and MAPK signaling pathways (44).

4. Conclusion

In this study, AST@PLGA was successfully prepared using the 
emulsifying solvent volatilization method. The nanoparticles changed 
their water solubility and were stable within 14 days. The AST@PLGA 
nanoparticles were demonstrated to exhibit sustained release through 
in vitro antioxidant and release study experiments. In a mouse model 
of acute colitis, AST@PLGA reduced the levels of MDA, TNF-α, 
IL-1β, and IL-6 and increased the levels of SOD. AST@PLGA also 
downregulated the protein expression of P38 and ERK. Nanomaterials 
had relatively small particle sizes and strong penetration, and were 
slowly released after astaxanthin coating, providing a new 
opportunity for functional food delivery.
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