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Grading dried shiitake mushrooms is an indispensable production step, as there 
are large quality differences between different grades, which affect the product’s 
price and marketability. Dried shiitake mushroom samples have irregular shapes, 
small morphological differences between different grades of the same species, 
and they may occur in mixed grades, which causes challenges to the automatic 
grade recognition using machine vision. In this study, a comprehensive method 
to solve this problem is provided, including image acquisition, preprocessing, 
dataset creation, and grade recognition. The osprey optimization algorithm (OOA) 
is used to improve the computational efficiency of Otsu’s threshold binarization 
and obtain complete mushroom contours samples efficiently. Then, a method 
for dried shiitake mushroom grade recognition based on the improved VGG 
network (D-VGG) is proposed. The method uses the VGG16 network as the base 
framework, optimizes the convolutional layer of the network, and uses a global 
average pooling layer instead of a fully connected layer to reduce the risk of model 
overfitting. In addition, a residual module and batch normalization are introduced 
to enhance the learning effect of texture details, accelerate the convergence of 
the model, and improve the stability of the training process. An improved channel 
attention network is proposed to enhance the feature weights of different 
channels and improve the grading performance of the model. The experimental 
results show that the improved network model (D-VGG) can recognize different 
dried shiitake mushroom grades with high accuracy and recognition efficiency, 
achieving a final grading accuracy of 96.21%, with only 46.77  ms required to 
process a single image. The dried shiitake mushroom grade recognition method 
proposed in this study provides a new implementation approach for the dried 
shiitake mushroom quality grading process, as well as a reference for real-time 
grade recognition of other agricultural products.
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1. Introduction

The shiitake mushroom is an excellent edible mushroom with a long history, and is one of 
the first domesticated and cultivated mushrooms. It is rich in nutrients and active substances (1, 
2), and has medicinal and dietary uses, including cholesterol- and blood pressure-lowering 
effects; antibacterial, antifungal, antiviral, and antioxidant properties; it regulates intestinal 
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microbes and enhances the immune system (3, 4). These properties 
are the reason for which it is known as the “king of mushrooms.” In 
recent years, the demand for shiitake mushrooms has been increasing 
significantly. Due to the influence of soil environment and light and 
temperature during growth, the surface of the shiitake mushroom cap 
usually cracks, forming a characteristic texture with different colors 
and patterns (5). Generally, this texture is whitish-brown and 
resembles the shape of a daisy, and such samples are known as “dried 
flower mushrooms.” In contrast, mushrooms without cracks on the 
surface of the cap are called “dried thick mushrooms” and “dried thin 
mushrooms.” Depending on their appearance and texture, different 
types of dried shiitake mushrooms (DSM) are classified into three 
grades: premium, first grade, and second grade, where a higher grade 
corresponds to better quality. The quality of shiitake mushrooms is the 
key factor to identify their grade during the acquisition process. 
Therefore, there is an urgent need to develop an efficient and accurate 
automatic grading method to ensure the accurate classification of the 
mushrooms according to their quality and achieve rapid grading.

In recent years, deep learning (6) has created a research boom in 
various fields. In the agricultural field, deep learning combined with 
machine vision has been widely used in plant recognition and 
detection, such as recognition of wood categories (7), fruit and 
vegetable classification (8–10), plant pest and disease identification 
(11, 12), crop yield estimation (13, 14) and weed detection (15).

Meanwhile, deep learning is being rapidly adopted in tasks 
related to agricultural product quality grading. Zhang et al. (16) 
proposed a peanut pod grade recognition method based on an 
improved AlexNet model with transfer learning. To train the model, 
the initial dataset of 500 collected images of five grades of peanut 
pods was enhanced to 3,500 images, and the final average 
recognition accuracy was 95.43%. Ren et al. (17) proposed a pepper 
quality detection method based on a convolutional neural network 
(CNN) and transfer learning. The method performed the grading 
based on the appearance features of peppers, and achieved a 
prediction accuracy of 98.14%. Lu et al. (18) proposed a grading 
method for roasted tobacco based on an improved ResNet50 
network with multi-scale feature fusion. The method was tested on 
a total of 6,068 tobacco images from 7 grades and the final grading 
accuracy was 80.14%. Chen et  al. (19) proposed an intelligent 
grading method for pecan kernels based on deep learning and 
physiological indicators, with a dataset of 4,395 images of pecan 
kernels of four grades enhanced to 6,213 images and a final grading 
accuracy of 92.2% on the test set.

In the research on DSM grading, initially, the identification of 
grades mainly relied on manual sorting, weighing, and mechanical 
classification methods based on sieve pore screens. Manual sorting 
involves the grade estimation by experienced workers; however, this 
method is less efficient, and the grading is subject to individuals’ 
subjective assessment, resulting in higher sorting error and lower 
grading accuracy. The weighing method involves sorting the DSM 
grade through its weight; although this method has improved in 
efficiency, it has limitations because it does not take into account the 
texture characteristics of the top cap to distinguish between grades. 
Mechanical grading based on sieve holes grades the DSM using 
different sieve hole sizes. This method is fast but also does not take 
into account the texture characteristics of DSM caps. In addition, the 
shapes of some DSM may not be consistent with the fixed size of sieve 
holes of the corresponding grade, which leads to grading inaccuracy.

With the development of machine vision and deep learning 
technologies in agricultural products, some domestic and foreign 
scholars have realized the identification of different grades through an 
analysis of DSM image features. Chen et al. (20) extracted suitable 
texture areas from the surface of DSM caps, used grayscale histogram 
statistics, a grayscale co-occurrence matrix, a Gaussian Markov 
random field model, and a fractal dimension model for feature 
extraction, and designed a k-nearest neighbor classifier to classify the 
image features with a correct classification rate of 93.57%. Shi et al. 
(21) designed a method for classifying DSM based on the texture 
features of cap openings, and established a quality factor calculation 
equation, with the final classification accuracy reaching 94.18%. 
Ketwongsa et  al. (22) proposed a deep learning model for the 
classification of toxic and edible shiitake mushrooms based on an 
improved AlexNet CNN, and the accuracy of the proposed model 
reached 98.50% and 95.50%, respectively. What’s more, some 
intelligent mushroom sorting lines have been reported in field 
applications, such as the Wuhan Cooper smart mushroom sorting line.

Although some achievements have been made in mushroom 
species detection and quality grading, there are still some limitations. 
First, traditional machine vision methods are slow in the grading 
process and not adapted to the requirements of actual field 
environments. Second, most of the existing research focuses on the 
classification of different kinds of mushrooms, and there is less 
research on different grades of the same kind of mushrooms. This 
leads to many challenges in practical applications, such as fast 
implementations, algorithms optimization, model generalization and 
performance reliability.

In this study, a complete image processing method and grading 
scheme are proposed based on machine vision and deep learning for 
online real-time identification of different DSM grades. The method 
achieves accurate and efficient identification of different kinds and 
grades of DSM. The main contributions of this study are as follows:

 1) An improved Otsu’s threshold binarization (OOA-Otsu) 
algorithm is designed to segment the DSM images by extracting 
the maximum contour and cropping the maximum contour 
external matrix. Then, the complete DSM image is obtained by 
extending the region of interest (ROI). An image dataset 
containing 1,355 original DSM of different grades was created.

 2) A D-VGG network is constructed using the VGG16 network 
as the basic framework. The network can identify different 
grades of DSM effectively through its optimized convolutional 
layer and through the adoption of a global average pooling 
layer instead of a fully connected layer, the addition of a 
residual module and batch normalization, and fusion via an 
improved channel attention network. The accuracy rate 
achieved on the DSM dataset was 96.21%, which is better than 
other similar deep learning methods.

2. Image acquisition and 
preprocessing

In this study, image acquisition and preprocessing are 
implemented for six types of DSM: Premium Dried Flower 
Mushrooms (DFM-P), grade 1 Dried Flower Mushrooms (DFM-1), 
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grade 2 Dried Flower Mushrooms (DFM-2), Premium Dried Thick 
Mushrooms (PDM-TH), grade 1 Dried Thick Mushrooms (DTHM-
1), and Premium Dried Thin Mushrooms (PDM-Th). The obtained 
initial images are enhanced to create the final data set to train a DSM 
grade recognition model. The overall method flowchart is shown in 
Figure  1, and the image acquisition and preprocessing steps will 
be described in detail in the next section.

2.1. Image acquisition

Example images of DSM samples of different grades are shown in 
Figure 2, where A1,A2 is a DFM-P, B1,B2 is a DFM-1, C1,C2 is a 
DFM-2, D1,D2 is PDM-TH, E1,E2 is DTHM-1, and F1,F2 is PDM-Th. 
From Figure  2, it can be  seen that different species of DSM have 
different textural characteristics, and there are some differences 
between different grades of the same species. It is noteworthy that 
some DSM species showed relatively slight textural differences 
between grades, which were difficult to distinguish accurately, for 
example, PDM-TH and DTHM-1, which brought some challenges 
and difficulties to the subsequent sorting of DSM grades.

The image acquisition system is shown in Figure 3. For the DSM 
grade recognition task, an image acquisition darkroom with a ring 
light source was designed. The experimental acquisition environment 
was under the darkroom, which had a size of 60 cm × 60 cm × 60 cm. 

A professional camera with a black light-absorbing cloth was used 
to prevent the interference of external light sources, and the light 
source and camera were fixed on a bracket. To illuminate the targets, 
a Hikvision Technology industrial high uniform ring light source 
was used, while the camera model was a Hikvision MV-CE100-
30GC 10-megapixel industrial camera, equipped with a 
MVL-HF1224M-10MP Hikvision optical industrial lens having a 
focal length of 12 mm. To highlight the color and texture details of 
the DSM, a white balance card was used as background, and the 
shooting distance was set at 45 cm. Using the official MVS software 
provided by Hikvision Robotics Machine Vision, the exposure time 
was adjusted to 1.818/100 s, the original colors of the image were 
restored using the gamma correction application that comes with the 
software, and the automatic white balance was turned on. The open 
mode was adopted in front of the image acquisition equipment, to 
allow easy placement and removal of the DSM raw materials. The 
acquired images were transferred to the computer through a 
network connection.

A total of 1,500 DSM images were collected in the experiment, 
and images suffering from acquisition problems such as blurring and 
incomplete shooting backgrounds were manually screened out. This 
resulted in 1,355 DSM images after screening, which included 184 
DFM-P, 223 DFM-1, 212 DFM-2, 249 PDM-TH, 222 DTHM-1, and 
265 PDM-Th images, each with a size of 3,840 × 2,748 pixels. Then, the 
images were further preprocessed.

FIGURE 1

Research flow chart.
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2.2. Image preprocessing

Continuous identification of various levels of DSM spread on the 
field assembly line is required; therefore, the shooting field must 
be much larger than a single mushroom. Then, it does not need to 
change all the parameters of the image acquisition platform, and the 
current recognition model and dataset can be directly applied to the 
subsequent field part detection. The original DSM image size was 
3,840 × 2,748 pixels, which was relatively large, while the area occupied 
by the DSM targets was small, so a large part of the image consisted of 
irrelevant background pixels. To improve the training and convergence 
speed of the model, further preprocessing of the originally captured 

images was necessary to precisely locate the area occupied by the 
DSM, so that the model could identify the texture features of the DSM 
and grade them efficiently and correctly. The image preprocessing step 
was as follows: (1) conversion of images to grayscale; (2) application 
of improved Otsu’s threshold binarization (OOA-Otsu); (3) DSM 
outline extraction; (4) cropping of the ROI.

2.2.1. Improved Otsu’s threshold binarization of 
DSM images

The images were first processed using simple thresholding, 
which results in the binarization of the images using a direct 
threshold. By analyzing the grayscale distribution of the different 

FIGURE 2

Images of six grades of DSM. (A1,A2) DFM-P, (B1,B2) DFM-1, (C1,C2) DFM-2, (D1,D2) PDM-TH, (E1,E2) DTHM-1, (F1,F2) PDM-Th.

FIGURE 3

Image acquisition platform.
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DSM images, four thresholds of 155, 165, 175, and 185 were selected 
to process the images. Figure 4 shows the results of processing the 
six DSM grade images using four different thresholds. Among 
them, A1–F1 represent original DSM images of different grades: A1 
corresponds to DFM-P, B1 corresponds to DFM-1, C1 corresponds 
DFM-2, D1 corresponds to PDM-TH, E1 corresponds DTHM-1, 
and F1 corresponds to PDM-Th. A2–A5 are the results of the 
DFM-P image processed using the four thresholds of 155, 165, 175, 
and 185, respectively, and so similarly for B2–B5, C2–C5, D2–D5, 
E2–E5, F2–F5. It can be seen that binarizing the images of different 
DSM grades using different thresholds results in different effects. 
For the DFM-P image of Figure 4A1, when the global thresholds 
are 155 (Figure 4A2) and 165 (Figure 4A3), the maximum outer 
contour appears to be broken, while the contours of other grades of 

DSM can be  accurately identified. For the PDM-TH image of 
Figure  4D1, when the global threshold is 185 (Figure  4D5), 
binarization using the threshold results in oversized edges, but the 
same threshold produces good results in the case of the DFM-P 
contour (Figure 4A5). Meanwhile, the other DSM grades presented 
different results under the four thresholds. Therefore, it is difficult 
to determine a fixed threshold for batch processing of different 
DSM grades images.

The results obtained for the dataset images of different DSM 
grades are shown in Table 1. It can be seen that the processing time for 
different threshold values ranged very little, from 33.21 to 34.15 s. 
When the threshold value was 175, which yielded the best 
performance, out of 1,355 samples, 1,299 binarized DSM body 
contours were complete, and the percentage of complete samples to 

FIGURE 4

Results of simple threshold binarization under different thresholds. (A1–F1) Original image. (A2–F2) Threshold 155. (A3–F3) Threshold 165. (A4–F4) 
Threshold 175. (A5–F5) Threshold 185.
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the total samples was 95.88%; the time required to complete the 
process was 33.71 s.

Then, Otsu’s threshold binarization method (23, 33) was tested. 
Figure 5 shows the binarization results of different classes of DSM 
using Otsu’s method, where A–F are images of the six DSM grades, 
and A1–F1 are the results with Otsu’s threshold binarization. It can 
be seen that the maximum contour can be effectively segmented using 
Otsu’s threshold binarization method. The corresponding 
performance metrics are shown in Table 2, where the percentage of 
complete samples to all the samples was 98.37%, and the time required 
to complete the calculation was 255.28 s.

Otsu’s method showed good results in dealing with image 
binarization for different DSM grades, but the calculation time of the 
method is long too for practical field applications. The main reason is 
that the method needs to traverse all the gray levels in the range of 
0–255 to calculate the variance. Assuming that the time to calculate 
the variance for each level is T, the total calculation time is 256 T, 
which greatly reduces the processing efficiency of the DSM image 
binarization. To ensure that the best threshold value of the image can 
be  obtained while improving efficiency, the osprey optimization 
algorithm (OOA) (24) was applied to Otsu’s threshold binarization 
method. The OOA uses the strategy of an osprey hunting fish from the 
ocean to find the best threshold value. The new method for threshold-
based binarization of DSM images is named as OOA-Otsu algorithm. 
The processing flow of OOA-Otsu algorithm is shown in Figure 6.

In Figure 6, N  represents the population size, T  represents the 
maximum number of iterations, i represents the i-th osprey, t  
represents the current number of iterations, FPi represents the set of 
fish of the i-th osprey, SFi represents the fish selected by the i-th 
osprey, Xi represents the current position of the i-th fish eagle, XiP1 
represents the position of the i-th osprey in Phase 1, and XiP2  
represents the position of the i-th osprey in Phase 2. In this algorithm, 

the best threshold value in the Otsu’s calculation process is considered 
as the coordinates Xi of the osprey population in the OOA algorithm. 
The OOA algorithm is used to simulate the predatory behavior of the 
osprey, where the fitness of each osprey’s position is calculated and 
inverted. In each iteration, the fitness of the positions is compared, the 
coordinates Xi are updated, and finally the best threshold value is 
determined, with the aim being to reach the optimal value achieved 
through Otsu’s exhaustive method.

Figure 7 shows the results of OOA-Otsu algorithm for different 
DSM grades, where A–F are images of the six DSM grades, and A1–F1 
are the processing results with OOA-Otsu. It can be  seen that 
OOA-Otsu can segment the maximum contour of the DSM effectively. 
The performance analysis of OOA-Otsu is shown in Table 3, where it 
is shown that the proportion of complete samples to total samples was 
99.31% and the time required to achieve this percentage was 52.89 s.

The overall performance of the three threshold binarization 
methods is compared in Table 4. OOA-Otsu proposed in this paper 
takes the least time with the highest accuracy, and retains more 
complete contour information when binarizing different DSM images 
of different grades, thus achieving the best performance.

2.2.2. Dried shiitake mushroom image 
segmentation

After OOA-Otsu process, all contours of the DSM in the image 
are obtained. Due to the texture features of some DSM caps, some 
irrelevant contours may be contained inside the maximum contour of 
the main body. In addition, there may be some residues around the 
DSM, and these irrelevant contours are also shown after the threshold 
segmentation process, so we continue to perform contour filtering to 
obtain an accurate image of the DSM. In addition, since the 
classification network requires the same input image length and width, 
the ROI region is adjusted so that the cropped image has the same 

TABLE 1 Simple threshold binarization performance evaluation table.

Binarization method Threshold Complete samples/
total samples

The proportion of 
complete samples

Execution time

Simple threshold

155 1,251/1,355 92.37% 33.21 s

165 1,277/1,355 94.26% 34.15 s

175 1,299/1,355 95.88% 33.71 s

185 1,290/1,355 95.26% 34.07 s

FIGURE 5

Results of Otsu’s threshold binarization. (A–F) Original image. (A1–F1) Results of Otsu’s threshold binarization.
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length and width to prevent the scaling operation from distorting the 
DSM image ratio.

Figure 8 shows DSM segmentation result. In Figure 8A, the red 
box indicates the minimum outer rectangle of DSM, while the green 
box indicates the adjusted minimum outer square. The result of the 
cropped and resized minimum square ROI is shown in Figure 8B.

2.3. Data augmentation

Cropped DSM images have different pixel sizes. To make the pixel 
size consistent, we used a double cubic interpolation method to ensure 
the quality of the scaled image. The pixel size of DSM image was 
uniformly resized to 224 × 224. To avoid overfitting and improve the 
generalization ability and recognition accuracy of the model, data 
augmentation methods were used to increase the number of sample 
images. Considering the texture characteristics of DSM, the Python 
library imgaug was used to perform horizontal and vertical flips, 
Gaussian noise addition and equal-scale scaling (25) for the 
augmentation operations on the existing dataset to generate more 
samples for model training. Figure 9 shows the DSM processing effect 
with image augmentation method.

The total number of samples after image augmentation was 6,775, 
specifically, 920 DFM-P, 1,115 DFM-1, 1,060 DFM-2, 1,245 PDM-TH, 
1,110 DTHM-1 and 1,325 PDM-Th. 70% of the final dataset images were 
used as the training set and the remaining 30% as the test set. The final 
detailed number of images of different DSM grades is shown in Table 5.

3. Model construction

3.1. Overall D-VGG model framework

The VGG16 network model, proposed by the Visual Geometry 
Group (Oxford University), is one of the classical CNNs and is 
commonly used for tasks such as image classification, image 
segmentation, and so on. In this paper, the proposed DSM grade 
recognition network is based on VGG16. First, the convolutional layer 
of the VGG16 network was optimized for the DSM grade recognition 
task through the adoption of a global average pooling layer instead of 
the fully connected layer. The improved network structure (Figure 10) 
consisted of five stack modules, a global average pooling layer and a 
softmax layer, and each stack module contained two sets of 
convolutions. Second, to enhance the model’s learning of subtle DSM 
features while accelerating the convergence speed, a residual module 
and a batch normalization method were introduced in each stacked 
module of the improved network. To further improve the grading 
accuracy, an improved channel attention module was proposed, which 
was introduced into the improved network structure to enhance the 
weight share of each channel of the DSM image. The final network 

model was named D-VGG, and its overall structure is shown in 
Figure 11. It can be seen that the network structure of the D-VGG 
network consisted of five block layers, a global average pooling layer, 
and a softmax layer. Among them, each block layer consisted of a stack 
module, a modified channel attention network, and a pooling layer. 
Each part of D-VGG will be described in detail next.

3.2. Modification of convolutional layer 
structure and fully connected layer

Due to the different morphological characteristics and texture 
features of different grades of DSMs, a convolutional group module 
with a depth of 32 was added at the very front of the network, which 
included two sets of convolutional operations. At the same time, the 
last set of convolutional group modules in the network, with a depth 
of 512, was removed. The strategy of reducing the depth of 
convolutional layers aimed to reduce the model complexity and the 
number of its parameters, reduce the risk of overfitting, and improve 
the generalization ability of the model in DSM grade recognition 
tasks. Second, the convolutional groups with depths of 256 and 512 
that initially have 3 sets of convolutional layers were adjusted to 2 sets 
of convolutional layers, consistent with the convolutional groups with 
depths of 32, 64, and 128. This operation optimized the network 
structure and facilitates subsequent model building and improvement. 
Finally, the whole network model had five convolutional groups, each 
containing two convolutional layers. To better describe their functions 
and organization, the convolutional groups were renamed as “Stack.” 
The fully connected layers are the main reason for the large number 
of parameters of the deep learning network model and the large 
amount of memory required for training. For the DSM grade 
recognition task, the final classification was performed across six 
categories, and it was found that the neurons were too redundant 
compared to the 1,000 class classification task trained on the ImageNet 
dataset, which could easily lead to model overfitting. Therefore, a 
global average pooling operation was performed on the last 
convolutional pooled feature map to obtain a 512 × 1 × 1 output. 
Subsequently, the spreading-processed feature maps were input to the 
softmax layer to complete the final grading result. The flow of the 
global averaging pooling operation is shown in Figure 12.

The improved VGG neural network model was named 
VGG-REV. The VGG-REV network layer structure contained five 
stack modules, a global average pooling layer, and a softmax layer; its 
VGG-REV neural network structure is shown in Figure 10.

3.3. Residual and batch normalization

The color and texture information of DSMs plays a crucial role in 
model learning. To extract the subtle features of different DSM grades, 
the residual structure introduced in the ResNet network is leveraged 
and a 1 × 1 shortcut branch is added to the input layer of each stacked 
module of the VGG-REV model to enhance the connection between 
the texture information of DSM features and the improved neural 
network. The network structure of a single stack module after the 
addition of the residual structure is shown in Figure 13A. The main 
task of the convolutional layer of the CNN is to extract image features. 
When features from different DSM grades enter the convolutional 

TABLE 2 Otsu’s threshold binarization performance evaluation table.

Binarization 
method

Complete 
samples/

total 
samples

The 
proportion 

of complete 
samples

Execution 
time

Otsu’s threshold 1,332/1,355 98.37% 255.28 s
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layer for processing, the distribution of the output data may become 
uneven due to the update of the convolution parameters, which has 
an impact on the neural network model. To solve this problem, a batch 

normalization layer is introduced between each convolutional layer 
and the activation function to accelerate the convergence of the model 
and stabilize the training process. During model training, batch 

FIGURE 6

OOA-Otsu algorithm flow chart.
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normalization uses the mean and standard deviation on small batches 
of data and maps them to a region with a variance of 1 and a mean of 
0 for adjustment, making the output data more stable. The batch 
normalization calculation process is shown in Eqs. (1) to (5).

First, the mean and variance of the training batch data of each 
round are calculated:
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where xi is an input data sample and m  is the total number of 
input data samples. After obtaining the mean and variance, the batch 
is regularized to a zero-mean normal distribution with a variance of 1:
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where e  is a tiny positive number used to avoid the case where the 
denominator is zero and the calculation is meaningless. To avoid the 
impact of data normalization on the feature distribution, the function 
is further reconstructed to recover the original feature distribution. 
The calculation equations are:

 ˆi i i iy xγ β= +  (4)

 ( ) ( )ˆ ˆVar ,i i i ix E xγ β= =
 

(5)

g i, bi  are obtained through the CNN training process, ( )ˆVar ix  
is the variance function, and

 ( )ˆiE x
 
is the mean value function. The 

batch normalization stem is introduced into the stacked module 
network structure; the improved structure is shown in Figure 13B, and 
referred to as the VGG-REV-RES-BN neural network.

3.4. Pro-SENet for improved channel 
attention

In actual production environments, the DSM images have a single 
background, while the recognition process is inevitably characterized 
by uneven illumination and the appearance of fine hair point particles, 
which can introduce a large amount of noise. This noise is passed on 
to the data used for model training and affects the learning of the 
feature layer parameters as it propagates within the network, and 
eventually has an impact on the DSM grade recognition process. To 
solve this problem, the improved channel attention network 
Pro-SENet is proposed, which increases the weights associated with 
the detailed features of DSMs and suppresses the weights of interfering 
factors by learning each feature’s value automatically. The channel 
attention (26) network structure contains three main parts: squeezing, 
stimulation, and feature rescaling. Through the proposed design, the 
squeezing and stimulation parts of channel attention are improved 
as follows.

3.4.1. Squeezing
The squeezing operation is performed on input batches of the 

same samples, and the global average pooling (GAP) and global 
maximum pooling (GMP) operations are applied on the feature 
images of dimension W × H × C in the spatial dimension. The feature 
map W × H of each channel where GAP is applied is squeezed to a real 
number with only one global feature, whose output dimension is 
1 × 1 × C. For each channel processed using GMP, the maximum value 
of that channel is extracted as its feature map, also with an output 
dimension of 1 × 1 × C. Finally, these two sets of data are averaged and 
summed to obtain the output of the squeezing operation. It is worth 
mentioning that replacing the original GAP operation with GAP and 
GMP operations can alleviate the uneven distribution of GAP weights 
and further strengthen the weights of the effective channels by the 
data obtained from GMP. The specific equations are shown in Eqs. 
(6) to (8).

FIGURE 7

Results of OOA-Otsu for different DSM grades. (A–F) Original image. (A1–F1) Results of OOA-Otsu.

TABLE 3 OOA-Otsu performance evaluation table.

Binarization 
method

Complete 
samples/

total 
samples

The 
proportion 

of complete 
samples

Execution 
time

OOA-Otsu 1,345/1,355 99.31% 52.89 s
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 F u uc csq2 ( ) = ( )max  (7)

 z F F Fc = + -( )sq sq sq2 1 2 2/  (8)

Here, Fsq1 denotes the GAP method, Fsq2 denotes the GMP 
method, uc denotes the feature image of the input batch of data, W  and 
H  denote the width and height of the feature image, respectively, and 
i j,( ) are the coordinates on the feature image. After the above 

processing process, the final output channel is Zc and its output is the 
feature map squeeze result of C.

3.4.2. Stimulation
The result obtained through squeezing linearly varied to 

change the depth and then is input to the ReLU6 activation 
function. Compared with the initial ReLU activation function, 
the ReLU6 function avoids uneven channel learning weights and 
alleviates the effect of the improved squeezing operation on 
overweight distribution, thus resulting in more suitable channel 
weights. Next, the weights of each channel depth are obtained 
through another linear variation of the initial depth again, and 
finally the probability distribution is adjusted to the range 0 and 
1 using the Sigmoid activation function. The equation is shown 
in Eq. (9).

 s F z L L Lc i zc= ( ) = ( )( )ex , d s2 1  (9)

where Fex  denotes the excitation method, L1 and L2  are fully 
connected layers used for linear change processing, s  is the ReLU6 
activation function, and d  is the Sigmoid activation function. Finally, 
a vector S of length C is obtained.

3.4.3. Feature rescaling
The final obtained channel weights S are multiplied with the 

initial input feature image matrix channel by channel to complete the 
rescaling of the original feature channel dimensions. The equation is 
shown in Eq. (10).

 U F u s u sc c c c c= ( ) = ´scale ,  (10)

Fscale denotes the feature rescaling method, uc is the feature image 
of channel as C, and Sc is a weight vector of length C. Finally, the 
output result Uc  of the feature rescaling process is obtained. The 
improved channel attention structure is shown in Figure 14.

The improved channel attention network module (Pro-SENet) 
proposed in this study is a plug-and-play module. Based on the 
VGG-REV-RES-BN feature extraction network, the improved channel 
attention module is added to formulate the DSM image feature 
weighting network to further improve the recognition accuracy of the 
model. The final neural network model obtained is referred to simply 
as D-VGG.

4. Implementation details

4.1. Test platform

The experiments of this study were conducted on the Windows 11 
operating system; the GPU model was GeForce RTX 2070 with 8G of 

TABLE 4 Performance evaluation table of different threshold methods.

Binarization method Complete samples/total 
samples

The proportion of 
complete samples

Execution time

Simple threshold 1,299/1,355 95.88% 33.71 s

Otsu’s threshold 1,332/1,355 98.37% 255.28 s

OOA-Otsu 1,345/1,355 99.31% 52.89 s

FIGURE 8

DSM segmentation result. (A) Cropped ROI outline. (B) Segmented DSM image through ROI.
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video memory, the processor was Intel® Core™ i5-12400 CPU at 
4.4 GHz, and 16G of running memory were available. The model 
development environment was Pycharm with Python version 3.9. The 
model was built using the PyTorch deep learning framework, and the 
algorithm was accelerated via the CUDA and CUDnn libraries.

4.2. Training details

Before inputting the DSM images into the model, the data for each 
channel were normalized with a mean of 0.5 and a standard deviation 
of 0.5. Doing so allows different features to have the same scale, thus 
improving the learning efficiency of the model. In addition, the input 
training set was randomly scrambled to reduce the effect of image 
order on the model’s training process. Using the Adam optimizer, the 
adaptive learning strategy Adagrad combined with the momentum 
descent algorithm can adapt to the sparse gradient and alleviate the 

problem of gradient oscillation, so that the model performance was 
more stable and the model was easy to reach convergence. The initial 
learning rate (LR) was set to 0.0002, the batch size was set to 32, and 
the number of iterations to 50. Focal loss function was selected as 
model loss function. After each epoch, the accuracy of the model was 
tested with the validation set and validation results generated during 
that epoch were saved.

4.3. Network evaluation

In this study, accuracy ACC( ), precision P( ), specificity S( ), recall 
R( ), F1 score (F1), and avg metrics_  (Supplementary Table S1) were 

used as evaluation metrics to assess the effectiveness of the model. In 
Supplementary Table S1, TP, TN, FP, FN, ki and Ni represent the true 
positive, true negative, false positive, false negative, evaluation metrics, 
and the total number of samples of grade N, respectively. Among the 
evaluation metrics, F1 is a composite indicator that incorporates the 
recall and specificity, and a higher value indicates a better model 
overall (27). The network evaluation equation is shown in 
Supplementary Table S1.

5. Results

5.1. Ablation experiment

To investigate the effects of the different improvements on model 
performance, a set of ablation experiments were conducted. The same 
configuration environment with consistent hyperparameters was used 

FIGURE 9

DSM processing effect with image augmentation method.

TABLE 5 Details of DSM dataset.

Name Training set Testing set

DFM-P 644 276

DFM-1 781 334

DFM-2 742 318

PDM-TH 872 373

DTHM-1 777 333

PDM-Th 928 397

Total 4,744 2,031
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for the experiments. The experimental results are shown in Table 6. 
Among them, D-VGG-REV is the model obtained starting with 
D-VGG without modifying the convolution and fully connected layers 
of the network, D-VGG-RES-BN is the model obtained without 
adding the residual structure and batch normalization, and D-VGG-
Pro-SENet is the model without fusing the Pro-SENet network. The 
comparison of these networks is useful for exploring the impact of 
each improvement method on the model.

From Table 6, it can be seen that the VGG16 model has the worst 
result in identifying the accuracy of DSM. This is mainly due to the 
single background of the collected DSM image data, which is too 
complex for the VGG16 network’s simple model. With the 
D-VGG-REV model, the accuracy decreases by 1.58 percentage points 
(pp) compared to D-VGG, and the model memory size increases from 
18.1 MB to 512.7 MB. It can be concluded that the modification of the 
convolutional and fully connected layers of the network results in an 
improvement of the network’s performance and a significant reduction 

in the memory required by the model. When the model is D-VGG-
RES-BN, the accuracy of the model decreases by 5.07 pp. It can 
be concluded that the residual module and batch normalization are 
effective in improving the network performance. This is mainly 
because the level of details in the feature information of the DSM 
gradually decreases as model depth increases, and the introduction of 
the residual module solves this problem. In addition, batch 
normalization speeds up the training and convergence of the network 
and prevents the adverse effects of uneven data on the model, thus 
resulting in an improvement in recognition accuracy. The D-VGG-
Pro-SENet model’s accuracy decreases by 1.33 pp. which is mainly 
because the model with channel attention can learn the feature 
channels of the DSM more effectively and adaptively, boosting the 
channel weights that are favorable for model learning. Figure 15 shows 
the accuracy comparison of each model for 50 iterations. In summary, 
the improved method proposed in this study achieved a large 
performance improvement relative to the VGG16 network.

FIGURE 10

VGG-REV network structure.

FIGURE 11

D-VGG network structure.
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5.2. Influence of learning rate and batch 
size on model training

The learning rate (LR) and the batch size are crucial parameters 
in deep learning model training. To determine the optimal initial LR 
and batch size values, experiments were conducted and the effects of 
different values for these hyperparameters were compared.

5.2.1. Effect of learning rate on model training
The batch size was first set to 32 and experiments were conducted 

on the effect of different LRs on the model’s performance. The LR was 
compared in terms of order of magnitude and of different values of the 
same order. The experimental results are shown in Table 7. As the LR 
ranged from 10 3-  to 10 5- , the highest accuracy and the smallest loss 
value were obtained for the values of the 10 4-  order of magnitude. This 
is mainly because the initial LR was set at the order of 10 3- , which is 

too large, resulting in the network not being able to converge to the 
optimal solution stably, jumping larger distances in the parameter 
space and missing the optimal global minimum. In contrast, when the 
initial LR was set at an order of magnitude of 10 5- , the gradient of the 
network decreased too slowly, as the too-small LR resulted in the 
optimal result not being obtained after iteration limit had been 
reached. Therefore, it can be  concluded that the network model 
achieved its highest accuracy and best training results for LRs at the 
10

4-  order of magnitude.
Figures  16A,B show the changes in accuracy and loss values 

during the training of the model for different initial LRs magnitudes, 
respectively. Based on this, a cross-sectional comparison was 
conducted by varying the initial LR between 0.0001 and 0.0003. From 
Table 7, it can be concluded that the optimal initial LR of this model 
was 0.0002, resulting in the highest accuracy rate of 96.21% with the 
smallest training loss value of 0.0054. Figures 17A,B show the changes 

FIGURE 12

Global average pooling operation flow chart.

FIGURE 13

Stack module structure. (A) Introduction of residual structure stack module. (B) Introducing the stack module with residual structure and batch 
normalization methods.

https://doi.org/10.3389/fnut.2023.1247075
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Wang et al. 10.3389/fnut.2023.1247075

Frontiers in Nutrition 14 frontiersin.org

in accuracy and loss values during the training of the model for 
different LR values at the 10 4-  order of magnitude.

5.2.2. Effect of different batch sizes on model 
training

After determining the optimal initial LR, the LR was fixed at 
0.0002. The network performance was evaluated for different batch 
sizes. The size of the batch is crucial for the improvement of the model 
performance. The values tested were 8, 16, 32 and 64, which were 
incremented by a factor of 2x (x = 1, 2, 3, 4) to observe the impact of 

different batch sizes more intuitively. As can be seen from Table 8, 
when the batch size was set to 64, the accuracy of the model 
recognition was the lowest, which is mainly because this large setting 
reduced the generalization ability of the model and affected its 
performance. On the contrary, when the batch size was set to 8, the 
accuracy of the model was also relatively low, mainly because a small 
value led to a large variation between adjacent batches, which affected 
the convergence of the model negatively. As the batch size was 
increased to 16, the recognition accuracy of the model improved, but 
it still did not reach the optimal effect, and the model was still in a 
locally optimal state. Through the experiments, it can be concluded 
that the model has the highest accuracy and the best performance 
with the batch size set to 32. Figures  18A,B show the changes in 
accuracy and loss value during the training of the model with different 
batch sizes, respectively.

5.3. D-VGG: comparison with other 
networks

To verify the effectiveness of the network proposed in this paper, 
the following models were chosen as baseline models: VGG16 (28), 
GoogleNet (29), ResNet34 (30), ResNet50 (31), and MobileNetV2 (32).

The accuracy variation of each model during the training 
process after 50 training iterations is shown in Figure  19. The 
performance of each model was evaluated, and the evaluation results 
are shown in Table 9. From Table 9, it is evident that the proposed 
D-VGG model outperforms other similar deep-learning network 
models in all indices. In terms of accuracy rate, the D-VGG model 
proposed in this paper achieved 96.21%. The next best model is 
GoogleNet, with an accuracy of 93.45%. GoogleNet used the 
Inception module, which incorporated multiple scale features and 
enabled the model to achieve better performance. The accuracy of 
ResNet 50 and ResNet 34 was 92.31% and 90.89%, respectively. 
ResNet employed a residual structure, which successfully solved the 
degradation problem that occurred in deep networks, and also 
mitigated the issue of gradient disappearance and explosion that 
resulted from increasing network depth. However, MobilenetV2 and 
the baseline VGG16 model performed poorly at 84.78% and 88.97%, 
respectively. MobilenetV2 had a relatively shallow structure and thus 
lost some characterization ability when dealing with DSM images 
with complex features. The VGG16 network can capture finer-
grained features of DSM images, but cannot exploit the spatial 

FIGURE 14

Improved channel attention network structure.

TABLE 6 Comparative results of different models of ablation 
experiments.

Model Accuracy Parameter 
memory 

requirement

Model 
parameter 
quantity

VGG16 88.97% 512.0 MB
237 05 10

6
. ´

D-VGG-

REV

94.63% 512.7 MB
237 24 10

6
. ´

D-VGG-

RES-BN

91.14% 18.1 MB
4 76 10

6
. ´

D-VGG-

Pro-SENet

94.88% 18.8 MB
4 94 10

6
. ´

D-VGG 96.21% 18.9 MB
4 94 10

6
. ´

FIGURE 15

Accuracy of different models for ablation experiments.
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information and is prone to overfitting. In summary, the D-VGG 
network proposed in this paper performs the best on the DSM grade 
recognition task.

In addition to considering performance metrics such as model 
accuracy, specificity, recall, and F1 score, the complexity of the model 
in terms of time taken to complete a task is also one of the important 
considerations. Excessive complexity can affect model deployment 

and practical field applications, especially in industrial production, 
where a fast response time may have a large impact in productivity. 
The average inference time for the total test set of 2031 DSM images 
was calculated, and the results are shown in Table 9. It can be seen that 
the D-VGG single image prediction time is only 46.77 ms, which is 
equivalent to processing 21 images per second, and meets the 
requirements of the actual field.

TABLE 7 Performance comparison of models using different learning rates.

Experiment 
code

Learning 
rate

Accuracy Loss value 
in training

Avg. 
specificity

Avg. 
precision

Avg. 
recall

Avg. F1 
Score

1 0.001 93.99% 0.0292 98.80% 93.95% 93.92% 93.93%

2 0.0001 94.63% 0.0087 98.90% 94.85% 94.55% 94.70%

3 0.00001 90.00% 0.0712 99.98% 90.05% 89.62% 89.83%

4 0.002 92.76% 0.0217 98.53% 92.98% 92.55% 92.77%

5 0.0002 96.21% 0.0054 99.25% 96.18% 96.33% 96.26%

6 0.00002 92.37% 0.0367 98.47% 92.22% 92.30% 92.26%

7 0.003 93.89% 0.0177 98.78% 94.02% 93.68% 93.85%

8 0.0003 95.67% 0.0126 99.13% 95.68% 95.70% 95.69%

9 0.00003 92.81% 0.0223 98.57% 92.78% 92.82% 92.80%

FIGURE 16

Longitudinal comparison of models with different learning rates. (A) Accuracy of models with different learning rates in the longitudinal direction. 
(B) Loss values for models with different learning rates in the longitudinal direction.

FIGURE 17

Cross-sectional comparison of models with different learning rates. (A) Accuracy of models with different learning rates in the cross-section. (B) Loss 
values for models with different learning rates in the cross-section.
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FIGURE 18

Comparison of models with different batch size. (A) Accuracy of models with different batch size. (B) Loss values for models with different batch size.

6. Conclusion

For solving the problem of DSM grade recognition in the real 
field, this study realized an experimental platform construction, image 
processing and DSM dataset establishment. The DSM grade 
recognition network model D-VGG was then proposed and its 
performance was evaluated. The innovative points of this paper are 
as follows:

 1) An Otsu’s threshold binarization based on the osprey 
optimization algorithm is designed, which can extract the DSM 

contours efficiently and accurately. This algorithm uses the 
Osprey optimization algorithm as an optimization tool, which 
is applied to Otsu’s algorithm to achieve adaptive threshold 
binarization of the image. Contour screening and ROI region 
cropping steps are further performed to segment of the DSM 
images. The complete DSM image is obtained by extending 
the ROI.

 2) A D-VGG network model for DSM grade recognition is 
proposed. Using the VGG16 network as the main framework, 
the convolutional layer of the network is optimized and the 
GAP is used instead of the fully connected layer of the network, 
which accelerates the training of the model and decreases the 
number of network parameters. The residual module and batch 
normalization are introduced to enhance the network’s ability 
to recognize the detailed features of different DSM grades. An 
improved channel attention module is also proposed and 
introduced into the model for effective learning of 
channel weights.

The network model proposed realizes a effective classification of 
different DSM grades. However, there are some limitations in this 
study. First, the dataset used in this paper is enhanced and the number 
of original images is relatively small. Second, the size information of 
different grades of DSM is not utilized during the model training 
process, and the size features of DSM are lost. Follow-up work should 
consider the following aspects:

 1) The number of samples of different DSM grades should 
be  expanded, so that the neural network can learn and 

FIGURE 19

Comparison of the accuracy of different models.

TABLE 8 Performance comparison of models using different batch size.

Experiment 
code

Batch size Accuracy Loss value 
in training

Avg. 
specificity

Avg. 
precision

Avg. 
recall

Avg. F1 
score

1 8 95.52% 0.0062 99.13% 95.73% 95.68% 95.71%

2 16 95.57% 0.0040 99.02% 95.42% 94.80% 95.11%

3 32 96.21% 0.0054 99.25% 96.18% 96.33% 96.26%

4 64 94.73% 0.0129 98.95% 94.70% 94.58% 94.64%
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understand the characteristics of different grades more fully, 
which will result in an improved generalization ability.

 2) The effects of geometric features such as length, width, area, 
and aspect ratio of different types of DSM on the grading 
results should be studied, and these features should be analyzed 
by the network together with image information to improve the 
recognition accuracy.

 3) This study was conducted in the laboratory, and the method 
should be  subsequently validated in a practical 
application scenario.
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