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Introduction: Inadequate vitamin D status is a worldwide public health issue. 
In humans, vitamin D status is affected by diet, and even more by exposure 
to ultraviolet B (UVB) light and consequential endogenous synthesis. Various 
personal and environmental factors influence endogenous synthesis. Factors 
affecting vitamin D status were investigated in a prospective longitudinal cohort 
study with a summer and winter observation period.

Methods: The final sample included 292 adults, of those 111 (38%) males and 181 
(62%) females, with a mean age of 38.2 (±11.8) years from Slovenia who were not 
supplementing vitamin D. Serum 25-hydroxyvitamin D [25(OH)D] concentrations 
were measured in both periods; vitamin D intake, self-reported body mass index 
(BMI), and protective behaviors against sun were also recorded. Other measured 
parameters included measurements of constitutive skin color using the objective 
individual typology angle (ITA), and difference in the melanin index (ΔMI) for 
assessment of objective sun exposure.

Results: In winter a high prevalence (63.4%) of insufficient vitamin D status (< 
50 nmoL/L) was observed with higher odds ratios (OR) for insufficiency in those with a 
higher BMI and light ITA. During summer, insufficiency prevalence was low (5.5%), but 
half of the participants (50.0%) had suboptimal 25(OH)D concentration (< 75 nmol/L). 
In summer OR for suboptimal status were higher in those with obesity, lower ΔMI, 
light ITA, low vitamin D intake, and protective clothing behaviors.

Conclusion: Using a series of measures, we showed that vitamin D status is hugely 
affected by several personal factors such as BMI, ITA, vitamin D intake, ΔMI, and 
protective behavior against the sun. This conclusion questions the usefulness 
of generalized population-level recommendations since personal factors are a 
major predictor of vitamin D status.
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1 Introduction

Epidemiological studies in various populations have raised public health concerns because 
of the high prevalence of vitamin D (VitD) insufficiency and deficiency (1–9). Since it plays an 
important role in human physiology, low serum VitD concentrations may pose a health risk (2, 
10). Vitamin D is a fat-soluble vitamin involved in calcium and phosphorus homeostasis and is 
therefore critical for bone health (11). Poor VitD status leads to rickets in children and 
osteomalacia in adults. Other studies have linked VitD deficiency to immune system function, 
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non-skeletal health problems, disease development, and lower life 
expectancy, although causal evidence from randomized controlled 
trials is still limited (12, 13).

Sources of VitD for the human body are dietary intake and skin 
exposure to ultraviolet B (UVB) radiation with wavelengths of 
290–315 nm. Exposure to sunlight is thought to account for up to 90% 
of the body’s VitD supply, but during the winter months sun exposure 
in most European countries does not result in the formation of VitD 
due to the low intensity of UVB radiation (14–16). The amount of 
VitD formed in the skin by UVB radiation depends on various 
environmental and personal factors, such as latitude, season, time of 
day, skin pigmentation, age, or use of sunscreen (17–23). It has already 
been established that constitutive skin pigmentation and/or skin 
phototype is an important predictor of VitD status when comparing 
people from different ethnic backgrounds (24–29), but how different 
levels of constitutive pigmentation affect VitD status in Caucasians has 
not yet been well described. To date, there has been only one study 
focusing on Caucasians, and its results contrast with studies of 
different ethnic backgrounds, where darker skin types seem to 
be more prone to deficiency (30).

Vitamin D is formed after UVB exposure to the skin; it enters the 
bloodstream in a complex with a D-binding protein and is later 
hydroxylated in the liver to 25-hydroxyvitamin D [25(OH)D], the 
most common biomarker for assessing VitD status. This form is later 
hydroxylated in the kidneys to 1, 25 hydroxyvitamin D, which is the 
active form of VitD (31). The excess VitD produced is stored in 
adipose tissue and/or partially degraded (32). Melanin pigment, which 
is crucial for skin color, may interfere with VitD photoproduction in 
the skin because it acts as a natural filter of UVB radiation in the 
epidermis, and thus competes for UVB photons with 
7-dehydrocholesterol (7-DHC), a substrate for VitD synthesis (32).

Although there is no consensus on the recommended serum 
concentration of 25(OH)D, the definition of VitD deficiency generally 
includes serum concentrations of 25(OH)D that fall below 30 nmol/L 
(10–12 ng/mL) (33–36); concentrations below 50 nmol/L (20 ng/mL) 
are considered insufficient (33, 35–37), whereas concentrations above 
75 nmol/L (30 ng/mL) are considered optimal by the Endocrine 
Society (34), In Slovenia (latitude 45° to 46° north) and in countries 
with similar or higher latitudes, UVB radiation in winter (November–
April) is insufficient to stimulate VitD synthesis (3). In Slovenia a high 
prevalence of low VitD status with remarkable seasonal variations has 
been reported (1), highlighting the need for effective public 
health interventions.

In foods, VitD is mainly found in the form of ergocalciferol (D2) 
and cholecalciferol (D3) (38) and their derivatives. Foods may be a 
natural source of VitD or may be enriched with this vitamin. There are 
few natural dietary sources of VitD (e.g., fatty fish, fish liver oil, and 
sun-dried mushrooms), and they are not commonly consumed (5, 7). 
As a result, most VitD intake is achieved by foods that contain rather 
small amounts of VitD but are consumed more frequently, such as 
eggs and cheese (7, 39, 40). On the other hand, food fortification and 
bioaddition can be important sources of VitD, which may be voluntary 
or mandatory (41). The term fortification usually describes the process 
of adding D2 or D3 before or at the end of food processing (42), 
whereas the term bioaddition describes the process of increasing 
naturally occurring VitD during food production by feeding animals 
with VitD-enriched feed (for meat and eggs) or by irradiating fungi or 
yeast with UVB (42). Other sources of this vitamin include VitD-
containing prescription medicines and food supplements.

Dietary intake of VitD is often far below recommended levels – 
both globally and in Slovenia (40, 43, 44). The daily reference value 
(DRV) for VitD intake (without endogenous synthesis) for the adult 
population is 15 μg/day as recommended by the European Food Safety 
Authority (EFSA), and 20 μg recommended by the German, Austrian, 
and Swiss Nutrition Association (D-A-CH) (36, 45). In contrast, the 
Nutritional Reference Value (NRV) specified in the EU food labeling 
regulations for VitD is 5 μg. However, we should note that EFSA sets 
DRV for the VitD as adequate intake, so that 97.5% of population 
avoid deficiency (46), but not insufficiency.

In the light of the alarming prevalence of regional VitD deficiency 
(1, 40, 44),we designed a study with aim to examine the factors 
affecting VitD status in the Caucasian population in winter and 
summer, focusing on objectively measured skin parameters and the 
consideration of a wide range of personal and lifestyle indicators. The 
results of present study will be implemented into new policies for 
public health interventions.

2 Materials and methods

2.1 Study design and timing

This prospective longitudinal study was carried out within the 
scope of research project Nutri-D: “Challenges in achieving adequate 
Vitamin D status in the adult population” (L7-1849) conducted with 
two observation periods, one in summer (September) and one in 
winter (January). The study protocol was compliant with the principles 
of the Declaration of Helsinki and was approved by the Ethics 
Committee of the Faculty of Applied Sciences (Approval No. 2018/4-
ET-SK; ClinicalTrials.gov entry NCT03818594). The study was 
conducted for two consecutive years (2019–2020), with approximately 
half of the participants recruited in each year. Prior to enrolment, the 
participants were screened for inclusion/exclusion criteria. At the first 
visit (January), the participants signed the Informed Consent Form 
(ICF), and a fasting venous blood sample was collected for the 
determination of serum 25(OH)D concentration. At the second visit 
(September), blood sampling was repeated, skin parameters were 
measured, and the sqFFQ/SI and behavior questionnaire 
were completed.

It should be noted that the running of the study in 2020 coincided 
with the onset of the COVID-19 pandemic. Winter recruitment in 
2020 was conducted before the virus outbreak in Slovenia, which led 
to an initial lockdown (March 12th until May 15th, 2020), and 
summer sampling occurred just before the second wave of infection, 
which led to a second lockdown in the autumn of 2020. Some 
pandemic measures were also in force during the summer months, 
which affected people’s lifestyles and holidays.

2.2 Study population

The invitation to participate in the study was posted on social 
media and on the website of the Nutrition Institute (Slovenia). The 
inclusion criteria were Caucasian race (Fitzpatrick skin type I–IV); age 
over 18 years; willingness to avoid artificial UVB sources; and 
willingness to follow all study procedures. The exclusion criteria were 
pregnancy or breastfeeding; marked sun avoidance (e.g., sun allergy); 
use of sunbed; intake of supplements or medications containing VitD, 
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fish oil, or omega-3 fatty acids in the 3 months preceding study 
enrolment; regular (daily) consumption of VitD-enriched foods 
(fortified margarine or plant-based alternative milk); diet prescribed 
by dietitian/medical staff; adherence to special diets (veganism, a 
low-carbohydrate, high-fat diet (LCHF), and a caloric restriction diet; 
note: vegetarians were not excluded); current diseases of the kidneys, 
thyroid, digestive tract, osteoporosis and other bone diseases, and skin 
diseases and other diseases and conditions that affect the absorption 
and synthesis of VitD, and additional exclusion criteria for the winter 
time participation was vacation in (sub)tropical destination.

Of 338 subjects enrolled, 292 completed all the commitments and 
measurements in both seasons (33 could/would not participate in the 
second season, 3 dropped out for medical reasons, 3 because of 
pregnancy, and 7 were excluded because of supplement use). The 
blood collection and measurements of the study were organized in 
Ljubljana, so most of the participants (73.3%) were from the region of 
Central Slovenia.

2.3 Demographic questionnaire and food 
frequency questionnaire for the estimation 
of vitamin D intake

The survey included information on eating habits, food allergies, 
sociodemographic and socioeconomic status, self-reported body 
height and weight, and health status. Body height and weight were 
used to calculate the body mass index (BMI); subjects were categorized 
as: normal and underweight (< 24.9 kg/m2), overweight (25.0–29.9 kg/
m2), and obese (> 30.0 kg/m2) (47). Physical activity levels were 
assessed using the short version of the International Physical Activity 
Questionnaire (IPAQ) (Slovenian translation in (48). As suggested by 
Craig et  al. (49) physical activity levels were categorized as low, 
moderate, and high. The Fitzpatrick skin type questionnaire was used 
to assess self-reported skin color and sun reactivity (50).

Vitamin D intake was estimated using the validated Semi-
Quantitative Food Frequency Questionnaire (sqFFQ/SI). The sqFFQ/
SI questionnaire was designed to measure only VitD intake with 
capturing main contributors of VitD to the Slovenian diet and was 
validated against 5-day dietary record (51). Intake was analyzed 
dichotomously as below and above 5 μg per day.

2.4 Serum 25(OH)D concentration

A venous blood sample was collected after an overnight fast. 
Blood collection and analyses were carried out at an accredited 
medical diagnostic laboratory Adrialab/Synlab (Ljubljana, Slovenia), 
using a standard chemiluminescence method, the Architect 25-OH 
vitamin D chemiluminescent microparticle immunoassay (Abbott 
Ireland, Longford, Ireland), to determine the quantity of 25(OH)D in 
human serum. As provided in the technical documentation of the 
used assay kit, the correlation coefficient with the ID-LC–MS/MS 
method within the measurement interval of the assay (12–378 nmol/L) 
was r = 0.99 (95% CI: 0.99, 1.05). Vitamin D status was determined 
considering the 25(OH)D serum concentration according to the 
literature (33–35): deficient below 30 nmol/L (12 ng/mL); insufficient 
30–50 nmol/L (12–20 ng/mL); sufficient 50–75 nmol/L (20–30 ng/
mL); and optimal concentration above 75 nmol/L (30 ng/mL). The 

difference between the 25(OH)D concentration in January and 
September was divided into three quartiles (corresponding to the 25th 
and 75th percentiles).

2.5 Skin measurements

Measurements of skin color and of the level of melanin were made 
according to standard procedures using the DSM III Skin Colormeter 
(Cortex Technology ApS, Denmark) (52). Skin color was measured in 
the CIE L*a* b* color system, using three coordinates representing 
lightness (L) – values range from 0 (black) to 100 (white); the 
green-red axis (a) – positive values indicate the amount of red and 
negative values indicate the amount of green; and the blue-yellow axis 
(b) – yellow is positive and blue is negative (53). Melanin content was 
measured as the melanin index (MI) between 0 and 100; the higher 
the index value, the darker and more pigmented the skin.

The measurements were taken on the inner (sun-unexposed area) 
and lower outer (sun-exposed area) sides of the upper right arm. To 
comply with guidelines for measuring skin color (54), which suggest 
taking at least 3 measurements at each test site to account for 
variability within the body area, four measurements were taken at 
different locations of each test site, avoiding moles and discoloration, 
and their mean was included in the statistical analysis. The 
measurements on the exterior side of the arm were reflective of skin 
color altered by ultraviolet radiation (facultative pigmentation), 
whereas measurements on the interior side of the upper arm indicated 
innate skin color (constitutive pigmentation). Inner side of upper arm 
is commonly used for determination of constitutive skin color and it 
was shown that there is good intra-individual MI correlation with MI 
of other body parts (55). The device was calibrated before use using a 
white calibration plate provided by the manufacturer. The subjects 
were asked not to apply cosmetic products to the upper arm or to wear 
clothing with tight sleeves on the day of the measurements.

For the objective classification of skin color type, the individual 
typology angle (ITA) was calculated from the measurement of 
constitutional color in the interior upper arm area according to the 
following formula: ITA° = [arctan(L*-50)/b*] x 180/π. Caucasian skin 
color types can be classified into four groups, ranging from very light 
to tanned skin: very light >55° > light >41° > intermediate 
>28° > tanned skin >10° (56, 57). This classification is an objective and 
quantitative alternative to the more subjective Fitzpatrick skin 
phototype classification (58).

To assess the degree of sun exposure of individuals more 
quantitatively, the difference between the facultative and constitutional 
pigmentation was calculated as the difference between the melanin 
index (MI) at the sun-exposed (exterior) and unexposed (interior) 
areas of the upper arm: ΔMI = MI (exterior area of the upper arm) – 
MI (interior area of the upper arm).

2.6 Behavior questionnaire on sun 
exposure

The behavior questionnaire on sun exposure included the 
following questions: holiday country and exact dates of holidays in the 
last 2 months (‘holidays’ definition: more than 4 consecutive days of 
vacation time), categorized as: up to 6 days, 6–14 days, more than 
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TABLE 2 Key descriptive characteristics of study participants expressed 
as continuous variables.

Variable Mean (± standard 
deviation)

Body mass index 24.1 ± 3.8

Vitamin D intake/day (μg) 2.9 ± 1.7

Vitamin D concentration January (nmol/L) 44.5 ± 17.2

Vitamin D concentration September (nmol/L) 80.0 ± 24.8

Constitutive skin color, ITA 38.4 ± 15.7

ITA, individual typology angle measured on inner upper arm.

14 days; hours of exposure to strong sun (in hours from 10 am to 4 pm) 
– separately for weekdays, weekend days, and holidays; wearing long 
sleeves as a protective measure against the sun (never, sometimes, 
always); and use of sun protection factor (SPF) products, level of SPF 
protection (below or above 30 SPF), and how often they use SPF 
products (never, sometimes, always). The questions about use of SPF 
were merged and categorized into: at least one response ‘never’; < 30 
SPF and ‘sometimes’; > 30 SPF and ‘always’.

2.7 Statistical analyses

Data analyses were performed using IBM SPSS Version 27 (IBM 
SPSS, IBM Corp., Armonk, NY) (59). Categorical variables were 
expressed as frequencies and percentages [N (%)]. Binary logistic 
regression based on a priori knowledge was performed to analyse 
potential factors associated with the prevalence of low VitD status. The 
crude and modeled binary logistic regression method was used and 
odds ratios (OR) (with 95% confidence intervals) were calculated for 
the prevalence of serum 25(OH)D concentrations below 50 nmol/L 
and 75 nmol/L for winter and summer measurements, respectively. 
Winter (January) variables included sex, year of inclusion, BMI, 
individual typology angle category (ITA) inner upper arm, VitD intake, 
seasonal 25(OH)D concentration difference, and IPAQ. The winter 
regression model (Model W) included all the aforementioned factors, 
except IPAQ. The Summer (September) logistic regression was done 
using two models. The variables included in the crude calculations 
were same as for winter, with added variables related to behavior in the 
sun and skin pigmentation: number of holiday days, SPF and frequency 
of SPF use, and wearing long sleeves; and two cofactors: the difference 
between the melanin index (MI) on the outer and inner upper arm, 
and hours in full sun. In the summer regression Model S1, we included 
the same variables as in Model W, and quantitative measures of the 
difference in the MI upper arm (ΔMI), whereas in summer regression 
Model S2, we included same variables as in Model W, together with 
self-reported factors (number of holiday days, SPF and frequency of 
SPF use, wearing long sleeves, and hours in full sun). As in the winter 
model, IPAQ was not included in either Model S1 or Model S2. The 
change in serum 25(OH)D concentration between winter and summer 
was examined using repeated-measures ANCOVA and two models 
(C1&2), with winter serum 25(OH)D concentration as covariate. 
We used the same variables as in the summer regression models for 
suboptimal VitD status. Considering that ITA is related to the skin’s 
ability to pigment after UV exposure (60), the interaction between ITA 
and ΔMI was used in the modeling (model C1). In all comparisons, 
the significance was considered at p < 0.05.

3 Results

A total of 292 participants completed the study, of whom 38% 
were male and 62% were female. Enrolment took place in 2019 
(70.2%) and 2020 (29.8%). The mean age (standard deviation) of 
participants at enrolment was 38.2 (±11.8) years, with a median of 
37 years. Overall, 33.6% of the participants were overweight or 
obese, and the mean BMI was 24.1 (±SD 3.3). Insufficient or 
deficient wintertime VitD status (January) was found in 63.4% of 
the participants, with mean 25(OH)D concentration 44.5 nmol/L 

(±SD 17.2). In the summertime 50% of participants had below 
sufficient status, and the mean 25(OH)D concentration was 
80.0 nmol/L (±SD 24.8). The mean (±SD) dietary intake of VitD was 
2.9 ± 1.7 μg (median 2.5 μg), with the maximum intake of 12.72 μg 
per day. Other characteristics of the population are shown in 
Tables 1, 2.

Factors affecting VitD status in the winter and summer seasons 
were examined using binary regression analysis. We calculated the 
seasonal OR, OR using a winter model (Model W), and two summer 

TABLE 1 Descriptive characteristics of the study population (N  =  292; 
Slovenia).

Parameter Group N (%)

Sex Male 111 (38)

Female 181 (62)

Year of inclusion 2019 205 (70.2)

2020 87 (29.8)

Body mass index 

category

Normal and underweight  

(< 24.9 kg/m2)

194 (66.4)

Overweight (25.0–29.9 kg/m2) 72 (24.7)

Obese (> 30.0 kg/m2) 26 (8.9)

Education level Primary or vocational school 

education

6 (2.0)

Secondary education 52 (17.8)

Vocational college 54 (18.5)

University degree 127 (43.5)

PhD, master’s, or specialization 53 (18.2)

Winter vitamin D status 

January

Deficiency (< 30 nmol/L) 61 (20.9)

Insufficiency (30–50 nmol/L) 124 (42.5)

Sufficiency (50–75 nmol/L) 93 (31.8)

Optimal (> 75 nmol/L) 14 (4.8)

Summer vitamin D status 

September

Deficiency (< 30 nmol/L) 2 (0.7)

Insufficiency (30–50 nmol/L) 14 (4.8)

Sufficiency (50–75 nmol/L) 130 (44.5)

Optimal (> 75 nmol/L) 146 (50.0)

Constitutive skin color, 

ITA (individual typology 

angle)

Very light (> 55°) 28 (9.6)

Light (> 41°) 124 (42.5)

Intermediate (> 28°) 71 (24.3)

Tan (> 10°) 69 (23.6)
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models (Models S1 and S2). In the summer Model S1, we  added 
objectively quantifiable measurements of the difference in the melanin 
index between constitutive and facultative skin pigmentation as an 
indicator of sun exposure level. In the summer Model S2, we added 
self-reported variables: number of holidays, how often and what SPF 
factor they use, hours spent in full sun, and whether they wear long 
sleeves as a protective measure against the sun.

Significant differences in crude ORs for insufficient VitD status 
in winter were found for the following variables: BMI (higher in 
obese individuals); seasonal differences in 25(OH)D concentrations 
(higher in individuals with greater differences); and ITA (lower in 
tan and intermediate subjects) (Table 3). Daily VitD intakes greater 
than 5 μg showed a nonsignificant trend (p < 0.1) of lower OR intake 
of insufficiency. Model W included all the variables used in the crude 
calculation except IPAQ and showed similar OR to the crude 
calculations. The highest ORs was found for BMI and the lowest for 
ITA°. Obese participants were 7.92 (95% CI: 2.11, 29.67) times more 
likely to be  VitD insufficient than normal or underweight 
participants, while individuals in the ‘intermediate’ and ‘tan’ ITA 
categories were significantly less likely to have VitD insufficiency 
than individuals in the ‘light’ ITA category (which is the most 
common in Slovenia).

For summer, in addition to the crude analysis, two models were 
configured, one based on measured variables (Model S1), and 
another based on self-reported variables (Model S2). Sex was 
significant only in the crude analyses, but not when adjusted with 
other factors (Models S1 and S2) (Table 3). On the contrary, daily 
VitD intake was not significant as crude value, but adjusted with 
other factors in Model S1 and S2, became significant (p < 0.05). In 
both summer models, the year of observation influenced VitD 
status. The participants observed in 2020, which included the first 
summer of the Covid-19 pandemic, were approximately twice as 
likely to have sub-optimal VitD status. In Model S1, the difference 
in melanin index (MI) between the inner and outer upper arm was 
a significant variable (analyzed as a continuous variable); at the 
same time ITA remained significant in individuals with ‘tan’ skin 
[0.29 (95% CI: 0.14, 0.63)], when compared to reference ‘light’ skin. 
The odds ratio for BMI remained highest for the obese subjects at 
OR 4.4 (95% CI: 1.46, 13.28). The second summer model (Model 
S2) included variables that were significant in the crude analyses. 
The analyses showed that the odds ratios were consistent with 
Model S1 for BMI (OR 5.33; 95% CI: 1.71, 16.59) and the ITA for 
‘tan’ (OR 0.33; 95% CI: 0.15, 0.73). In this model, the largest odds 
ratio for deficiency of VitD was attributed to wearing long sleeves 
as a protective measure against the sun. Those who reported 
wearing long sleeves were 5.98 (95% CI: 1.33, 27.03) times more 
likely to have suboptimal VitD status. The number of hours spent 
in full sun was also significant.

We also examined parameters related to interindividual 
differences in serum 25(OH)D concentration between winter and 
summer. Figure  1 presents a plot of summer and winter serum 
25(OH)D concentration, while the results of the repeated-measures 
ANCOVA analyses are shown in Table  4. Statistically significant 
predictors in the objective model C1 were BMI, year of observation, 
and ITA*ΔMI, while sex was non-significant with p = 0.057. In the 
subjective model C2, predictors of seasonal difference in serum 
25(OH)D concentration were BMI, sex, ITA, and number of 
holiday days.

4 Discussion

Public health interest in vitamin D is increasing due to its versatile 
body functions and the high prevalence of deficiency worldwide (3, 
7). For example, a nationally representative Slovenian Nutrihealth 
study showed that approximately 80% of adults have insufficient VitD 
status in winter and 60% have suboptimal VitD status in summer (1).

While several studies have addressed VitD status in population-
based cross-sectional studies [see a very recent review by Cashman on 
this topic (61)], few studies have followed seasonal changes in serum 
25(OH)D concentration with a prospective cohort study design, and 
have generally focused on specific population subgroups or had 
limited sample sizes. The largest prospective cohort study was 
conducted by MacDonald et  al., (62) who studied 314 Caucasian 
postmenopausal women and emphasized the importance of 
BMI. Andersen et al. (63) examined seasonal changes in VitD status 
in 54 Danish adolescent girls and 52 elderly women, focusing on both 
sun habits and VitD supplementation. Pittaway et al. (64) studied 91 
older subjects (71% women, aged 60–85 years) in Tasmania and also 
noted the importance of VitD supplementation; supplement use was 
associated with mostly smaller seasonal variations in serum 25(OH)
D concentration. Brustad et  al. (65) followed VitD status in 60 
Norwegian adults (73% women, age 20–60 years) with bi-monthly 
observation time and reported that high dietary VitD intake largely 
masks seasonal variations. On the other hand, Wolman et al. (66) 
included only subjects who supplemented VitD, but their study was 
very specifically focused on elite ballet dancers (n = 19; 65% women); 
the authors reported notable seasonal differences in VitD status, but 
did not focus on skin parameters. Our literature search did not 
identify any prospective cohort studies addressing seasonal changes 
in VitD status in the general adult population and using objective 
methods to measure skin color and pigmentation. VitD 
supplementation is a known major parameter linked to serum 25(OH)
D concentration (67), therefore we  wanted to focus on other 
parameters related to VitD status, and to exclude the effects of 
supplementation by study design.

The current study therefore used a prospective cohort design with 
measurements during the winter and summer seasons in subjects who 
did not supplement with VitD. Although VitD also occurs naturally 
in foods, the average daily dietary intake of this vitamin in Slovenian 
adults is only 2.9 μg (40) – much lower than typically supplemented 
dosages (25 μg) (68, 69). Nevertheless, we also followed the dietary 
intake of VitD with foods using a validated food frequency 
questionnaire (51). Serum 25(OH)D concentration was measured as 
a marker of VitD status, as were other characteristics, such as skin 
pigmentation and sun behavior. The strength of the study also lies in 
the use of objective measures of skin color and pigmentation. Using 
ITA, we were able to account for different levels of constitutive skin 
color in the Caucasian population. Given the study objectives, 
we recruited subjects with a wide variability in the parameters studied, 
and therefore did not use a nationally representative sampling 
approach. Overall, 62% of the study participants were women. BMI 
was self-reported, and 66% of participants fell into the normal/
underweight category, 25% into the overweight category, and 6% into 
the obese category, the mean BMI of the entire population was 24.1 
(SD ± 3.8).

Although the observed prevalence of inadequate VitD status 
should not be  generalized to the population, it is interesting to 
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TABLE 3 Prevalence of insufficient/sub-optimal vitamin D status in winter/summer season with odds ratios (OR) and 95% confidence intervals (CI) for crude variables and winter (Model W), and two summer 
models (Model S1 and S2).

Winter insufficient vitamin D status  
(serum 25(OH)D concentration  <  50  nmol/L)

Summer suboptimal vitamin D status  
(serum 25(OH)D concentration  <  75  nmol/L)

Prevalence Crude Model W Prevalence Crude Model S1 Model S2

N (%) OR (95% CI) OR (95% CI) N (%) OR (95% CI) OR (95% CI) OR (95% CI)

Sex

- Male 73 (65.8) Ref Ref 46 (41.4) Ref Ref Ref

- Female 112 (61.9) 0.85 (0.52, 1.38) 1.14 (0.64, 2.05) 100 (55.3) 1.74* (1.08, 2.81) 0.88 (0.47, 1.66) 1.05 (0.55, 2.00)

Observation year

- 2019 130 (63.4) Ref Ref 93 (45.4) Ref Ref Ref

- 2020 55 (63.2) 0.99 (0.59, 1.67) 1.10 (0.60, 2.00) 53 (60.9) 1.88* (1.13, 3.13) 2.03* (1.05, 3.92) 1.77# (0.91, 3.46)

Body mass index

- Normal and underweight 112 (57.7) Ref* Ref* 89 (45.9) Ref* Ref* Ref*

- Overweight 50 (69.4) 1.66# (0.93, 2.96) 1.73# (0.91, 3.28) 37 (51.4) 1.25 (0.73, 2.14) 1.68 (0.86, 3.25) 1.99* (1.01, 3.98)

- Obese 23 (88.5) 5.61* (1.63, 19.33) 7.92* (2.11, 29.67) 20 (76.9) 3.93* (1.51, 10.22) 4.4* (1.46, 13.28) 5.53* (1.77, 17.27)

Constitutive skin color, ITA

- Very light 20 (71.4) 0.96 (0.41, 2.5) 0.82 (0.30, 2.2) 15 (53.6) 0.64 (0.28, 1.5) 0.40# (0.15, 1.1) 0.34# (0.12, 1.00)

- Light 88 (71.0) Ref* Ref* 80 (64.5) Ref* Ref* Ref*

- Intermediate 40 (56.3) 0.53* (0.29, 0.97) 0.49* (0.25, 0.95) 32 (45.1) 0.45* (0.25, 0.81) 0.52# (0.26, 1.0) 0.54# (0.26, 1.11)

- Tan 37 (53.6) 0.47* (0.26, 0.87) 0.28** (0.14, 0.57) 19 (27.5) 0.21** (0.11, 0.40) 0.29* (0.14, 0.63) 0.32* (0.15, 0.70)

Vitamin D intake/day

- Below 5 μg 172 (65.2) Ref Ref 137 (51.9) Ref Ref Ref

- Above 5 μg 13 (46.4) 0.46# (0.21, 1.02) 0.51 (0.21, 1.20) 9 (32.1) 0.44# (0.19, 1.01) 0.31* (0.11, 0.86) 0.28* (0.10, 0.80)

Δconc. 25(OH)D

- 1. Quartile (< 22.3 nmol/L) 33 (44.0) Ref** Ref** 58 (77.3) Ref** Ref** Ref**

- 2. and 3. Quartile (22.3–47.0 mol/L) 99 (68.3) 2.74** (1.54, 4.87) 3.20** (1.69, 6.04) 78 (53.8) 0.34** (0.18, 0.64) 0.33* (0.17, 0.67) 0.30** (0.14, 0.62)

- 4. Quartile (>47.0 nmol/L) 53 (73.6) 3.55** (1.77, 7.11) 6.78** (2.98, 15.44) 10 (13.9) 0.05** (0.02, 0.11) 0.05** (0.02, 0.13) 0.06** (0.02, 0.15)

IPAQ NIM NIM NIM

- Low 21 (70.0) Ref 18 (60.0) Ref

- Moderate 77 (67.5) 0.89 (0.37, 2.14) 62 (54.4) 0.79 (0.35, 1.8)

- High 87 (58.8) 0.61 (0.26, 1.43) 66 (44.6) 0.54 (0.24, 1.19)

(Continued)
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TABLE 3 (Continued)

Winter insufficient vitamin D status  
(serum 25(OH)D concentration  <  50  nmol/L)

Summer suboptimal vitamin D status  
(serum 25(OH)D concentration  <  75  nmol/L)

Prevalence Crude Model W Prevalence Crude Model S1 Model S2

N (%) OR (95% CI) OR (95% CI) N (%) OR (95% CI) OR (95% CI) OR (95% CI)

Number of Holiday Days NIM

- Up to 6 days 69 (65.7) 64 (61.0) Ref* Ref

- 6–14 days 59 (64.1) 45 (48.9) 0.61# (0.35, 1.08) 0.88 (0.43, 1.81)

- More than 14 days 57 (60.0) 37 (39.0) 0.41* (0.23, 0.72) 0.85 (0.41, 1.75)

SPF and frequency of SPF use NIM

- At least one answer ‘never’ 45 (56.3) 35 (43.8) Ref# Ref

- < 30 SPF and ‘Sometimes’ 124 (66) 94 (50.0) 1.29 (0.76, 2.18) 0.91 (0.47, 1.78)

- > 30 SPF and ‘always’ 16 (66.7) 17 (70.8) 3.12* (1.17, 8.36) 2.34 (0.63, 8.65)

Wearing long sleeves NIM

- Never 131 (62.7) 101 (48.3) Ref Ref*

- Sometimes 41 (60.3) 34 (50.0) 1.07 (0.62, 1.85) 1.47 (0.74, 2.92)

- Always 13 (86.7) 11 (73.3) 2.94# (0.91, 9.53) 6.15* (1.36, 27.84)

Δ Melanin index 0.9* (0.84, 0.96) 0.89* (0.82, 0.97) NIM

Hours in full sun 0.69** (0.57, 0.84) NIM 0.75* (0.59, 0.96)

Ref, reference value (odds ratio = 1); NIM, not in the model; Δconc, seasonal difference in the concentration of serum 25(OH)D; 25(OH)D, 25 hydroxy vitamin D; SPF, sun protection factor; ITA, individual typology angle measured on inner upper arm; Δ Melanin 
Index (ΔMI), difference in Melanin Index between sun-exposed and sun-unexposed side of arm; OR, odds ratio; CI, confidence interval; VitD, vitamin D; IPAQ, international physical activity questionnaire; p values, ** < 0.001, * < 0.05, # < 0.1. In addition to winter 
Model W, summer Model S1 included objective measures for sun exposure while Model S2 included subjective measures for sun exposure. Model W included variables: sex, observation year, body mass index, vitamin D intake/day, Individual typology angle, difference 
between summer and winter 25(OH)D concentration. Model S1 included variables: sex, observation year, body mass index, vitamin D intake/day, individual typology angle, difference between summer and winter 25(OH)D concentration, and Difference in Melanin 
index. Model S2 included variables: sex, observation year, body mass index, vitamin D intake/day, Individual typology angle, difference between summer and winter 25(OH)D concentration., number of holiday days, SPF and frequency of SPF use, wearing long sleeves, 
and hours in full sun.
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compare the observed prevalence with the nationally representative 
Nutrihealth (NH) study (1). The mean 25(OH)D concentration in 
January was 44.5 nmol/ L comparing to 36.7 nmol/L in NM study 

(winter time), for the September, the mean concentration was 
80.0 nmol/L, comparing to 70.4 n mol/L in NH study (summer time)
The prevalence of suboptimal VitD status (25(OH)D 
concentration < 75 nmol/L) in our study was 95.2% in winter (NH: 
98.0%) and 50.0% in summer (NH: 62.6%). More notable differences 
were observed in the prevalence of insufficient VitD status 
(<50 nmol/L), which was 63.4% in winter (NH: 81.6%) and 5.5% in 
summer (NH: 25.3%). These differences can be explained not only by 
the recruitment approach and the study population, but also by the 
observation periods. While the Nutrihealth study recruited subjects 
over the entire calendar year, our study focused on two narrow 
sampling periods – January for the winter season and September for 
the summer season. This approach was chosen to minimize within-
season variability in environmental factors.

Regression analyses modeling was used to identify the most 
important factors affecting seasonal VitD status in our population 
group. Large differences in winter and summer VitD status, therefore 
the analyses were made with different cutoff targets for each season. 
The cutoff value was set at <50 nmol/L (insufficient status) for winter, 
and at <75 nmol/L (suboptimal status) for summer, because of the 
seasonal differences in environmental factors and human behavior, 
the regression models were constructed as season specific. We used 
one winter model (Model W), which did not include variables related 
to sun exposure/protective behavior, and two summer models (Model 
S1 and S2): the first considering only objectively measured variables, 
and the second taking into consideration subjectively measured 
parameters. All the models included the usual variables that may 
influence VitD status, such as sex, BMI, VitD intake, and skin color 
category (ITA), along with seasonal differences in 25(OH)D 
concentration. Considering the differences in environmental and 

FIGURE 1

Scatter plot of summer and winter serum 25-hydroxy vitamin D [25(OH)D] concentration with annotated datapoints according to body mass index 
categories.

TABLE 4 Predictors of change in serum 25-hydroxy vitamin D [25(OH)D] 
concentration between winter and summer for regression models C1  
and C2.

Model C1 Model C2

F P F P

Intercept 92.0 < 0.001 73.5 < 0.001

Sex 3.66 0.057 5.15 0.024*

Observation year 4.98 0.026* 1.87 0.17

Body mass index 4.49 0.012* 4.66 0.010*

Vitamin D intake/day 1.30 0.26 1.74 0.19

Constitutive skin color, ITA
4.60 0.001*

3.60 0.014*

Δ Melanin index

Number of holiday days 9.81 < 0.001*

SPF and frequency of SPF use 1.97 0.14

Wearing long sleeves 0.97 0.38

Hours in full sun 3.12 0.078

Results of repeated-measures ANCOVA using winter serum 25(OH)D concentration as 
covariate. SPF, sun protection factor; ITA, individual typology angle measured on inner 
upper arm; Δ Melanin Index (ΔMI): difference in Melanin index between sun-exposed and 
sun-unexposed side of arm; *significant at p < 0.05. Model C1 included variables: sex, 
observation year, body mass index, vitamin D intake/day, and individual typology angle 
(ITA) * Δ Melanin Index (as composite variable). Model C2 included variables: sex, 
observation year, body mass index, vitamin D intake/day, individual typology angle, number 
of holiday days, SPF and frequency of SPF use, wearing long sleeves, and hours in full sun.
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lifestyle factors, the year of observation was also included in all the 
models. In this regard, it should be noted that the second year of the 
study coincided with the Covid-19 pandemic and its associated 
restrictions, which affected the behavior of the subjects during the 
summer sampling period. Given the prospective study, we  also 
evaluated seasonal differences in serum 25(OH)D concentration, 
using repeated measures analyses.

Our results show that BMI is a strong predictor of VitD status in 
both winter and summer periods. Compared with normal/
underweight individuals, obese individuals were several times more 
likely to have insufficient VitD status in winter (model W; OR 7.9), and 
suboptimal VitD status in summer (Models S1 and S2; OR 4.4 and 5.5, 
respectively; Table 3). BMI was also confirmed as a significant variable 
in repeated measures analyses of seasonal changes in serum 25(OH)
D concentration (Table 4). BMI has previously been described as a 
predictor of VitD status (25, 26, 28, 62, 67, 70–72) and of seasonal 
differences in serum 25(OH)D concentration (62). Several factors 
could contribute to the lower 25(OH)D concentration in individuals 
with a higher BMI, including a larger pool for the accumulation of 
VitD in adipose tissues, and lifestyle covariates (i.e., less outdoor 
activity due to lower mobility), but the association remains 
controversial (71, 73). In conclusion, BMI is a strong predictor, but 
we should interpret results with some caution since BMI was self-
reported variable.

In our study, sex was not found to be a significant predictor of 
VitD status either in winter or in summer (after adjustment for other 
factors; Table 3), but there was an association with seasonal changes 
in serum 25(OH)D concentration (Table 4). We could find no other 
literature with prospective cohort data on this topic, and data from 
cross-sectional studies vary widely. In some studies, although sex was 
reported as a significant predictor of VitD status, the direction of the 
effect may be in the opposite direction (61). However, in the NH study 
(1) and some other studies (25, 26), lower VitD status was found 
in women.

Daily dietary intake of VitD (with food) was low (median 2.5 μg) 
and comparable to epidemiological data for Slovenian adults (NH: 
2.7 μg) (40, 44). Also, the maximum intake was 12.72 μg per day, 
which is well below the recommended intake of 20 μg per day (45). 
Nevertheless, dietary VitD intake showed tendency (p = 0.057) to 
be  significantly correlated with VitD status as a sole variable. 
Surprisingly in the summer models, the higher dietary VitD intake 
was correlated with optimal VitD status (Models S1 and S2). This was 
unexpected, since usually VitD intake is bigger predictor of VitD 
status in winter, in the absence of endogenous VitD synthesis which 
is the major contributor to VitD source (14–16). Literature shows, that 
supplementation with higher doses of VitD is a predictor of personal 
VitD status, whereas the effect of lower dietary VitD intake with foods 
is not consistent across studies (63, 74).

In our study, we used ITA as an objective and quantitative method 
to classify constitutional skin pigmentation. It has six classes ranging 
from ‘very light’ to ‘dark’ (56), but because the study was conducted in 
Slovenia with a Caucasian population, our sample did not include the 
‘brown’ and ‘dark’ categories. ITA is used as an objective alternative to 
the subjective Fitzpatrick skin phototype (58), which is based on self-
reported pigmentation and solar reactivity of the skin (50), and has 
been used as a measure of skin pigmentation in several studies (75). It 
should be  noted that the ITA and the Fitzpatrick phototype (FT) 
classifications are not completely equivalent; whereas the FT is easier 

to use in a clinical setting, ITA is preferred for its objective 
classification of skin type in research (58, 76, 77). The analyses were 
performed using the base category of ‘light’, which was the most 
common in our study group. The odds ratios for lower VitD status 
decreased with darker skin pigment (lower ITA) in both winter and 
summer (Table 3). The lowest OR for insufficient VitD status (winter 
Model W) or suboptimal VitD status (summer Models S1 and S2) 
were observed in the ‘tan’ category: 0.28, 0.29, and 0.33 for Models W, 
S1, and S2, respectively. These observations add new and interesting 
findings to the existing knowledge. Previous studies that also 
considered skin color type compared individuals of different 
ethnicities and showed that individuals with more pigmented skin 
living in the same conditions had lower VitD status compared to 
Caucasians (24–28). To our knowledge, only one study has examined 
correlations with skin color in the Caucasian population: 
Dimakopoulos et al. (74) conducted a cross-sectional examination of 
factors affecting serum 25(OH)D concentrations and showed similar 
trends – the likelihood of lower VitD status was inversely related to 
darker skin. The observed results suggest that darker constitutive skin 
color in the Caucasian population is related to better VitD status, but 
there is likely a tipping point at which darker constitutive skin color 
no longer works in favor, but limits the production of 25(OH)D. It 
should also be noted that darker skin types tend to be less sun-reactive 
than lighter skin types, i.e., they have lower erythema sensitivity and 
better tanning ability; consequently, these individuals may be more 
susceptible to riskier sun habits and less likely to use sun protection 
measurements, (78) which could also contribute to lower odds for 
VitD deficiency.

In our study the melanin index was used as a measure of 
pigmentation; the difference between constitutive and facultative 
pigmentation was measured as ΔMI to objectively assess the degree 
of sun exposure of individuals and was included in the objective 
models S2 and C2. Dosimeters can be used to objectively quantify sun 
exposure, but their usage in larger and longer-term studies is 
challenging (63), whereas ΔMI can be easily measured during a single 
visit without burdening subjects on a daily basis during the research. 
The ΔMI was found to predict both seasonal change in serum 25(OH)
D (Table 4; Model C2), and VitD status in summer (Table 3; Model S2).

To gain further insight, we also examined a set of self-reported 
variables related to peoples’ behavior and lifestyles (Models S1 and 
C1). In contrast to some other studies (25, 26, 70, 74), physical activity 
level was not found to be a significant predictor of VitD status, and 
therefore was not included in the modelling. On the other hand, the 
number of summer holiday days and the use of SPF were significant 
in the crude analyses of OR for summer low VitD status, but not when 
adjusted with other factors. We could hypothesize that this is also due 
to the interdependence of these two factors. On the other hand, the 
number of summer holiday days was strongly associated with 
individual seasonal changes in serum 25(OH)D concentration 
(Table 4; Model C2, p < 0.001). This was not the case with the use of 
SPF (p = 0.14). Some other studies also found no association between 
the use of SPF and VitD status (79), or sunscreen use was found to be a 
predictor of serum 25(OH)D, but normal sunscreen use was not 
associated with insufficient VitD status (80). Another subjectively 
reported parameter examined in our study was the hours of sun 
exposure between 10 am and 4 pm during summer, when the intensity 
of UV-B light is strong enough for VitD biosynthesis (81). This 
parameter was marginally significantly associated with seasonal 
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changes in serum 25(OH)D concentration (Table  4; Model C2, 
p = 0.078), but significantly associated with summer VitD status 
(Table 3, Model S2, p < 0.05). Similar observations had previously been 
reported by Dimakopoulos et al. (74) This was also true for wearing 
long sleeves as a precautionary measure, which was identified as a very 
important parameter associated with VitD status in summer. Wearing 
long sleeves in summer increased the odds of suboptimal VitD status 
by 5.98-fold (95% CI: 1.33, 27.03) (Table 3, Model S2). Similarly, the 
observations of Datta et al. showed that daily self-reported summer 
clothing habits in summer, together with sun exposure, most 
influenced 25(OH)D concentration (27). Some other studies also 
associated body exposure to intense sunlight with VitD status (82, 83). 
It should be noted that caution should be exercised with increased sun 
exposure because of the risk of skin cancer, and that there is a fine line 
between beneficial UVB exposure and health risks, such as sunburn 
and skin cancer. It should also be noted that acute overexposure to 
sunbathing is less effective for VitD biosynthesis than more frequent, 
lower-level exposure (84), which is a viable option for safer sun 
exposure. However, debates on this topic are conflicting and indicate 
that there is no safe level of UVB exposure (85, 86).

We have mentioned several strengths of the study; in particular, the 
prospective cohort design, the control for VitD intake (exclusion of 
supplementation), and the use of objective measurements, but we should 
also point out some limitations of the study. Considering the population 
in our region, the study population consisted only of Caucasian adults, 
which means that we did not have access to subjects with dark brown 
and black skin color. On the other hand, previous studies have 
highlighted skin phototype as an important predictor of VitD status 
when comparing different ethnic populations (24–29), but this issue has 
not been adequately addressed within Caucasian population where 
differences in skin color are less pronounced. The data on body weight 
and height (used for calculation of BMI) was self-reported and not 
measured. We should also mention that VitD intake was not assessed 
from weighted food records, which are considered the gold standard 
method. VitD is mainly found in foods that are not consumed on a daily 
basis, which means that the collection of food records would be needed 
for several days, imposing a significant burden on the study participants. 
Therefore, dietary VitD intake was estimated using a validated semi-
structured FFQ (51) which required only a single administration. In 
addition, the method used for objective assessment of summer sun 
exposure has some limitations. The difference in constitutive and 
facultative skin pigmentation has been used as an indicator of individual 
sun exposure, but the development of skin pigmentation varies between 
different skin color types and may reach a plateau above which an 
additional UV dose results in little or no additional pigmentation (75). 
This limitation could be overcome by using UV dosimeters (24, 63, 72), 
which was not possible in our study because of the large sample size. 
We should mention that dosimeters are usually used for rather short 
periods, whereas the half-life of serum 25(OH)D is measured in weeks 
(87). Long-term use of UV dosimeters would impose a significant 
burden on the participants, with high risks of noncompliance use during 
the most intense sun exposure (e.g., sunbathing).

5 Conclusion

VitD deficiency is highly prevalent around the world. Factors 
affecting seasonal VitD status have been studied in Caucasian adults. 

While previous studies have mostly used a cross-sectional design and 
subjective assessment of skin pigmentation, we  conducted a 
longitudinal cohort study of subjects without VitD supplementation 
with summer and winter observation periods. Using a range of 
objective measures, we  demonstrated that VitD status is hugely 
influenced by several personal parameters, limiting the usefulness of 
generalized population-level recommendations. While seasonal 
differences and a higher risk of VitD deficiency in winter are well 
known, we showed that skin pigmentation in both summer and winter 
is related to VitD status and to seasonal changes in serum 25(OH)D 
concentration. The general observation was that in the Caucasian 
population, darker constitutional skin color means lower odds of 
lower VitD status. Another key factor that should be given special 
consideration in future public health recommendations is body mass 
index. The results of the study will be used in the development of a 
screening tool to identify individuals at higher risk of insufficient VitD 
status. We used several objective methods to assess skin color and sun 
exposure behavior that will support further studies. Future research 
should primarily use objectively measured parameters and wider 
variability in skin color types.
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